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T.; Nikolić, M. Discrete Lattice

Element Model for Fracture

Propagation with Improved Elastic

Response. Appl. Sci. 2024, 14, 1287.

https://doi.org/10.3390/

app14031287

Academic Editor: Elza Maria

Morais Fonseca

Received: 14 January 2024

Revised: 29 January 2024

Accepted: 1 February 2024

Published: 4 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Discrete Lattice Element Model for Fracture Propagation with
Improved Elastic Response
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Abstract: This research presents a novel approach to modeling fracture propagation using a discrete
lattice element model with embedded strong discontinuities. The focus is on enhancing the linear
elastic response within the model followed by propagation of fractures until total failure. To achieve
this, a generalized beam lattice element with an embedded strong discontinuity based on the kine-
matics of a rigid-body spring model is formulated. The linear elastic regime is refined by correcting
the stress tensor at nodes within the domain based on the internal forces present in lattice elements,
which is achieved by introducing fictitious forces into the standard internal force vectors to predict
the right elastic response of the model related to Poisson’s effect. Upon initiation of the first fractures,
the procedure for the computation of the fictitious stress tensor is terminated, and the embedded
strong discontinuities are activated in the lattice elements for obtaining an objective fracture and
failure response. This transition ensures a shift from the elastic phase to the fracture propagation
phase, enhancing the predictive capabilities in capturing the full fracture processes.

Keywords: discrete lattice element model; rigid-body spring; elastic response; embedded strong
discontinuities; fracture propagation; failure

1. Introduction

The study of fracture propagation plays an important role in engineering and materials
science, providing insights into the structural integrity of materials and the behavior of
complex systems under various conditions. In this context, discrete models have proved to
be powerful tools for accurate representation of internal processes associated with fracture
propagation [1]. These models offer the capability not only to simulate macroscale fractures
and cracks but also to capture lower-scale crack propagation, including mesoscale and
microscale phenomena. Among the diverse range of discrete models, classical particle
discrete models such as the discrete element method [2], discrete lattice element method [1],
and finite discrete element method [3] have proven particularly effective in various fields
of engineering failure analysis of concrete, rocks, and other materials [4–7].

While discrete models properly capture the discontinuous nature of fracture propaga-
tion problems, they have limitations in accurately capturing the global and/or local elastic
response of materials and structures [8–12]. Namely, discrete element models commonly
employ one-dimensional elements such as bars, beams, or springs to simulate particle
interactions, restricting their ability to capture a wide range of Poisson ratios. This leads to
a mismatch between local and global elastic constants, where the elastic input parameters
of the models fail to align with the overall global elastic response of the material. Con-
sequently, these discrepancies can lead the models to generally fail in the prediction of
material behavior. In this paper, we focus on improving the existing discrete lattice element
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models based on Timoshenko beams with embedded strong discontinuities [13,14] for the
objective simulation of fracture processes by enhancing the representation of the elastic
response. More precisely, our focus is on bridging the gap between local and global elastic
constants, while still allowing the full failure representation of the material. In order to
achieve an improved elastic response and accurate representation of the fracture propa-
gation mechanisms, we adopt the kinematics typical of rigid-body spring models [10,11].
More precisely, such connections are considered here as generalized beam lattice elements,
closely related to Timoshenko beam elements, which enable the application of a procedure
for correcting the elastic response of undamaged material, as in [8,9,15,16]. Such a general-
ized beam lattice element is equipped with embedded strong discontinuities [17,18] for the
propagation of fractures in the domain.

In the proposed approach, the stress tensor at the lattice element network nodes is
computed by considering all stress resultants from the elements connected to a specific
node. Subsequently, fictitious forces [8,9,19] are computed by extracting information from
the transverse strains that need to be achieved. By introducing these fictitious forces in
the lattice elements of the model, we ensure that the local element stiffness aligns with
the global material properties, correcting the elastic response. Moreover, a wide range of
Poisson ratios is possible to be achieved with this approach, which was not the case in
classical discrete beam lattice models. Following this correct computation of the elastic
response, fracture criteria pertaining to the maximum tensile strength and maximum shear
strength are systematically checked in all elements [1]. The procedure of fictitious forces
and correction of the elastic response is terminated once the first elements exhibit failure,
signifying the material’s progression towards a fully discontinuous state and eventual
total failure. This approach aims to provide a more realistic representation of the elastic
response in discrete lattice element models, while correctly capturing the complexities of
fracture propagation.

The softening response represents material failure where classical finite element proce-
dures struggle. Namely, the representation of failure with softening in traditional methods
is prone to mesh dependency. Recognizing this limitation, various advanced methods
have emerged to correct softening behavior. Among these, there are non-local damage and
plasticity models [20–23], various localization limiters like those listed in [18], and, more
recently, the very popular phase field models [24]. The extended finite element method
(X-FEM) is another type of approach to address this issue, in which discontinuous functions
are introduced in the formulation, while treating additional unknowns associated with
fractures on a global scale [25,26]. Alternatively, the embedded discontinuity finite element
method (ED-FEM) addresses the additional discontinuity-related unknowns locally at the
element level [27–31]. Within our lattice element method, we adopt a solution for softening
regularization by using the embedded strong discontinuity framework proposed in [17].
This involves the implementation of embedded strong discontinuities within the lattice
element models, as presented in [32–36]. Here, the material parameter governing softening
is the fracture energy, which enables the mesh-independent softening response. It is worth
noting that alternative models utilizing the granular micromechanics damage approach
with finite deformation also produce proper modelling of the localization zone [37–39],
which is similar to non-local damage models. The models based on lattice structure can
also be used in large-motion dynamics [40] and buckling problems [41].

The proposed novel model integrates the embedded strong discontinuity framework
and previously mentioned correction of elastic response within the lattice element model
aiming to fully capture the material failure. To that end, the proposed model is implemented
in an incremental and iterative fashion, achieving both local and global convergence. The
iteration on the local level involves internal model variables and is performed using the
Newton iterative method. Global convergence is attained through a Newton iterative
solver as well. The mechanical model is implemented in the FEAP (Finite Element Analysis
Program) [42]. The stress tensor computations and the computation of fictitious forces are
carried out in MATLAB at the end of each increment after extracting the stress resultants
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from the FEAP model. The exchange of data is facilitated by MATFEAP [43], a framework
extension for FEAP computations. To show the capabilities of the proposed model, we
conduct several numerical simulations. Initially, a linear elastic analysis is performed to
establish the stress tensor in a shear-dominated example. Subsequently, more computations
involving failure under the influence of both tensile and compressive load cases, where the
material failure is followed by a global softening response, are presented.

In Section 2, we present the formulations of the proposed model. Numerical sim-
ulations are provided in Section 3, while the Discussion and Conclusion are given in
Sections 4 and 5, respectively.

2. Novel Discrete Lattice Element Model

The discrete lattice element model proposed in this work is based on the foundation
of various existing lattice models commonly employed for the representation of material
failure in engineering, particularly in concrete and rocks. Discrete lattice models generally
use one-dimensional lattice elements to transmit forces between material particles or dis-
tinct portions of the material (grains), which is efficient in simulations of crack and fracture
growth. The lattice element models can be represented by truss bars, Euler–Bernoulli
beams, or Timoshenko beams [1], or, alternatively, the models may use springs, giving rise
to a rigid-body spring model [2]. The unstructured lattice configuration possesses structural
randomness, resulting in efficiency in capturing cracks and fractures, which is very benefi-
cial in simulations of failure at lower scales. However, their response at macroscale causes a
non-uniform response in the elastic regime, which may significantly reduce their efficiency
in capturing crack initiation, especially in case of macroscopic homogenized models.

In the model presented here, we employ a discretization approach based on the
Delaunay triangulation of the domain. The Delaunay triangulation is a dual form of
Voronoi tessellation, where Voronoi cells represent material particles, such as grains or
portions of the material. The Delaunay edges within the triangulation serve as lattice
elements, symbolizing cohesive links between Voronoi cells (Figure 1). This structural
arrangement enables the representation of cracks through the progressive failure of adjacent
lattice elements, providing a comprehensive framework for simulating the complex failure
mechanisms observed in concrete and rock materials [1]. In our previous studies, we
effectively employed enhanced Timoshenko beams as lattice elements equipped with
embedded strong discontinuities to simulate failure in concrete and rocks [13,14,32–36].
In the present study, instead of standard straight Timoshenko beam elements, we employ
generalized beam lattice elements based on the kinematics of rigid-body spring models,
ensuring the proper elastic displacements and deformations of the discrete model. Previous
findings demonstrated the capacity of such discrete models to achieve a correct elastic
response [8]. On the other hand, lattice models employing standard beam elements are
unable to produce homogeneous strain and stress fields even when Poisson’s ratio is equal
to zero, although in certain cases an improved response can be achieved if the element
parameters are extracted directly from the Voronoi diagram [10,14]. In our generalized
beam element model, we introduce the embedded strong discontinuity to ensure captureof
the fracture behavior, leading to a new lattice model based on generalized beam elements
with embedded discontinuities.

Given that in our work the nodes are placed along the edges of the designated domain
and Voronoi cells intersect the boundaries, we employ a mirroring technique to obtain
complete cells. This allows us to extract the comprehensive geometrical characteristics of
the elements.
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the models. 

 

Figure 2. Discrete lattice element model composed of two rigid particles 1 and 2 linked with gener-

alized beam element (red) or rigid-body spring (blue). 

Given the displacement and rotation of the particle 𝐼 = 1,2, 𝒖𝐼 = [𝑢𝐼 𝑣𝐼 𝜃𝐼]
𝑇, the 

displacement at an arbitrary point (x,y) of each particle 𝐼 is given as 

Figure 1. (a) Structure of discrete lattice model with Voronoi cells as particles of material and lattice
elements. (b) The proposed enhanced beam element connecting neighboring Voronoi cells. Parameter
h is extracted from the Voronoi diagram and represents the height of the beam cross section.

2.1. Kinematics of Mechanical Lattice Elements

The formulation of our generalized beam lattice elements is based on the kinematics
of rigid-body spring models, where rigid material particles, usually obtained by Voronoi
tessellations, are connected by links, as shown in Figure 2. In the rigid-body spring model,
each link may be viewed as comprising discrete springs positioned at the midpoint of the
edge shared by two adjacent Voronoi cells (point P in Figure 2), representing interacting
rigid particles, and two rigid links joined by these springs (segments 1-P and 2-P in Figure 2).
The generalized beam lattice element is defined by nodes 1 and 2 and its local coordinate
frame x-y. The stiffness of the rigid-body spring in Figure 2 is expressed using elastic
constants rather than spring constants. This choice is made to ensure the equivalence of
the models.
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Figure 2. Discrete lattice element model composed of two rigid particles 1 and 2 linked with
generalized beam element (red) or rigid-body spring (blue).

Given the displacement and rotation of the particle I = 1, 2, uI =
[
uI vI θI

]T , the
displacement at an arbitrary point (x,y) of each particle I is given as

u = uI − (y − yI)θI ,
v = vI + (x − xI)θI , I = 1, 2

(1)

The nodal displacement vectors associated with particles uI are defined with respect to
the local coordinate axes of the lattice element, shown in Figure 2, whereby nodes are
usually placed at the nuclei of the Voronoi diagram [10,11]. For each generalized beam
element, generalized strains ϵ =

[
ϵ γ κ

]T may be defined in the local coordinate system
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(Figure 2), with ϵ, γ, and κ corresponding to the normal strain, transversal shear strain,
and beam curvature, respectively. They can be computed from the vector of element nodal
displacements u =

[
u1 v1 θ1 u2 v2 θ2

]T as

ϵ = Bu, (2)

where matrix B represents the strain-displacement matrix in the local coordinate form

B =
1
le

−1 0 yp 1 0 −yp
0 −1 −le/2 0 1 −le/2
0 0 −1 0 0 1

. (3)

The generalized beam lattice element represents an extension of the linear Timoshenko
beam element used in discrete lattice models [32–36]. A closer inspection and compari-
son with the corresponding expressions obtained for a linear Timoshenko beam element
shows that the curvatures of these two elements are identical, while the shear strain is
equal to the value computed at the sample point of a Timoshenko element with selective
reduced integration (the Gaussian point positioned at the middle of the element). The
only significant difference is encountered in the normal strains (see non-zero terms yp),
arising because here the normal strain is associated with the normal spring force acting
at point P, which is in a general case shifted from the straight line connecting nodes by
yp (see Figure 2). Consequently, these two elements possess different stiffness matrices,
which become identical only when point P aligns with the local coordinate axis x, as shown
in [10].

Motivated by these similarities, in the following, we depart from the kinematics of
the rigid-body spring model and consider the links between two adjacent nodes (particles)
as a generalized beam model, whose kinematics is defined by Equations (2) and (3). The
parameters of these beam lattice elements are computed by extracting certain geometrical
properties from the Voronoi network. Namely, each element has its length le and cross
section area Ae = he·1 (1 being the third dimension normal to the model plane, correspond-
ing to unit thickness). Each cross-section height he is obtained directly from the Voronoi
network from the coordinates of points 3 and 4 (Figure 2). The point P is geometrically
placed in the middle of the Voronoi edge perpendicular to the element. The generalized
beam lattice element with 3 degrees of freedom per node is shown in Figure 3. The general-
ized element stress vector is defined in a manner standard in Timoshenko beam models as
σ =

[
N T M

]T and is obtained from generalized strains as

σ = Dϵ, (4)

where matrix D is the diagonal stiffness matrix D = diag(En Ae, Et Ae, EI) with moment
of inertia I = 1·h3

e /12. En, Et, and E represent element elastic constants. In this study, in
the initial model setups, we set En = Et = E, where E corresponds directly to the global
modulus of elasticity. Such a setup is equivalent to a global material response with Poisson
ratio equal to zero.
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2.2. Stress Tensor Computation and Fictitious Forces
2.2.1. Stress Tensor Computation

The procedure for correcting the model linear elastic response is based on nodal
stresses, as proposed in [8]. The nodal stress state is computed from the equilibrium of each
particle/node. In order to obtain the stress tensor, we will consider (1) local coordinate
systems of each beam element giving rise to longitudinal and transversal forces (Figure 4a)
and (2) a virtual cut of each cell (Figure 4b). The longitudinal and transversal element
forces N and T of all M lattice elements related to the observed node are considered in the
stress tensor computation (Figure 4a).
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Figure 4. (a) Longitudinal and transversal lattice element forces contributing to stress computation;
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The total stress resultant vector acting in the section defined by α is computed by
considering all M elements related to the node as

Fnα =
M
∑

m=1
w [Nmsin(β − α) + Tmcos(β − α)]

Ftα =
M
∑

m=1
w [Nmcos(β − α)− Tmsin(β − α)],

(5)

where the contribution of the stress resultant from every lattice element is multiplied by a
weight defined by the ratio w = A′

m/Am (Figure 4b). The stress components on the section
Aα can be computed as

σnα = Fnα/Aα

σtα = Ftα/Aα,
(6)

The stress tensor can be defined by computing the components in two perpendicular
sections obtained by positioning the section with α = 0◦ (Figure 5a) and α = 90◦ (Figure 5b).

By taking the total stress resultant vector on the cut planes, we can compute the
stress components σXX = Fnα/Aα and τXY = Ftα/Aα for α = 90◦; τYX = Ftα/Aα and
σYY = Fnα/Aα for α = 0◦. The corresponding nodal stress tensor is symmetric since
τXY = τYX

σ =

[
σXX τXY
τYX σYY

]
(7)

where X and Y refer to the global coordinate axes.
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𝜀1
𝑓𝑖𝑐
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𝜀2
𝑓𝑖𝑐
= 𝜈𝜀1. 
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2.2.2. Fictitious Forces

Fictitious forces are utilized to adjust the elastic model response for various Poisson
ratio values. These forces are introduced into the model as an additional load that must
be incorporated into the residual force vector. Firstly, the principal stresses σ1 and σ2 are
computed for an initial state of ν = 0, along with the corresponding principal deformations
ε1 and ε2. Fictitious deformations are further computed by using these principal strains
and the required Poisson ratio, as presented in [8]:

ε
f ic
1 = νε2

ε
f ic
2 = νε1.

(8)

By multiplying by the modulus of elasticity E, we can compute the fictitious stresses:

σ
f ic
1 = Eε

f ic
1

σ
f ic
2 = Eε

f ic
2 .

(9)

The corresponding nodal fictitious forces (Figure 6a) can be computed as:

F f ic
1 = σ

f ic
1 Aα,1, F f ic

2 = σ
f ic
2 Aα,2, (10)

where areas Aα,1 and Aα,2 correspond to the principal stress planes.
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The nodal fictitious force is in equilibrium with the forces acting in the neighboring
elements of the Voronoi cell (Figure 6b). Each elemental force is proportional to the
projected area of the Voronoi cell on the cut plane Aα,1. After the elemental forces are
computed, they are projected into the local coordinate system of the elements and added to
the corresponding lattice elements.

The algorithm for the computation of fictitious forces relies on an iterative procedure
for general stress states. However, in the simple cases considered in this paper, iterations
are not required [8].

2.3. Failure Mechanics

The failure mechanism of a lattice element is controlled through the incorporation
of an embedded strong discontinuity [17,18]. The discontinuity is placed in the middle
of the generalized lattice beam finite element, corresponding to the position of the Gauss
integration point and the location of the crack between the Voronoi cells. This involves
introducing a jump in the displacement field along both the longitudinal and transversal
directions of the element, achieved by applying a Heaviside function [32–36]. The formula-
tion of the lattice element is expressed in the fashion of the finite element method, utilizing
linear interpolation functions. This finite element formulation is implemented in the FEAP
finite element code.

The model is capable of representing both Mode I and Mode II failure mechanisms
by introducing embedded discontinuities along both the longitudinal and transversal
directions of the element. The Heaviside function is defined as Hxp = 0 for x ≤ xp and

Hxp = 1 for x > xc. The vector α =
[
αu αv 0

]T represents the jump in the displacement
field at the position of discontinuity (in the middle of the element), as shown in Figure 3.
The enhanced displacement field can be written as the sum of the regular and discontinuous
(singular) part:

u(x) = u(x) +αHxp =

u(x)
v(x)
θ(x)

+

αu
αu
0

Hxc , (11)

The displacement field can be written in the fashion of finite element interpolations:

u(x) = N1(x)u1 + N2(x)u2 +α(Hxc − N2(x))︸ ︷︷ ︸
M(x)

, (12)

where the regular part is interpolated with the linear shape functions N1(x) = 1 − x
le

,
N2(x) = x

le
and (Hxc − N2(x)) represents the interpolation function M(x) in the fashion

of the embedded strong discontinuity:

M(x) =

{
− x

le
; x ∈ [0, xc⟩

1 − x
le

; x ∈ ⟨xc, le]
. (13)

The discontinuity parameters α are computed locally. The enhanced displacement field
can be written in matrix form as:

u = Nu + Mα, (14)

where N represents the matrix of interpolation functions N1(x) and N2(x) with the dimen-
sion 3 × 6, while the 3 × 3 matrix M = diag[M(x), M(x), 0] contains M(x) discontinuity
functions. The enhanced deformation field can be written as the sum of regular ϵ(x) and
singular part αδxc

ϵ(x) = ϵ(x) +αδxc =

ϵ(x)
γ(x)
κ(x)

+

αu
αv
0

δxc . (15)
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The Dirac function δxc tends to infinity for x = xc; otherwise, it is zero. The matrix form of
the deformation field can be written as

ϵ = Bu + Gα+αδxc , (16)

where matrix B is a strain-displacement matrix from (2) and (3) written in finite element
interpolation form containing the shape functions N1(x) and N2(x) and their derivatives
B1(x) and B2(x), and G = diag

[
G(x), G(x), 0

]
contains

G(x) = − 1
le

. (17)

In order to construct the virtual work, the virtual deformation field can be constructed as

δϵ = Bδu + Gδα+ δαδxc , (18)

where δϵ, δu, and δα represent the virtual counterparts of strain, displacement, and virtual
discontinuity jumps, respectively. The virtual work equation can be expressed as the
contribution of internal and external virtual work

Gint,(e) − Gext,(e) = 0. (19)

The virtual work equation produces the internal force vector equation and the local residual
equation due to discontinuity:

fint,(e) =
∫ le

0 BTσdx,
h(e) =

∫ le
0

(
G + δxc

)
σdx =

∫ le
0 Gσdx + t

(20)

From the condition that the local residual needs to be enforced to zero, we obtain the
expression for the traction vector at the discontinuity

t = −
∫ le

0
Gσdx. (21)

2.4. Damage Constitutive Law for Softening

The description of energy dissipation in the material involves the softening damage
law, which relates traction in the discontinuity with the jump in the displacement field.
When the stress in the material surpasses the ultimate strength of the specified material, a
discontinuity occurs, accompanied by the activation of a jump in the displacement field.
As the jump in displacement field increases, indicative of crack opening, the load-bearing
capacity decreases, leading to a reduction in stress at the discontinuity and a consequent
decrease in material stiffness. Material unloading results in crack unloading, but the
accumulated material damage and reduced stiffness persist. Complete unloading causes
the crack to close, and the displacement field jump becomes zero. Upon reloading, it
depends on the reduced material stiffness, following the inverse value of the softening
modulus (Figure 7).

The damage model is formulated in the thermodynamics framework and free energy ψ:

ψ

(
=
D, α,

=
ξ

)
=

1
2

=
D

−1
α2 + Ξ

(
ξ
)
, (22)

where
=
D and α represent the damage compliance modulus and the displacement jump,

respectively. The softening variable is defined as Ξ(ξ) = −=
q
=
ξ . The failure detection

function
=
ϕ can be defined as:
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=
ϕ
(

t,
=
q
)
= |t| −

(
σu −

=
q
)

, (23)

where t represents the traction vector at the discontinuity, σu is the ultimate stress level,
and

=
q represents the softening function, defined as:

=
q = σu

(
1 − exp

(
−

=
ξ

σu

G f

))
. (24)

G f represents the fracture energy. The expression for the traction vector at the discon-
tinuity can be obtained as

t =
∂ψ

∂α
=

=
D

−1
α,

=
D ∈ [0, ∞⟩. (25)
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2.5. Fracture Criteria

The proposed model adopts a discrete representation of fracture, with the crack
orientation perpendicular to the lattice element, aligning with the Voronoi cells. In this
framework, the lattice element is allowed to undergo failure in both Mode I, representing
tensile opening, and Mode II, representing shear sliding. Additionally, the model can
simulate mixed-mode failure, where both criteria are simultaneously activated. The failure
criteria are based on the maximum tensile stress and maximum shear stress permitted
within the lattice element. This approach allows for a comprehensive simulation of various
fracture mechanisms occurring under different loading conditions. The failure functions for
both modes are written in the framework of damage mechanics and obtained as expression
(23), while being applied to traction vectors in both directions:

=
ϕ
(

tu,
=
qu

)
= tu −

(
σu −

=
qu

)
=
ϕ
(

tv,
=
qv

)
= |tv| −

(
τu −

=
qv

)
.

(26)

The failure criteria are localized within individual lattice elements, determined by the
local stresses. This approach enables the activation of numerous local cracks and fractures
within the lattice structure. However, the model allows for the occurrence of multiple
local cracks that subsequently merge and coalesce. This process leads to the formation of
new, large-scale fractures through the mechanism of internal force redistribution. Through
such interactions, the model captures the global fracture mechanisms resulting from the
merging of smaller-scale cracks, providing a representation of the material response to
varying loading conditions.
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2.6. Exchange of Data between FEAP and MATLAB

The proposed mechanical model is implemented in the Finite Element Analysis Pro-
gram (FEAP) [42]. Nevertheless, the computation of the stress tensor in nodes and the
calculation of fictitious forces take place in MATLAB. To ensure data exchange between
FEAP and MATLAB, we employ the MATFEAP interface [43]. The lattice element forces in
the local element frame are first extracted from FEAP. Once the fictitious forces are com-
puted on the basis of the extracted values of forces in MATLAB, they are then transferred
to FEAP via the interface and incorporated into the internal force vector. This integrated
approach allows for consistent and effective communication between the two platforms,
enabling the final computation of displacements within the FEAP environment. The ex-
change of data between the two platforms is performed in each time step. However, when
the first fractures are initiated, the algorithm for the computation of fictitious forces stops,
since the specimen no longer behaves as an elastic continuum, but it changes to a discrete
and discontinuous state.

3. Numerical Simulations

In this work, we conduct several numerical simulations to present the capabilities
of the proposed discrete lattice element model with improved elastic response. While
discrete lattice models are commonly applied in mesoscale simulations of failure with
heterogeneous structures, our simulations involve specimens composed of a single material,
designed to first exhibit elastic continuum behavior prior to the appearance of fractures.
At each increment of the simulation, the fracture initiation criteria are examined for all
lattice elements. Once the initial fractures start to propagate, the specimen undergoes
a transition from a continuum material to a fractured state, while at the same time, the
algorithm for fictitious forces ensuring continuum-like behavior in the lattice model stops.
Quasi-static propagation of fractures is considered here, although fast dynamic simulation
can be conducted by adding inertia terms to the discrete lattice model [14].

The presented damage softening model is suitable for brittle and quasi-brittle failure
of engineering materials, usually observed in composite materials and structures [14]. The
ductile failure can alternatively be conducted with a plasticity-based softening model [13].
The distinction between these two models is in using internal thermodynamics vari-
ables. Although the focus here relies on quasi-brittle failure with a damage softening
model, a plasticity-based model can be implemented with the proposed enhanced discrete
lattice model.

To illustrate the model performance, we initiate the simulation with a test where shear
stresses dominate. In this example, only stress computations are carried out and compared
with those from a standard continuum element model. Subsequently, monotonic uniaxial
tension and compression tests are conducted until failure, where the model is providing
the continuum-like behavior prior to the initiation of cracks. Post-fracture initiation, the
model allows for the further propagation of tensile and shear cracks by activating the
formulation of embedded strong discontinuities. The proposed model simulates monotonic
load increase until failure, but it can also simulate unloading. Indeed, an unloading
mechanism is present in a significant number of elements that initiated cracks but did not
suffer significant damage. Moreover, it is also possible to build a model that can capture
cyclic loading conditions on the basis of the proposed kinematics.

The implementation of the model is carried out in both FEAP and MATLAB, with the
MATFEAP interface facilitating the exchange of data between the two codes, as elaborated
in the preceding section.

In all simulations, the domain is discretized using the Delaunay algorithm, and this
process is accomplished through the utilization of GMSH [44]. The discrete lattice elements
are then extracted from the resulting mesh. Concurrently, the geometric properties and char-
acteristics pertaining to the Voronoi network are also obtained from the discretized domain.
In our work, we employ rectangular domains. The utilization of more complex geometries
involving potential inclusions and multi-phase materials would necessitate an iterative
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procedure in the computation of fictitious forces. This is due to the more complex stress
states inherent in such configurations, leading to increased computational requirements.

3.1. Shear-Dominated Example

In the shear-dominated test, a load inducing shear stresses is applied to a rectangular
domain, as depicted in Figure 8. More precisely, horizontal displacement is imposed on the
top of the specimen. This test is performed using the proposed discrete lattice model with
a Poisson ratio set to zero. To capture the stresses in this test, the methodology outlined in
Section 2.2.1 is followed. The proposed model is designed to accurately represent the re-
sponse of a linear elastic continuum when the Poisson ratio is zero, similar to the rigid-body
spring model presented in [8]. The mechanical and geometrical characteristics of the test
are detailed in Table 1. The discrete lattice model consists of 4842 lattice elements. Figure 9a
illustrates the computed nodal stress component, specifically focusing on shear stress. The
computed nodal stress obtained using the discrete lattice model is then compared to the
results from a standard FEAP solid-element model (Figure 9b) with identical characteristics.
The stress values obtained from these two cases align, showing the accuracy and reliability
of the proposed discrete lattice model in capturing the shear-dominated response.
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Table 1. The mechanical characteristics and geometry of the specimen for shear test.

Shear Test

E = 10 GPa, ν = 0
Specimen dimensions 100 × 100 × 1 cm
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3.2. Uniaxial Tension Test

Uniaxial tension tests were conducted on specimens with identical geometric and
mechanical characteristics (Table 2), employing two different meshes, as illustrated in
Figure 10. Symmetrical constraints were applied to the bottom edge of the specimen, as
depicted in Figure 10, to ensure a symmetric response in terms of deformations in the
lateral direction. The test involved applying an imposed displacement on the top edge
of the specimen. The primary objective of this test was to examine the discrete model’s
capacity to accurately simulate local deformations in the elastic regime and post-peak
softening behavior.
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Table 2. The mechanical characteristics and geometry of the specimen.

Uniaxial Tension and Compression Test

E = 10 GPa, ν = 0.2
σu,c = 12 MPa, σu,t = 2 MPa, τu = 2.5 MPa

G(c)
f ,I = 200 N/m, G(t)

f ,I = 2 N/m, G f ,I I = 30 N/m
Dimensions of the specimen 10 × 10 × 1 cm

Simulations are conducted using imposed displacement control. Figure 11 presents the
complete macroscopic reaction–displacement curve, where the specimen initially behaves
like a linear elastic continuum. Subsequently, cracks initiate, marking the transition from
a continuous to a discontinuous state. The observed drop in the macroscopic curve and
subsequent softening signify the progressive degradation of the specimen until it is entirely
softened, losing its carrying capacity.
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Figure 12 illustrates displacement plots on the discrete lattice network of elements
at the imposed displacement level of 0.001 cm. At this stage, the specimen remains in
the linear elastic regime, and no cracking has occurred. These plots demonstrate that the
proposed algorithm of fictitious forces ensures correct displacements and deformations of
the specimen. The lateral displacements correspond to a Poisson ratio of 0.2, as specified in
the input parameters of the simulation. The algorithm achieves accurate deformation of the
discrete lattice network by computing fictitious forces based on the stress tensor, correctly
determining the principal stress in the nodes aligned with the global y-axis.
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Figure 12. Displacement of Voronoi nodes for tension test for imposed displacement 0.001 cm for
ν = 0.2: (a) displacement in direction x-Mesh1; (b) displacement in direction y-Mesh1; (c) displacement
in direction x-Mesh2; (d) displacement in direction y-Mesh2.

Uniform results in linear elastic regime deformations are attained for both lattice
meshes when the input parameters are defined on the global level. Conversely, failure in the
discrete lattice network initiates with the initiation of the first cracks, with the failure criteria
and parameters defined on the local element level. The final state of the cracks at the end of
the simulation is depicted in Figure 13, where the failed elements are highlighted in red. On
a global scale, a dominant macro-crack propagates through the entire domain, extending
perpendicular to the imposed displacement direction. However, the cracks leading to total
failure exhibit slight variations in length and local directions between the two meshes,
even with the use of identical fracture parameters. This discrepancy arises due to the
inherent randomness in stiffness within each lattice element, impacting the failure regime.
As the failure criteria are applied to each lattice beam element, this internal heterogeneity
determines the weakest link, highlighting the effectiveness of the lattice model in terms
of robust crack propagation and path determination. Thus, the proposed lattice model
effectively simulates deformations related to a continuum response in the linear elastic
regime, while the fracture behavior is governed by the internal heterogeneity within the
network, rendering it robust in terms of crack propagation. The uniaxial tension test failure
mechanism computed with the proposed model aligns well with the phase-field simulation
of concrete failure presented in [45], where the crack is perpendicular to the direction of
tensile loading, while its morphology corresponds to concrete internal heterogeneities.
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Figure 13. Macro-crack at the end of tension test for: (a) Mesh1-1210; (b) Mesh2-2570.

While the global fractures leading to the specimen’s total failure exhibit slight vari-
ations due to inherent variability, the overall global responses in terms of softening and
dissipated energy remain very close to each other, as depicted in Figure 11. The minimal
difference in the global response can be attributed to the length of the cracks. However,
this disparity is minor within the softening curves, despite differences in the element sizes
between Mesh 1 and Mesh 2. This characteristic represents a significant advantage of the
proposed fracturing algorithm and model—the softening behavior is not dependent on the
mesh size. Instead, it solely relies on the fracture energy, which is an input parameter. This
dependency on fracture energy is a direct consequence of the embedded strong disconti-
nuities, which act as localization limiters for softening. This stands in contrast to models
where the softening response may be influenced by variations in mesh size, highlighting
the robustness and reliability of the proposed approach.

3.3. Uniaxial Compression Test

In the uniaxial compression test, the specimens possess identical mechanical and
geometrical properties, along with the same meshes from the uniaxial tension test. This
test shows the discrete lattice model’s capability to accurately simulate local deformations
in the elastic regime and post-peak softening behavior, but under uniaxial compressive
loading conditions. Simulations in the compression test are conducted using imposed
displacement control, as illustrated in Figure 14. Figure 15 displays the displacement plot
at an imposed displacement level of 0.004 cm, where the specimen remains intact and in
the linear elastic regime.
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ν = 0.2: (a) displacement in direction x-Mesh1; (b) displacement in direction y-Mesh1; (c) displacement
in direction x-Mesh2; (d) displacement in direction y-Mesh2.

The plots in Figure 15 reveal that the specimen undergoes lateral expansion, and the
ratio of horizontal to vertical displacements aligns with the desired Poisson ratio of 0.2.
This accurate deformation in the lateral direction is achieved through the application of
the fictitious-force approach, as discussed previously. Both meshes respond effectively
to the introduced fictitious forces in the internal force vector, ensuring the proper linear
elastic response.

However, the initiation of the first fractures causes the specimen to transition into a
discontinuous state until total failure. The macroscopic responses in terms of the reaction–
displacement curve in Figure 16 illustrate the material softening during the failure process.
Slight differences in the amount of total dissipated energy and softening are observed
between the two meshes due to a slightly varied failure mechanism arising from internal
heterogeneity and the randomness of the lattice network.
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The final failure patterns illustrated in Figure 17 reveal a typical uniaxial compression
test failure mechanism, where the dominant macro-crack takes a diagonal form due to
shear sliding. The diagonal form of the dominant crack in the uniaxial compression test is
typical for quasi-brittle materials such as concrete, as shown in the experiment provided
in [45].
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Similar failure patterns are observed with both meshes, although the length and angle
of the macro-cracks exhibit slight differences due to internal randomness. Despite these
variations, the proposed discrete lattice model effectively captures the essential aspects of
the uniaxial compression test while being robust in simulating complex fracture behaviors
under applied loading conditions.

4. Discussion

The novel discrete lattice element model developed in this study represents a con-
tribution in addressing challenges related to simulating the elastic response and fracture
propagation with softening in materials and structures by using discrete lattice models.
The model introduces improvements by ensuring that the local elastic lattice parameters
correspond to global material elastic constants, allowing for the accurate simulation of
various Poisson ratios and easier model characterization. At the same time, the model
also successfully achieves mesh-independent post-peak softening responses, which is a
nontrivial challenge in discrete lattice models. Here, this has been achieved through the
integration of the embedded strong discontinuity framework. Through numerical exam-
ples, we demonstrated the model’s capability to accurately represent stress tensors in
shear-dominated scenarios. Additionally, the model presented the ability to reproduce
typical failure mechanisms observed in uniaxial tension and compression tests, such as
horizontal tensile cracking and diagonal shear fractures, respectively. The use of two dif-
ferent meshes in these tests revealed consistent macroscopic elastic responses, which is
observed in the real-world behavior of engineering materials with inherent heterogeneities.
While the global fracture softening responses exhibited close agreement, subtle deviations
highlighted the influence of internal material heterogeneities on failure mechanisms, a
phenomenon common in real engineering materials. The lattice element model naturally
incorporates randomness in the mesh configurations, adding robustness to its ability to
simulate various fracture mechanisms.

The proposed discrete lattice element model with an improved elastic response demon-
strates robust computational efficiency by using one-dimensional elements. The incor-
poration of the kinematics from the rigid-body spring model into a generalized beam
lattice finite element aligns with computational efficiency as well. The softening based on a
damage model [21–23] effectively captures monotonic failure in quasi-brittle and brittle
materials. However, it should be noted that the model has limitations in representing cyclic
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behavior. While the current framework favors a quasi-static regime, neglecting inertial
effects and propagation rates [14,34], potential extensions could be explored to incorporate
cyclic behavior on the basis of proposed kinematics.

5. Conclusions

The proposed discrete lattice element model not only captures the correct elastic
response but also embraces the inherent variability in material behavior, providing a
comprehensive representation of the material response from uniform elasticity to fracture
mechanisms influenced by internal heterogeneities. This work provides a capable model
for simulation and understanding of material behavior in engineering applications.
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