Computational insights into carbon–carbon homocoupling reactions mediated by organolanthanide(iii) complexes - INSA Toulouse - Institut National des Sciences Appliquées de Toulouse Access content directly
Journal Articles Dalton Transactions Year : 2014

Computational insights into carbon–carbon homocoupling reactions mediated by organolanthanide(iii) complexes

Abstract

Homocoupling of terminal alkynes into trienediyl complexes by alkyl samarocenes is known experimentally. By means of computational techniques, we investigated the mechanism of this reaction in detail. The overall reaction sequence is: σ-bond metathesis, dimerisation of metallocenes, and homocoupling of two acetylides into trienediyl. We show that the rate-determining step corresponds to the homocoupling of two anionic acetylides. This coupling takes place at a bis-samarocene dimer complex in which the bridging mode of the two acetylide moieties is critical for the reaction to proceed. The limited energy barrier for the homocoupling of the carbanions originates from a synergistic effect of the two samarium centres within the dimer. Variation of the steric demand of both substrates and lanthanocenes allowed rationalising all the experimental data available for these systems.
No file

Dates and versions

hal-01969549 , version 1 (04-01-2019)

Identifiers

  • HAL Id : hal-01969549 , version 1

Cite

Christos E. Kefalidis, Lionel Perrin, Laurent Maron. Computational insights into carbon–carbon homocoupling reactions mediated by organolanthanide(iii) complexes. Dalton Transactions, 2014, 43 (11), pp.4520. ⟨hal-01969549⟩
19 View
0 Download

Share

Gmail Facebook X LinkedIn More