Role of reserve carbohydrates in the growth dynamics of Saccharomyces cerevisiae - INSA Toulouse - Institut National des Sciences Appliquées de Toulouse Access content directly
Journal Articles FEMS Yeast Research Year : 2004

Role of reserve carbohydrates in the growth dynamics of Saccharomyces cerevisiae


The purpose of this study was to explore the role of glycogen and trehalose in the ability of Saccharomyces cerevisiae to respond to a sudden rise of the carbon flux. To this end, aerobic glucose-limited continuous cultures were challenged with a sudden increase of the dilution rate from 0.05 to 0.15 h−1. Under this condition, a rapid mobilization of glycogen and trehalose was observed which coincided with a transient burst of budding and a decrease of cell biomass. Experiments carried out with mutants defective in storage carbohydrates indicated a predominant role of glycogen in the adaptation to this perturbation. However, the real importance of trehalose in this response was veiled by the unexpected phenotypes harboured by the tps1 mutant, chosen for its inability to synthesize trehalose. First, the biomass yield of this mutant was 25% lower than that of the isogenic wild-type strain at dilution rate of 0.05 h−1, and this difference was annulled when cultures were run at a higher dilution rate of 0.15 h−1. Second, the tps1 mutant was more effective to sustain the dilution rate shift-up, apparently because it had a faster glycolytic rate and an apparent higher capacity to consume glucose with oxidative phosphorylation than the wild type. Consequently, a tps1gsy1gsy2 mutant was able to adapt to the dilution rate shift-up after a long delay, likely because the detrimental effects from the absence of glycogen was compensated for by the tps1 mutation. Third, a glg1Δglg2Δ strain, defective in glycogen synthesis because of the lack of the glycogen initiation protein, recovered glycogen accumulation upon further deletion of TPS1. This recovery, however, required glycogen synthase. Finally, we demonstrated that the rapid breakdown of reserve carbohydrates triggered by the shift-up is merely due to changes in the concentrations of hexose-6-phosphate and UDPglucose, which are the main metabolic effectors of the rate-limiting enzymes of glycogen and trehalose pathways.
Fichier principal
Vignette du fichier
b_b_Guillou2004.pdf (186.97 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-02559445 , version 1 (30-04-2020)
hal-02559445 , version 2 (05-05-2020)



Vincent Guillou, Lucile Plourde-Owobi, Jean Luc Parrou, Gérard Goma, Jean François. Role of reserve carbohydrates in the growth dynamics of Saccharomyces cerevisiae. FEMS Yeast Research, 2004, 4 (8), pp.773-787. ⟨10.1016/j.femsyr.2004.05.005⟩. ⟨hal-02559445v2⟩
88 View
86 Download



Gmail Mastodon Facebook X LinkedIn More