Flow investigation in an innovating dynamic filtration module using tracing methods - INSA Toulouse - Institut National des Sciences Appliquées de Toulouse Access content directly
Journal Articles Separation and Purification Technology Year : 2019

Flow investigation in an innovating dynamic filtration module using tracing methods

Abstract

Residence Time Distribution (RTD) experiments were carried out under laminar and turbulent 43regimesin a complex dynamic filtration module, named Rotating and Vibrating Filtration (RVF). 44This filtration module,dedicated to bioprocess intensification and downstream processing,45consists of two filtration cells in series in which a three-blade impeller rotates between twoflat46membranes.47Ourobjectivesareto improve filtration and overall industrial bioprocess performancesby (i) 48deeply understandingthe flow behaviourwithin RVF modulesand (ii) characterizing and 49modellingthe RTD througha systemic analysisand (iii) identifying critical operating conditions 50with microbial cells.51Analytical study of distribution functions was conductedand statistical moments were calculated 52and discussed. This study providesuseful recommendations, guidelines byidentifyingefficient 53volume (functioning area), dead zone volume (dysfunctioningarea). The influence of operating 54parameters (mixing rateNand flow rate Qf) on the mean residence time,tswerehighlighted. The 55systemic analysis led to compare threemodelswith analytical solutions. Finally, a simple model 56allowing the description of the evolution of the RTD of the studied filtration module was 57 proposed.
Fichier principal
Vignette du fichier
Residence time distribution_RVF_20August2018_v4-accepted.pdf (920.88 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02350503 , version 1 (09-12-2019)

Identifiers

Cite

Xiaomin Xie, Christophe Andre, Nicolas Dietrich, Philippe Schmitz, Luc Fillaudeau. Flow investigation in an innovating dynamic filtration module using tracing methods. Separation and Purification Technology, 2019, 227, pp.115656. ⟨10.1016/j.seppur.2019.05.098⟩. ⟨hal-02350503⟩
70 View
208 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More