
HAL Id: hal-04461427
https://hal.insa-toulouse.fr/hal-04461427

Submitted on 16 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient HTN to STRIPS Encodings for Concurrent
Planning

Nicolas Cavrel, Damien Pellier, Humbert Fiorino

To cite this version:
Nicolas Cavrel, Damien Pellier, Humbert Fiorino. Efficient HTN to STRIPS Encodings for Concurrent
Planning. 2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI), Nov
2023, Atlanta, France. pp.962-969, �10.1109/ICTAI59109.2023.00144�. �hal-04461427�

https://hal.insa-toulouse.fr/hal-04461427
https://hal.archives-ouvertes.fr

Efficient HTN to STRIPS Encodings for
Concurrent Planning

Nicolas Cavrel, Damien Pellier and Humbert Fiorino
Univ. Grenoble Alpes - LIG

Grenoble, France
{nicolas.cavrel, damien.pellier, humbert.fiorino}@univ-grenoble-alpes.fr

Abstract—The Hierarchical Task Network (HTN) formalism
is used to express a wide variety of planning problems and
many techniques have been proposed to solve them. A particular
technique is to encode hierarchical planning problems as classical
STRIPS planning problems. One advantage of this technique
is to benefit directly from the constant improvements made by
STRIPS planners. However, there are still few effective and
expressive encodings. In this paper, we present the first HTN
to STRIPS encodings allowing to generate concurrent plans. We
show experimentally that these encodings not only outperform
previous approaches on hierarchical IPC benchmarks but also
produce more expressive solution plans.

Index Terms—Automated Planning, Hierarchical Plannning,
Concurrent Planning, STRIPS Planning

I. INTRODUCTION

The Hierarchical Task Network (HTN) formalism [1], [2] is
used to express a wide variety of planning problems in terms
of decompositions of tasks into subtasks. HTN planning is
used in many applications as, for instance, in task allocation
for robot fleets [3], video games [4] or industrial contexts such
as software deployment [5]. One possible explanation for this
popularity is that HTN formalism usually fits better for real-
world applications and domain experts’ mindset: a HTN plan-
ning problem is expressed as a set of tasks to achieve rather
than an objective state to reach, and the ”processes” achieving
these tasks as methods, that is to say task decompositions into
”simpler” subtasks.

Many techniques are used to solve hierarchical planning
problems. The first technique is to develop ad-hoc HTN plan-
ners, e.g., [6], [7]. The second technique consists in encoding
HTN problems into other classical formalisms such as SAT
problems, e.g., [8]–[10], constraint programming problems,
e.g., [11] or simply as STRIPS planning problems that can
be solved by classical STRIPS planners. This last technique
has the advantage to benefit directly from the constant im-
provements of STRIPS planners. To our best knowledge, only
three HTN to STRIPS encodings have been published so far
[12]–[14]). These translations aims at solving HTN problems
by producing a sequential plan, meaning that the resulting plan
is a sequence of singular actions performed one at the time.
However, in the general case and in particular in multi-agents
planning problems, having a concurrent plan where several
actions can be performed simultaneously or whose order of
execution can be determined at the time of the plan execution
is much more efficient and flexible, if not required.

In the literature, there are two approaches producing con-
current plans. The first one is to use plan-space planning. This
approach refines an initial task network into a solution one by
resolving the flaws of the initial task network, e.g, [15]. The
resulting plan is a set of actions partially ordered by either
causal relationships or precedence constraints inherited from
the HTN decomposition. This approach produces very flexible
plans, however it can quickly become intractable.

The second approach is to first produce a sequential plan
and to de-order it into a partially ordered plan [16], [17]. This
approach benefits from the efficiency of sequential planners
and can then de-order the plan in polynomial time. The main
disbenefit of this method is the quality of the resulting plan:
while in a sequential context the optimal plan is the one
containing the fewer number of actions, the optimal plan
in a concurrent context could contain more actions but per-
formed simultaneously. Hence, a sequential planner returning
the sequentially optimal solutions first would not necessarily
obtain the optimal concurrent solutions by de-ordering. The
second issue with de-ordering approaches is that they are not
directly applicable to HTN problems as they only de-order
the plan while only maintaining the plan executability, but do
not maintain the hierarchical constraints inherited from task
decomposition.

To deal with this issue, we propose in this paper two
contributions: (1) a search procedure called CPFD (Concurrent
Partial Forward Decomposition) that produces and guarantees
concurrently optimal plans, and (2) two HTN to STRIPS
encodings of the CPFD procedure based on the translations
proposed in [12], [14]. The translated problems can be solved
by any classical sequential planner and produce concurrently
optimal plans.

The rest of this paper is organized as follows. Section 1 de-
fines the problem statement. Section 2 presents the Concurrent
Partial Forward Decomposition procedure (CPFD). Section 3
introduces the key concepts used in the encodings, and Section
4 the two concrete STRIPS encodings of CPFD, called sCTHD
(Static Concurrent Task Holders Decomposition encoding)
and pCTHD (Push Concurrent Task Holders Decomposition).
Finally, in the last section, we compare both CTHD and
pCTHD with the translations proposed in [12], [14], which are
the current state-of-the-art of HTN to STRIPS translations.

II. PROBLEM STATEMENT

A. STRIPS Planning Problems

A STRIPS planning problem is a tuple P = (L,A, I,G)
where L is a finite set of logical propositions, A is a finite set
of actions, I ⊆ L is the initial state, and G ⊆ L is the goal.

An action a is a tuple a = (name(a), pre(a), add(a),
del(a)) where name(a) is the name of the action, pre(a) is the
action’s preconditions, add(a) is its positive effects and del(a)
its negative ones, each one being a set of propositions. Two
actions (a, b) are independent iff del(a)∩(pre(b)∪add(b)) = ∅
and del(b) ∩ (pre(a) ∪ add(a)) = ∅. Note that action inde-
pendence only depends on action definitions. In the following,
for all a ∈ A, nInd(a) will denote the set of actions b ∈ A
dependent on a.

A state s is a set of logical propositions. The result of apply-
ing an action a to state s is a state s′ defined by the transition
function s′ = γ(s, a) = (s− del(a)) ∪ add(a) if pre(a) ⊆ s,
and undefined otherwise. Let an action layer π be a set of
pairwise independent actions, and pre(π) =

⋃
a∈π pre(a).

add(π) and del(π) are defined in the same way. By extension
s′ = γ(s, π) = (s − del(π)) ∪ add(π) if pre(π) ⊆ s, and
undefined otherwise. Note that the actions of π can be executed
concurrently or in any sequential permutation and still yield
exactly the same state s′.

A layered plan Π is a sequence of action layers
⟨π1, . . . , πn⟩. Let γ(s,Π) = γ(γ(s, π1), ⟨π2, . . . , πn⟩). πi

precedes πj if i < j. Likewise ai ≺ aj if ai ∈ πi, aj ∈ πj , and
πi precedes πj . A layered plan Π is a solution to a STRIPS
planning problem P = (L,A, I,G) iff G ⊆ γ(s,Π) (see
Fig. 1).

B. HTN Planning Problems

We build on STRIPS planning problem definition to define
a HTN planning problem as a tuple P = (L, T , A,M, I, tn)
where L is a finite set of logical propositions, T is a finite
set of tasks, A is a finite set of actions, M is a finite
set of methods, I ⊆ L is the initial state and tn the
initial task network. There are two kinds of tasks: primi-
tive tasks that can be resolved by a STRIPS action a =
(name(a), pre(a), add(a), del(a)) ∈ A , and compound tasks,
which can be recursively decomposed into either primitive or
compound tasks by a method m ∈ M .

A task network is a tuple tn = (T,≺, α) such that T is
a finite set of task symbols, α : T 7→ T maps task symbols
to tasks in T , and ≺ is a partial order over T representing
precedence constraints: t precedes t′ if t ≺ t′, or equivalently
(t, t′) ∈≺. ≺ is transitive. A task α(t), t ∈ T is trailing if
∀t′ ∈ T , (t′, t) /∈≺ (t has no predecessor in T). trail(tn) will
denote the set of trailing tasks in T . Symmetrically, a task
α(t)(t ∈ T) is a last task if ∀t′ ∈ T, (t, t′) /∈≺ (t has no
successor in T).

A method is a tuple m = (task(m), pre(m), tn(m)) where
task(m) is the compound task decomposed by the method m,
pre(m) is the method’s preconditions and tn(m) is a task
network. A method m is a resolver of a compound task τ

Fig. 1. A layered plan with the successive states resulting from the action
layer application. Circles represent states, and rectangles action layers.

if task(m) = τ . Note that a given compound task can have
various methods to resolve it.

An action a = (name(a), pre(a), add(a), del(a)) can be
applied to resolve a primitive task α(t) of the initial task
network tn if t is trailing, name(a) = α(t) and pre(a) ⊆ I .
The result is a new problem P ′ = (L, T , A,M, I ′, tn′)
where I ′ = γ(I, a) and tn′ = (T \ {t}, {(t′, t′′) ∈ ≺
| t′ ̸= t}, α\(t, α(t))). In a symmetrical manner, a method
m = (task(m), pre(m), tn(m)) can be applied to resolve a
compound task α(t) of the task network tn if t is trailing,
task(m) = α(t) and pre(m) ⊆ I . The result of applying the
method m with tn(m) = (Tm,≺m, αm) is a new problem
P ′ = (L, T , A,M, I, tn′) where tn′ = (T ′,≺′, α′) and:

T ′ = (T \ {t}) ∪ Tm

≺′ = {(t′, t′′) ∈ ≺ | t′ ̸= t} ∪ ≺m ∪
{(t′′, t′) ∈ Tm × T | (t, t′) ∈≺}

α′ = {(t′, α(t′))| t′ ∈ T\{t}} ∪ αm

In other words, in ≺′ we keep all the precedence constraints
of ≺ that do not involve t, add all the precedence constraints
in ≺m, and propagate precedence transitivity between ≺ and
≺m through t.

Applying either an action a or a method m to resolve a task
in a planning problem P is called a progression. If tp ∈ T
is a primitive task of P , resolving tp by a is a progression
denoted P 7→a

tp P ′. Similarly, if tc is a compound task of P ,
decomposing tp using m is a progression denoted P 7→m

tc P ′.
To conclude, a layered plan Π = ⟨π1, . . . , πn⟩ is a solution

for a HTN planning problem P = (L, T , A,M, I, tn) if
(1) a sequence of progressions exists that transforms P into
P ′ = (L, T , A,M, I ′, (∅,≺′, α′)) (i.e. all the tasks of P have
been resolved), and (2) ai ≺ aj ⇔ task(ai) ≺′ task(aj)
(i.e. action precedence constraints in the layered plan Π are
equivalent to the primitive task precedence constraints in P ′).
In section 2, we show how CPFD builds a layered solution
plan by applying progressions on P .

C. HTN to STRIPS Encoding Problems

The Hierarchical Task Network (HTN) formalism has been
shown to be more expressive than STRIPS [1]. This means that
any STRIPS problem can be formulated as a HTN problem
but not the other way round. Therefore, the translation of a
HTN problem into a STRIPS problem is not always possible.
However, it has been proven by [12] that this translation
is possible if the size of the solution task network can be

bounded. Given a HTN problem and a sequential solution plan,
the minimum (respectively maximum) bound is the smallest
(respectively largest) number of tasks in any task network
visited by the sequence of progressions carried out to find
this solution plan.

In practice, not all problems have a maximum bound, but
all solvable problems have a minimum bound. These bounds
are not directly related to the length of a problem solution,
though the minimum progression bound is smaller than the
optimal plan length1.

Our encoding also assumes the bound existence. In addition
and as [12] we make three other assumptions on the HTN
problem to encode:

1) In the initial HTN problem, T is singleton. Otherwise,
it is always possible to add a root dummy-task and a
dummy-method to decompose it.

2) Every method of the HTN problem has a task network
with a single last task. If a method does not have it,
a dummy-task with no successor is added to the task
network.

3) Methods have no preconditions. Otherwise, a trailing
dummy action is added to the method task network with
no effects and the method’s preconditions.

These assumptions are made without loss of generality and
will simplify the notations in the following.

III. CONCURRENT PARTIAL-ORDER FORWARD
DECOMPOSITION

In this section, we introduce the procedure called CPFD
(Concurrent Partial-order Forward Decomposition) (see Alg.
1) on which our encoding is based. The objective is to give
on overview of our encoding and its properties. The encoding
of this procedure as a STRIPS planning problem is presented
in the next section.

CPFD is an adaptation of PFD (Partial-order Forward
Decomposition) [18] procedure to output layered plans (see
Figure 1). It takes as input a HTN problems and generates
layered plans. Keep in mind that a layered plan is a solution
of a HTN problem if actions resolve all the tasks of the
task network, and if the ordering constraints of the actions
in the layered plan satisfy the precedence constraints in this
task network. Therefore, CPFD has to solve recursively the
trailing tasks as in the PFD procedure. The difference lies on
the resolution of the primitive tasks: while PFD adds actions
to a sequential plan, CPFD adds them to layers of independent
actions.

More precisely, CPFD takes as input four parameters: a
HTN problem P = (L, T , A,M, I, (T,≺, α)), a layered plan
Π, the index i of the current layer πi and τ the set of primitive
tasks resolved by the actions in πi. At the first call of CPFD, Π
is an empty layered plan, i = 0 and τ = ∅. At each recursive
call, CPFD checks if the list of tasks T of the task network is
empty, i.e., no more tasks have to be resolved. If this condition

1For more details about the method to compute the bounds of the solution
task network, see [12]

is satisfied, the layered plan Π is a solution to P and Π is
returned. Otherwise, a task t ∈ T is non deterministically
selected among the trailing tasks (tasks without predecessors
with respect to precedence constraints), and a resolver is non
deterministically chosen. As in the PFD procedure, there are
two ways to resolve t depending on whether t is primitive or
compound.

• Case 1. (Primitive task) The resolvers of t are actions
a whose preconditions are satisfied in the current state I
and that are independent of all the actions already planned
in the current layer πi. Two cases are possible: either t has
no resolvers and the current layer πi is empty, meaning
no action can solve t in the current state I , and CPFD
returns FAILURE. Or t has a resolver but this resolver is
not an independent action in the current layer: then CPFD
moves to the next layer by applying to the current state
all the actions already committed in the current layer.
The idea is that t could be resolved by an action in a
next state concurrently with other independent actions.
Obviously, if t has an independent resolver a, a is added
to the current layer πi and t is added to the set of resolved
primitive tasks τ .

• Case 2. (Compound task) CPFD computes all the
methods resolving the compound task t, i.e., whose
preconditions are satisfied in the current state I . If there
is no method, then t cannot be solved, and CPFD re-
turns FAILURE. Otherwise, CPFD non deterministically
chooses a method m decomposing t, updates the task set
and the ordering constraints accordingly.

CPFD is then called recursively until the tasks to solve in P
are emptied (T = ∅, line 2 in Algo. 1) or a failure condition
is met (line 9 and 24 in Algo. 1).

CPFD is sound and complete.
a) Proof sketch (Soundness): All produced plans come

from a progression of the initial task network, thus there is a
sequence of task decompositions that produces the primitive
tasks in the solution plan. Furthermore, since a primitive task
can be added to a layer if the corresponding node is trailing, all
tasks preceding the one added have been planned on previous
layers. Thus, the ordering constraints in ≺ are satisfied in the
solution plan. Thus output plans are sound.

b) Proof sketch (Completeness): We will show that
CPFD is complete based on the demonstration that PFD is
complete. Let P = (L, T , A,M, I, tn) be a HTN problem and
Π = ⟨π1, . . . , πn⟩ a layered solution plan of P . Let us show
that there is a sequence of recursive calls of CPFD outputting
Π. First, let us note that given a concurrent layer π =
{a1, . . . , ak}, any linearization of that layer ⟨aγ(1), . . . , aγ(k)⟩
where γ is a permutation function of {1, . . . , k}, is a sequence
of actions that can be applied to the same states as π. This is
due to the mutual independence property of the actions within
a concurrent layer. From there, any sequential plan produced
by linearizing every layer of Π (by taking any permutation
function on the layers) is a sound plan that also solves P . Let
us consider the linearization Πl defined by the n permutation
functions γ1, . . . , γn. Since PFD is a complete algorithm, there

Algorithm 1: CPFD(P,Π, i, τ)
1 Let P = (L, T , A,M, I, (T,≺, α)
2 Let πi the ith layer of Π
3 Let τ set of tasks already resolved at layer i
4 if T = ∅ then return Π
5 tasks← trail(tn) \ τ
6 nondeterministically choose t ∈ tasks
7 if t is primitive then
8 resolvers ← {a ∈ A | task(a) = t, pre(a) ⊆

I and (∀b ∈ πi, a independent of b)}
9 if resolvers = ∅ then

10 if πi = ∅ then return Failure
11 else
12 I ← γ(I, πi) // Apply the layer effects

13 Π← Π+ [] // Add a new empty layer

14 i← i+ 1 // Update the layer index

15 T ← T \ τ // Update the task network

16 ≺′= {(t′, t′′) ∈ ≺ | t′′ ̸= t} ∪ ≺m ∪
17 {(t′′, t′) ∈ Tm × T | (t, t′) ∈≺}
18 τ ← ∅ // Reset the resolved tasks set

19 else
20 nondeterministically choose a ∈resolvers
21 πi ← πi ∪ {a} // Add a to the current layer

22 τ ← τ ∪ {t} // Add t to the resolved tasks

23 else
24 resolvers← {m ∈M | task(m) = t}
25 if resolvers = ∅ then return Failure
26 nondeterministically choose m ∈ resolvers
27 {m = (Tm,≺m)}
28 T ← (T \ {t}) ∪ Tm // Decomposing tn with m

29 ≺← {(t′, t′′) ∈ ≺ | t′′ ̸= t} ∪ ≺m ∪
30 {(t′′, t′) ∈ Tm × T | (t, t′) ∈≺}
31 return CPFD(P,Π, i, τ)

is a sequence of recursions of PFD that outputs Πl. At each
recursion, PFD and CPFD either solve a trailing abstract task,
or a trailing primitive task. While they solve abstract tasks the
same way, PFD solves a primitive task by adding an action
resolving it to the head of the plan, meanwhile CPFD adds the
action resolving the task to the concurrent layer at the head of
the plan. If the task cannot be resolved, PFD returns FAILURE
while CPFD tries to add a new concurrent layer to the plan.
Thus, for each recursive PFD call resolving an abstract task,
the analogous call of CPFD is to solve the same abstract
task. Each recursive call of PFD resolving a primitive task
is analogous to a CPFD call adding the action to the current
concurrent layer. However, CPFD requires extra recursive calls
to switch layers.

IV. PLANNING THE PLANNING

In the following section, we present the basic concepts
used to encode the CPFD procedure into STRIPS planning
problems.

A. Taskholder and Current layer Encoding

The CPFD procedure resolves recursively trailing primi-
tive tasks and compound tasks by modifying the initial task
network of the problem until the task network contains an
empty set of tasks. To encode this procedure, we need first
to model a task network with STRIPS. To achieve this, we

Fig. 2. The problem is initialized by setting the initial task into the first
taskholder.

Fig. 3. T0 is decomposed into four tasks, two compound ones T1 and T2, and
two primitive ones t1 and no-op. Since neither T1, T2 or t1 is a last task, a
no-op action is inserted instead of T0. The constraint over the taskholders are
represented on the top right graph: each directed edge represents a precedence
constraint. So for instance, the task in th2 should be planned before the one
in th1.

use the concept of taskholder introduced first by [12]. A
taskholder is a STRIPS object that will act as a container for
a task. By way of extension, a task network is modeled by
a stack of taskholders and by fluent propositions modelling
the ordering constraints between the tasks contained in the
taskholders. The number of taskholders has to be fixed before
translating the HTN problem. Similarly to HTN2STRIPS, our
encodings require at least as many taskholders as there are
tasks in the largest explored task network, thus the number of
taskholders in our encodings can be estimated as described in
HTN2STRIPS [12].

In addition, we model the current layer from CPFD by a
set of fluent propositions. Each proposition denotes whether or
not an action a ∈ A is planned in the current layer. The main
idea is to allow an action to be added to the current layer only
if every action contained in the current layer is independent
with the newly added one.

A graphical representation of the initial structure of a
problem, i.e., taskholders and current layer, is given in Figure
2.

B. Encoding CPFD as STRIPS Actions

To encode the dynamic of the CPFD procedure (Alg . 1) we
need to define three types of STRIPS actions: (1) the first type
of actions resolves a trailing compound task and update the
current task network according to a method decomposition,
(2) the second type of actions resolves a primitive task and
add an action to the current layer, and (3) the last type of
actions is the one switching layers, making the algorithm build
the next layer of the solution plan. The planning process will
choose one action among the three types. Applying one of

Fig. 4. th2 is unconstrained, and contains a primitive task. It is added to
the plan step by removing the task from the taskholder, adding the action
a(t1) resolving t1 to the plan step, and marking the taskholder as resolved
(represented by the black dot).

Fig. 5. The plan step is terminated by emptying it, the constraints implied
by the resolved taskholders are removed.

these actions is equivalent to one recursive call of the CPFD
procedure:

1) Actions for resolving compound tasks: These actions
reflect the decomposition of a compound task into
subtasks according to a method. It corresponds to the
lines 27 to 30 of the CPFD procedure. In order to apply
these actions, the taskholder must be unconstrained and
there must be enough empty taskholders in the stack. An
example of taskholder usage is represented on Figure 3.
The substasks of the method M1 decomposing T0 are
added to the stack of taskholders and the task T0 is
replaced by the last task of the current task network. As
M1 has no last task, the no-op action is used. Finally,
the ordering constraints are set over the taskholders.

2) Actions for resolving primitive tasks: In CPFD, trail-
ing primitive tasks are resolved by adding their corre-
sponding action into the current layer (lines 21 to 23 of
Alg. 1). In our encodings, we define corresponding ac-
tions that take as parameters an unconstrained taskholder
containing a primitive task which add its corresponding
action to the current layer if no concurrent action is
already in it. An example of application is displayed
on Figure 4. The taskholder th2 is unconstrained and
contains a primitive task t1 that can be resolved by the
action a(t1). The task is resolved by adding a(t1) to the
current layer, th2 is emptied and marked as resolved.
As in Alg. 1, the constraints implied by the resolved
taskholder are not removed yet. They will be removed
when moving to the next layer.

3) Action for switching of plan layer: This action cor-
responds to switching to the next layer. This action
empties the current layer, setting up the next one in the
solution plan. It also removes the constraints implying

the resolved taskholders. This action can be applied with
no precondition and works as displayed in Figure 5. In
this example, only th2 is marked as resolved. After the
application of the action, the constraints implying th2
are removed, so the constraint between th2 and th1 is
deleted, additionally th2 is unmarked as resolved and set
as empty. Then the current layer is emptied by removing
all actions in it.

V. CONCURRENT TASKHOLDER DECOMPOSITION
ENCODINGS

In this section, we present two encodings of the CPFD
procedure based on the previous introduced concepts, called
respectively Static Concurrent TaskHolder Decomposition (sC-
THD) and Push Concurrent TaskHolder Decomposition (pC-
THD). The main difference of these encodings relies in the
taskholders usage. The first encoding called sCTHD constrains
the planner to use the taskholders in an increasing order
according to the static relationship defining the taskholders
stack. The second encoding called pCTHD (Push CTHD)
always sets the newly added tasks into the last taskholders and
uses the concept of Push action defined in [14]. Similarly to
HTN2STRIPS, both proposed encodings depend on an integer
parameter, the progression bound denoted b in the rest of the
paper representing the number of taskholders.

In the remainder of this section, we will first present the
predicates used to model the STRIPS problem that are com-
mon to both encodings. Secondly, we will present the encoding
of the initial state and the goal, which are also common to both
encodings. Finally, we will present the actions that encode the
CPFD procedure that are specific to the encodings.

A. Predicates Definition

Our two encodings, sCTHD and pCTHD, model the CPFD
procedure. In that regard, they share the predicates related to
the taskholders stack, to the ordering constraints and to the
current layer modelling. They also have specific predicates that
are related to their taskholders management. In the following,
every predicate is used by both sCTHD and pCTHD unless
specified otherwise.

• (not constraint ?th1 ?th2 − taskholder) represents
the fluent constraints over the taskholders. The predicate
is inverted for convenience, so when the proposition
(not constraint th1 th2) is false, it means that the
task contained in th1 must be planned before the task
contained in th2.

• (empty ?th − taskholder) represents the fact that a
taskholder is empty. The proposition (empty th) is true
if the taskholder th does not contain a task.

• (in ?t − task ?th − taskholder) is the predicate
representing whether or not the task ?t ∈ T is set in
the taskholder. The proposition (in t th) is true if t is
set in th.

• (not planned ?a−action) is true if a is not planned in
the current plan step.

• (resolved ?th − taskholder) is a predicate representing
whether or not a taskholder has been resolved. So the
proposition (resolved th) is true if the taskholder th has
been resolved.

• (prec th ?th1 ?th2− taskholder) is a predicate defin-
ing the static relationship between the taskholders. The
proposition (prec th th1 th2) is true if th1 is preceding
th2 in the stack. In the following, this order will be fixed,
and for all 0 ≤ i, j < b the proposition (prec th thi thj)
will be true if and only if i ≤ j. This predicate is specific
to sCTHD.

• (next ?th − taskholder) is a predicate used to denote
the taskholder prioritized for the next push action. This
predicate is specific to pCTHD.

B. Initial and Goal State Encoding

The initial state of the translated problems is defined by
setting the initial task into the first taskholder. The remaining
taskholders are set as empty and ordered in a stack. As there is
no constraint over the taskholder yet, all constraint predicates
are initialized accordingly.

I ′ = I ∧ (in task0 th0) ∧
∧

1≤i<b(empty thi)∧
0≤i,j<b(not constraint thi thj) ∧∧
1≤i<b(precth thi−1 thi) ∧∧
a∈A(not planned a)
For the goal state, the problem is solved when all taskhold-

ers are empty, meaning that all tasks are planned, and when
the goal state is reached. Then we have:

G′ = G ∧
∧p−1

i=0 (empty thi)

C. sCTHD Actions Encoding

sCTHD generates the set of actions A′ = Ac ∪ Ap ∪ Al

where Ac is the set of actions resolving compound tasks, Ap

the set of actions resolving primitive tasks and Al the set of
actions switching plan layers:

• Actions resolving compound tasks:
Let m = (task(m), pre(m), tn(m)) and (task1,
task2, . . . , taskk) the subtasks in tn. We assume that
taskk is the last task of tn. For all methods m ∈
M there is an action am ∈ Ac with k parameters
(?th1, ?th2, . . . , ?thk) defined as follows:

– pre(am) = (in task(m) ?th1) ∧∧b−1
i=0 (not constraint thi ?th1) ∧∧k
i=2(prec th ?thi ?thi+1) ∧∧k
i=2(empty ?thi)

– add(am) =
∧k

i=2(in taski ?thi) ∧ (in taskk ?th1)

– del(am) =
∧k

i=2(empty ?thi) ∧∧
taski≺taskj

(not constraint ?thi ?thj) ∧∧k
i=2(not constraint ?thi ?th0)

Note that the k−1 last taskholder parameters are required
to be ordered according to the static relationship defined
by the prec th predicate. For instance, if three new
taskholders are required to decompose the task in th6,
(th6 th2 th4 th7) is a valid combination of parameters,
while (th6 th2 th5 th3) is not.

• Actions resolving primitive tasks:
For all actions a ∈ A there is an action ap ∈ Ap with
one parameter: a taskholder containing p and denoted ?th.
The action is defined as follows:

– pre(ap) = pre(a) ∧ (in task(a) ?th) ∧∧b−1
i=0 (not constraint thi ?th) ∧∧
t∈nInd(p)(not planned ?a)

– add(ap) = add(a) ∧ (empty ?th) ∧ (resolved ?th)
– del(ap) = del(a) ∧ (not planned ?a)

• Action switching layers:
Al is composed of one conditional action al with no pa-
rameter. This action has a non conditional part: emptying
the current layer, and a conditional part: unconstraining
and making the resolved taskholders available for a new
use. It is defined as follows:

– pre(al) = ∅
– add(al) =

∧
a∈A(not planned ?a) ∧

∀(?th − taskholder) when (resolved ?th),∧b−1
i=0 (not constraint ?th thi)

– del(al) = ∅
D. pCTHD Actions Encoding

The pCTHD encoding generates the set of action A′ = Ac∪
Ap ∪ Al ∪ APush. pCTHD encodes the CPFD procedure the
same way as CTHD does, in that regard the sets of actions
encoding the primitive tasks resolving Ap and action for the
layer switch Al are defined the same way as in CTHD. pCTHD
manages the taskholders as the Push version of HTN2SAS
does [14]. Then we have:

• Actions resolving compound tasks:
Let m = (task(m), pre(m), tn(m)) and (task1,
task2, . . . , taskk) the subtasks in tn, taskk denotes the
last task of tn. For every method m ∈ M there is an
action am ∈ Ac with one parameter (?th − taskholder)
defined as follows:

– pre(am) = (in task(m) ?th) ∧∧b
i=1(not constraint thi ?th1) ∧∧k−1
i=1 (empty thb−i+1)

– add(am) =
∧k−1

i=1 (in taski thb−i+1) ∧
(in taskk ?th)

– del(am) =
∧k−1

i=1 (empty thb−i+1) ∧∧
taski≺taskj

(not constraint ?thb−i+1 thb−j+1)∧∧k−1
i=1 (not constraint thb−i+1 ?th)

In pCTHD, the subtasks inherited from a method de-
composition are always set in the same taskholders (the
last ones). This allows the method actions to only have
one parameter, thus reducing the number of operators
generated.

• Push Actions:
For every task t ∈ T , and for every taskholder index
2 ≤ k ≤ b there is a push action pkt ∈ Ap defined as
follows:

– pre(pkt) = (in t thk) ∧
(empty thk−1) ∧∧b

i=1,i̸=k ¬(next thi)

– add(pkt) = (in t thk−1) ∧ (empty thk)∧b
i=1(notprecedes thk thi)

when (empty thk−2), (next thk−1)
– del(pkt) = (next thk) ∧ (empty thk−1) ∧

(in t thk) ∧
∀(?th − taskholder) :
when ¬(notprecedes ?th thk),∧b−1

i=0 ¬(not precedes ?th thk−1)
when ¬(notprecedes thk ?th),∧b−1

i=0 ¬(not precedes thk−1 ?th)

A Push action moves a task and its constraints from a
taskholder to the preceding one in the stack. Note that
the push actions rely on conditional effects, allowing for
a much more compact encoding.

VI. EXPERIMENTATIONS AND RESULTS

In this section we present the experiments and results
obtained to evaluate sCTHD and pCTHD efficiency. We
compare our encodings with the two other known encodings:
HTN2STRIPS and HTN2SAS encodings [12], [14]. Note that
these encodings are not able to generate concurrent plans
unlike our encodings. Our aim is to show how a concurrent
procedure can perform against non concurrent ones, both on
problems with totally ordered solution plans and problems
with concurrent plans. Hence we selected 7 domains from
the IPC partially ordered benchmarks that can have concurrent
solution plans, and, in addition, a domain that is susceptible to
concurrent actions, Miconic. We also added concurrent version
of sequential domains where additional agents can perform the
tasks simultaneously (nameConc represents the concurrent
version of the domain name).

A. Experimental Setup

We ran all experiments on a single core of a Intel Core
i7-9850H CPU using the Fast Downward library [19] with
enforced hill climbing and then lazy greedy search with Fast
Forward heuristics [20]. All experiments were set a limit
of 8GB of RAM over 600 seconds. We compared all four
encodings according to two criteria:

1) Solving time: We measured the time spent by Fast
Downard to find a solution to the translated problems.
We perform an iterated search over the progression
bound until a solution is found.

2) Plan quality: As we want to demonstrate the efficiency
of our approach at producing concurrent plans, we
measure the makespan of the solution output by the
solving of the translated problems.

We compared these encodings by scoring them relatively
to each other. The score of an encoding k over the domain d
with a set of instances Pd is defined as:

sd(k) =
1

|Pd|
∑
i∈Pd

mine∈encodings(score(e, i))

score(k, i)

where score(k, i) is the score measured of the encoding k
on the instance i. The results are displayed on Tables I and II.

TABLE I
SOLVING TIME

HTN2STRIPS HTN2SAS sCTHD pCTHD
Satellite 0,20 0,83 0,95 0,71
SatelliteConc 0,21 0,79 0,93 0,6
Rover 0,02 1 0,26 0,85
Transport 0,19 0,58 0,82 0,45
Blocksworld 0,29 0,77 0,62 0,65
BlowksworldConc 0,34 0,94 0,69 0,94
Miconic 0,72 0,84 0,44 0,82
MiconicConc 0,24 1 0,45 0,43
Total 1,56 6,74 5,28 5,56

TABLE II
SOLUTION MAKESPAN

HTN2STRIPS HTN2SAS sCTHD pCTHD
Satellite 1 1 1 1
SatelliteConc 0,94 0,94 1 0,95
Rover 0,97 0,97 1 0,98
Transport 0,72 0,91 1 0,91
Blocksworld 1 1 1 1
BlowksworldConc 0,82 0,84 1 0,90
Miconic 1 1 1 1
MiconicConc 0,76 0,76 1 0,91
Total 7,21 7,42 8 7,65

B. Solving Time

Table I represents the results of our experimentations with
regards to the solving time. On the Satellite and Transport
domains sCTHD is the most efficient. On the Rover and
Blocksworld domains, HTN2SAS Push is dominating the other
encodings. This discrepancy displays the main difference be-
tween the taskholder management and the Push management.
As Push encodings decompose subtasks in the last taskholders,
these encodings perform worst on tail-recursive problems such
as Satellite and Transport. On the other hand, sCTHD does not
suffer from this and has the same performances whatever the
problem structure. However, Push encodings are very efficient
on head-recursive problems or problems with low recursivity
as the conditionnal Push actions are rarely needed, hence
representing the problem in a very compact and almost non
conditional way. This efficiency is apparent on the Rover,
Blocksworld and Miconic domains.

C. Plan Quality

Table II represents the results concerning the makespan
of the solution plans. As we can see it on this table, our
encodings obtain the best results on every domain, followed
by the pCTHD encoding on every domain too. Obviously this
is due to the fact that these encodings are able to produce
concurrent plans, and thus to reduce the makespan of the
solution. Note however that sCTHD and pCTHD can increase
the concurrency of the solution plan by increasing the number
of taskholders. This is not apparent on our experimentations
as the tests end at the first valid solution (hence at the lowest
valid number of taskholder). The effect of increasing the
number of taskholders in our encodings over the resulting
makespan is displayed in Figure 6 on a typical problem from
Satellite. As displayed on the figure, sCTHD cannot find a
solution until it reaches the minimal taskholder number to

Fig. 6. The makespan of the solution plan returned by sCTHD with regards
to the number of parameters on the instance 6 from Satellite p06.

form a solution. Then the makespan of the solution plan
decreases as the number of taskholders increases. Indeed,
the more taskholders are available, the more concurrent tasks
can live simultaneously in the progression network, and the
more possibilities are offered to the STRIPS planner. However,
increasing the number of taskholders has a negative effect on
the solving time. The more taskholders, the more complex is
the translated problem. Note that increasing the number of
taskholders cannot have a negative impact on plan quality:
the more taskholders there are, the more reachable through
progression the task networks are, hence the more concurrent
actions added simultaneously to the current layer there are.

Finally, on some instances, the maximum size of progres-
sion can be bounded. Using this bound as progression bound
will lead sCTHD and pCTHD to explore and output the
solution plans with the smallest makespan as every progres-
sion network can be represented in the taskholder stack. An
algorithmic method to estimate this bound has been proposed
in [12].

D. Discussion on CTHD optimality

Two factors affect the optimality of the CTHD encoding:
the first is the number of taskholders used in the encoding
and the second is the cost associated to each translated action.
Having more taskholders allows for more primitive tasks to
live simultaneously within the taskholder stack. Thus there
are more opportunities for concurrent tasks to be resolved
within the same layer. The makespan-optimal solution can be
obtained only if enough taskholders have been encoded. Figure
6 shows the effect of increasing the number of taskholder
on the makespan of the solution. The cost of the translated
actions allows to guide the search procedure towards a better
quality solution: finding the makespan-optimal solution means
finding the plan with the smallest amount of layers within it.
By increasing the cost of the actions switching layers, the
search procedure is guided towards the better plans.

VII. CONCLUSION AND FUTURE WORKS

In this article, we have presented a new HTN procedure,
CPFD, solving HTN problems with layered solution plans.
We have proposed two HTN to STRIPS encodings of this

procedure that can be solved by any STRIPS planner. Then
we have showed experimentally that our translations perform
well comparatively to the state of the art approaches, and more
importantly produce concurrent solution plans. However, our
representation of the concurrency still remains limited. There
are stronger ways to represent concurrency by returning a
partial order of the planned actions. This concurrency allows
to have solution plans that are more resilient and flexible,
and thus are more applicable in real world applications. This
kind of partially-ordered plans will be addressed in our future
works.

REFERENCES

[1] K. Erol, J. Hendler, and D. Nau, ‘Complexity Results for HTN Plan-
ning’, Annals of Mathematics and Artificial Intelligence, vol. 18, pp.
69–93, 04 2003.

[2] P. Bercher, R. Alford, and D. Höller, ‘A Survey on Hierarchical Planning
- One Abstract Idea, Many Concrete Realizations’, in IJCAI, 2019, pp.
6267–6275.

[3] A. Milot, E. Chauveau, S. Lacroix, and C. Lesire, ‘Solving Hierarchical
Auctions with HTN Planning’, in ICAPS workshop on Hierarchical
Planning, 2021.

[4] A. Menif, E. Jacopin, and T. Cazenave, ‘SHPE: HTN Planning for Video
Games’, in Workshop on Computer Games, 2014, pp. 119–132.

[5] I. Georgievski, F. Nizamic, A. Lazovik, and M. Aiello, ‘Cloud Ready
Applications Composed via HTN Planning’, in IEEE Conference on
Service-Oriented Computing and Applications, 2017, pp. 81–89.

[6] P. Bercher, S. Keen, and S. Biundo, ‘Hybrid Planning Heuristics Based
on Task Decomposition Graphs’, in SoCS, 2014, pp. 35–43.

[7] D. Nau et al., ‘SHOP2: An HTN planning system’, J. Artif. Intell. Res.,
vol. 20, pp. 379–404, 2003.

[8] D. Schreiber, D. Pellier, H. Fiorino, and T. Balyo, ‘Tree-REX: SAT-
Based Tree Exploration for Efficient and High-Quality HTN Planning’,
in ICAPS, 2019, 2019, pp. 382–390.

[9] R. Huang, Y. Chen, and W. Zhang, ‘SAS+ Planning as Satisfiability’, J.
Artif. Intell. Res., vol. 43, pp. 293–328, Mar. 2012.

[10] D. Schreiber, ‘Lilotane: A Lifted SAT-based Approach to Hierarchical
Planning’, J. Artif. Intell. Res., vol. 70, pp. 1117–1181, 2021.

[11] V. Vidal and H. Geffner, ‘Branching and pruning: An optimal temporal
POCL planner based on constraint programming’, Artificial Intelligence,
vol. 170, no. 3, pp. 298–335, 2006

[12] R. Alford, G. Behnke, D. Höller, P. Bercher, S. Biundo, and D. W.
Aha, ‘Bound to Plan: Exploiting Classical Heuristics via Automatic
Translations of Tail-Recursive HTN Problems’, in ICAPS, 2016, pp.
20–28.

[13] R. Alford, U. Kuter, and D. Nau, ‘Translating HTNs to PDDL: A Small
Amount of Domain Knowledge Can Go a Long Way’, in IJCAI, 2009,
pp. 1629–1634.

[14] G. Behnke, F. Pollitt, D. Höller, P. Bercher, and R. Alford, ‘Making
Translations to Classical Planning Competitive With Other HTN Plan-
ners’, in AAAI, 2022, pp. 11744–11754.

[15] P. Bercher, S. Keen, and S. Biundo, ‘Hybrid Planning Heuristics Based
on Task Decomposition Graphs’, in Proceedings of the Annual Sympo-
sium on Combinatorial Search, 2014.

[16] M. Waters, B. Nebel, L. Padgham, and S. Sardina, ‘Plan Relaxation
via Action Debinding and Deordering’, Proceedings of the International
Conference on Automated Planning and Scheduling, vol. 28, no. 1, pp.
278–287, Jun. 2018.

[17] C. Bäckström, ‘Computational Aspects of Reordering Plans’, J. Artif.
Int. Res., vol. 9, no. 1, pp. 99–137, Sep. 1998.

[18] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and
Practice. 2004.

[19] M. Helmert, ‘The Fast Downward Planning System’, J. Artif. Intell.
Res., vol. 26, pp. 191–246, 2006.

[20] J. Hoffmann and B. Nebel, ‘The FF Planning System: Fast Plan
Generation Through Heuristic Search’, CoRR, vol. abs/1106.0675, 2011.

[21] M. Katz, S. Sohrabi, H. Samulowitz, and S. Sievers, ‘Delfi: Online
planner selection for cost-optimal planning’, in International Planning
Competition, 2018, pp. 55–62.

