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In the context of more electrical aircraft, electromechanical de-icing systems provide a low-energy solution to protect aircraft's surfaces from ice buildup. Such systems produce deformation of the protected surface leading to a stress production within the ice and, ultimately, to ice shedding thanks to fracture. However, these systems may show limitations when it comes to completely protect a given surface. Ice delamination is often restricted to a part of the surface and the remaining ice either requires more energy to be removed or is just impossible to remove. In this paper, topology optimization of the substrate covered by ice is thus investigated to increase fracture propagation and ice shedding. For that purpose, an optimization problem, involving the energy release rate but also the mass and the substrate stress, is formulated. The numerical results show how the delamination efficiency of mechanical based ice protection systems can be improved through the topology modification of the substrate.

Introduction

Icing has been identified as a severe issue since the beginning of aviation [START_REF] Leary | We freeze to please: a history of NASA's icing research tunnel and the quest for flight safety[END_REF][START_REF] Cao | Aircraft icing: an ongoing threat to aviation safety[END_REF]. In flight, ice accretion is caused by supercooled droplets suspended in clouds. They impact the aircraft surfaces and freeze. Ice then accumulates on the surface which may lead to an increase of mass, the degradation of aerodynamic performances, or engine damage/flameout due to ice ingestion.

Ice protection systems are then required to ensure aircraft safety (Aircraft Icing Handbook 2000). Chemical, thermal, or mechanical are current strategies for de-icing or antiicing. The choice is motivated by the application. Huang et al. (2019, Table 1) drew advantages and drawbacks of these possible strategies to ease such a choice. Note that combined solutions also exist [START_REF] Strobl | Feasibility study of a hybrid ice protection system[END_REF][START_REF] Zhang | A novel thermo-mechanical anti-icing/de-icing system using bi-stable laminate composite structures with superhydrophobic surface[END_REF]. Electromechanical ice protection systems show a growing interest in the literature in the context of more electrical aircraft. They are especially interesting for their potential in terms of weight, durability, and energy savings. In such systems, electric actuators feed the protected surface with deformations. These deformations generate stress within the ice leading to cohesive (bulk fracture) and adhesive (delamination) failures.

A large amount of work has been carried out to study the efficiency of electromechanical ice protection systems with different types of excitation (static, modal, impulsive,...) ranging from the low frequency range (Hertz) (Venna andLin 2003, 2006;[START_REF] Venna | Piezoelectric transducer actuated leading edge de-icing with simultaneous shear and impulse forces[END_REF]), the kiloHertz range [START_REF] Palacios | Dynamic analysis and experimental testing of thin-walled structures driven by shear tube actuators[END_REF][START_REF] Palacios | Design, fabrication, and testing of an ultrasonic de-icing system for helicopter rotor blades[END_REF][START_REF] Palacios | Investigation of an ultrasonic ice protection system for helicopter rotor blades[END_REF]Palacios et al. , 2011a, b;, b;[START_REF] Overmeyer | Rotating testing of a low-power, non-thermal ultrasonic de-icing system for helicopter rotor blades[END_REF][START_REF] Overmeyer | Actuator bonding optimization and system control of a rotor blade ultrasonic deicing system[END_REF][START_REF] Villeneuve | Piezoelectric deicing system for rotorcraft[END_REF][START_REF] Strobl | Feasibility study of a hybrid ice protection system[END_REF], and the megaHertz range [START_REF] Ramanathan | Deicing of helicopter blades using piezoelectric actuators[END_REF][START_REF] Kalkowski | Removing surface accretions with piezo-excited high-frequency structural waves[END_REF]. In this paper, the focus is put on quasi-static deformation which show close similarity with low-frequency flexural resonant modes. Using beam theory, modal analysis, and numerical tools, Budinger et al. [START_REF] Budinger | Ultrasonic ice protection systems: analytical and numerical models for architecture tradeoff[END_REF][START_REF] Pommier-Budinger | Electromechanical resonant ice protection systems: initiation of fractures with piezoelectric actuators[END_REF][START_REF] Budinger | Electromechanical resonant ice protection systems: analysis of fracture propagation mechanisms[END_REF][START_REF] Budinger | Electromechanical resonant ice protection systems: energetic and power considerations[END_REF]) studied these modes. Although they assumed a priori the fracture path leading to ice debonding in their work, Marboeuf et al. gave more weight to this fracture mechanism thanks to a phase-field variational approach for brittle fracture [START_REF] Marboeuf | Electromechanical resonant ice protection systems: numerical investigation through a phase-field mixed adhesive/brittle fracture model[END_REF]. Budinger et al. concluded that these lowfrequency resonant modes proved to be efficient for cohesive fracture within the ice but failed to shed the ice from the structure. There is then a need to improve the efficiency of such modes, interesting for their low consumption. For that purpose, optimization of the substrate is considered. [START_REF] Palanque | Improving mechanical ice protection systems with substrate thickness and topology optimization. In preparation Parks DM (1974) A stiffness derivative finite element technique for determination of crack tip stress intensity factors[END_REF] propose a parametric optimization of the substrate thickness based on beam theory and fracture criterion introduced in [START_REF] Budinger | Electromechanical resonant ice protection systems: energetic and power considerations[END_REF]. In this paper, topology optimization is explored. This allows to keep a total freedom in shaping the substrate. The delamination efficiency but also the substrate mass and stress are quantities of particular interest.

The paper is organized as follows: (i) literature review on topology optimization for fracture problems; (ii) set-up and the fracture model; (iii) formulation of the topology optimization problem; (iv) sensitivity analysis performed by the adjoint Method; (v) numerical results; and (vi) conclusion.

Topology optimization for fracture problems

Topology optimization is widely used for engineering problems with more than 30 years of study. Among the large range of applications, one can find fluid-structure interactions [START_REF] Akl | Structural optimization using sensitivity analysis and a level-set method[END_REF]), vibration control [START_REF] Zargham | Topology optimization: a review for structural designs under vibration problems[END_REF], or damage detection [START_REF] Niemann | Damage localization using experimental modal parameters and topology optimization[END_REF]. Whatever the physical application, material topology has to be represented within the computational domain. Classical techniques for that purpose are homogenization [START_REF] Nishiwaki | Topology optimization of compliant mechanisms using the homogenization method[END_REF], solid isotropic material with penalization (SIMP) [START_REF] Sigmund | A 99 line topology optimization code written in matlab[END_REF][START_REF] Andreassen | Efficient topology optimization in matlab using 88 lines of code[END_REF], bidirectional evolutionary structural optimization (BESO) (Huang et al. 2010;Huang andXie 2010), andlevel-set (Allaire et al. 2004) methods. These techniques consist in defining a density variable 0 ≤ ≤ 1 within each computational element of the mesh representing the material presence, except for level-set method where the material is implicitly defined thanks to an isoline of the level-set function. Once the material model is selected, a numerical scheme is applied to solve the optimization problem. The difficulty here is the very large number of optimization variables. Again, the literature provides a large range of suitable techniques such as the gradient-based method of moving asymptotes (MMA) [START_REF] Svanberg | The method of moving asymptotes-a new method for structural optimization[END_REF] which is among the best known and used. Zargham et al. summarized these numerical techniques (Zargham et al. 2016).

Fracture was firstly taken into account in topology optimization through stress constraints to prevent crack initiation [START_REF] Duysinx | Topology optimization of continuum structures with local stress constraints[END_REF][START_REF] Le | Stress-based topology optimization for continua[END_REF]. Damage models were also introduced in topology optimization algorithms to obtain optimal shapes of steel reinforcement bars within concrete [START_REF] Amir | A topology optimization procedure for reinforced concrete structures[END_REF]. Some authors proposed an explicit fracture propagation algorithm coupled with topology optimization. [START_REF] Short Kang | Topology optimization considering fracture mechanics behaviors at specified locations[END_REF] improved the fracture resistance of pre-cracked structures using the J-Integral [START_REF] Sih | Plane problems of cracks in dissimilar materials[END_REF] as an objective for topology optimization. [START_REF] Klarbring | Minimizing crack energy release rate by topology optimization[END_REF] successfully minimized the energy released rate, computed with the virtual crack extension (Parks 1974), of fatigue-cracked aeronautics structures by optimizing the shape of reinforcement patches. J-Integral or virtual crack extension techniques usually serve as a criterion to determine if a crack propagates further on specific pre-cracked locations within a material. More complete fracture initiation and propagation models are used to fully simulate the fracture process. These models are coupled with topology optimization at the expense of a drastically increasing computational cost: see [START_REF] Xia | Topology optimization for maximizing the fracture resistance of quasi-brittle composites[END_REF]; [START_REF] Russ | Topology optimization for brittle fracture resistance[END_REF] for phase-field variational approaches of fracture and [START_REF] Liu | Multi-material topology optimization considering interface behavior via xfem and level set method[END_REF] for an extended finite element method (XFEM). These complete but expensive fracture models can also be partially introduced into J-integral or crack virtual extension techniques. As an example, Waisman (2010) combined XFEM and virtual crack extension techniques to derive an analytical expression for the stiffness derivative with respect to the fracture state. All these techniques were mainly applied on cohesive fracture problems. Many authors also considered adhesive fracture inside a topology optimization algorithm and different methods came into the picture compared to cohesive fracture. [START_REF] Sylves | Adhesive surface design using topology optimization[END_REF] solved the adhesion problem between two elastic plates starting from a Lennard-Jones function to derive a stress-opening relation at the adhesive interface, which is closely related to Cohesive Zone Model (CZM). [START_REF] Mergel | Computational optimization of adhesive microstructures based on a nonlinear beam formulation[END_REF] or [START_REF] Hsueh | Optimizing microstructure for toughness: the model problem of peeling[END_REF] tackled the peeling problem of a thin film on a substrate. The first authors adopted a microscopic point of view, defining an adhesive energy density based on van der Walls interactions while Hsueh and Bhattacharya modeled the adhesive interface thanks to governing equations of the peeling problem derived in [START_REF] Xia | Adhesion of heterogeneous thin films ii: Adhesive heterogeneity[END_REF]; [START_REF] Dondl | Effective behavior of an interface propagating through a periodic elastic medium[END_REF]. Finally, topology optimization problems were also formulated taking into account both adhesive and cohesive fractures and their interactions [START_REF] Nguyen | A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography[END_REF][START_REF] Da | Topology optimization of particle-matrix composites for optimal fracture resistance taking into account interfacial damage[END_REF][START_REF] Da | Topology optimization design of heterogeneous materials and structures[END_REF][START_REF] Da | Topology optimization for maximizing the fracture resistance of periodic quasi-brittle composites structures[END_REF].

3 Set-up and fracture model

Geometry

Two-dimensional plain strain geometries are considered. Figures 1 and2 display the configurations of this paper, together with applied loads, boundary conditions, and material's parameters (both elastic and adhesive). An imposed displacement u imp = 1 mm is directly applied without any increment. The large scattering of materials' available values in literature is out of the scope of the paper and values of (Marbaeuf et al. 2020, Sect. 4) are retained. See, for example, [START_REF] Work | A critical review of the measurement of ice adhesion to solid substrates[END_REF] for a review of ice adhesion on solid substrates. Figure 1 corresponds to a 130-mm-long and 1.5-mm-thick beam. Half of the beam is considered thanks to a symmetry condition on the left boundary. The beam is covered with a 2 mm-thick ice layer on its entire length. Configuration 2 corresponds to a 2.5 mm-thick NACA12 profile. Again, Fig. 2 shows half of the profile thanks to the symmetry condition on the bottom boundary. The ice covers L tot = 112.2 mm of the NACA12 profile.

Assumptions

Adhesive fracture between ice and the substrate is considered brittle and instantaneous as in [START_REF] Marboeuf | Electromechanical resonant ice protection systems: numerical investigation through a phase-field mixed adhesive/brittle fracture model[END_REF]. The latter implies a quasi-static framework as mentioned in introduction.

In this paper, the fracture path is assumed a priori as in [START_REF] Budinger | Ultrasonic ice protection systems: analytical and numerical models for architecture tradeoff[END_REF][START_REF] Budinger | Electromechanical resonant ice protection systems: analysis of fracture propagation mechanisms[END_REF][START_REF] Budinger | Electromechanical resonant ice protection systems: energetic and power considerations[END_REF]. The fracture initiates at the ice surface, propagates through the ice thickness, and finally causes ice delamination. This fracture mechanism was recovered with the phase-field variational approach [START_REF] Marboeuf | Electromechanical resonant ice protection systems: numerical investigation through a phase-field mixed adhesive/brittle fracture model[END_REF]. Arrows in Fig. 1 indicate the fracture path. Right boundary for the ice is left free instead of the symmetry condition to consider the presence of the cohesive fracture through the ice thickness. This fracture mechanism Adhesive interface is discretized into points. Each point corresponds to a state with a given adhesive fracture length, on which a static linear elastic finite element (FE) computation is performed. Figure 1 shows that, for the half-beam of length 65 mm, 10 discretization points are placed on the adhesive interface corresponding to a fracture length propagating every 6.5 mm, leading to 10 different states. For each state, one static elastic FE computation provides the classical fields everywhere on the computational domain: displacement u , strain , stress , and elastic energy e.

Adhesive fracture model

The fracture model is based on the energy release rate introduced by [START_REF] Griffith | Vi the phenomena of rupture and flow in solids[END_REF]. He stated that crack propagation is a competition between the elastic energy stored in the bulk of a material and a fracture energy, proportional to the surface's area created by new fractures. In other words, a crack propagates if the energy released during the process is greater or equal to a value proportional to the new surface's area created. The proportional factor is the so-called Griffith critical energy release rate G c and is a material-dependent parameter. The value G c = 0.5 J/m 2 is used in all the numeri- cal results as shown in Figs. 1 and2.

According to [START_REF] Frémond | Adhérence des solides[END_REF], elastic microscopic bonds model the adhesive interface in this work as in [START_REF] Bennani | A mixed adhesion-brittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF]; [START_REF] Marboeuf | Electromechanical resonant ice protection systems: numerical investigation through a phase-field mixed adhesive/brittle fracture model[END_REF]. These elastic microscopic bonds store the energy within the interface. This energy is then available for adhesive fracture. In 2D, the energy release rate thus takes the form of Eq. 1 for a fracture length, which is nothing but the potential energy of the fictitious adhesive springs of stiffnesses k n and k . The displace- ment jump [[u]] across the adhesive interface is extracted from the displacement field u over the length .

The energy release rate G in Eq. ( 1) is evaluated at each discretization point on the adhesive interface considering a virtual fracture length of = 1 mm. The energy G is thus the energy released during a virtual adhesive fracture of = 1 mm at the corresponding discretization point. One evaluation of G requires one static FE computation. Mode I and Mode II failures are taken into account through the decoupling of the displacement jump [[u]] across the inter- face into two components: normal [[u]] n and tangential [[u]] components. Eq. 1 involves only the positive part < . > + of the normal displacement jump [[u]] n , meaning that only the normal traction participates to adhesive fracture [START_REF] Miehe | A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits[END_REF]. Figure 3 shows the adhesive interface model

(1) G = 1 𝛿 ∫ 𝛿 0 1 2 k n < [[u]] n > 2 + +k 𝜏 [[u]] 2 𝜏 d
used in this paper. The normal stiffness k n is deduced from more common interface values available in literature thanks to a pure traction test: the critical stress c and the adhesive critical energy release rate G c . The values G c = 0.5 J/m 2 and c = 1 MPa lead to k n = 9.48 × 10 12 Pa/m (Marboeuf et al. 2020, Sect. 4). The tangential stiffness k is taken such that Mode II contribution is divided by 10 compared to Mode I (Marboeuf et al. 2020, Sect. 4), i.e., k = k n ∕10 . No addi- tional adhesive model is included. In particular, no contact are applied and inter-penetration is not forbidden.

This approach shares some similarities or links with existing techniques described in the previous section: (i) a virtual move of a computational node mimicks a virtual fracture in the virtual crack extension; (ii) the density energy in Eq. 1 corresponds to a part of the adhesive elastic energy used in the phase-field variational approach of [START_REF] Bennani | A mixed adhesion-brittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF]; Marboeuf et al. ( 2020); (iii) the traction-separation law of CZM can be derived from the complete adhesive elastic energy density under some assumptions [START_REF] Wu | A unified phase-field theory for the mechanics of damage and quasi-brittle failure[END_REF][START_REF] Wu | A length scale insensitive phase-field damage model for brittle fracture[END_REF][START_REF] Marboeuf | Electromechanical resonant ice protection systems: numerical investigation through a phase-field mixed adhesive/brittle fracture model[END_REF]; and (iv) the complete fictitious energy density of [START_REF] Bennani | A mixed adhesion-brittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF]; [START_REF] Marboeuf | Electromechanical resonant ice protection systems: numerical investigation through a phase-field mixed adhesive/brittle fracture model[END_REF] simplifies and renders more complex microscopic interactions such as van der Walls interactions. The reader is referred to [START_REF] Wu | A unified phase-field theory for the mechanics of damage and quasi-brittle failure[END_REF]; [START_REF] Wu | A length scale insensitive phase-field damage model for brittle fracture[END_REF] for further details on point (iii).

Fracture criteria

Based on energy release rates G i along the adhesive interface, two criteria are introduced to represent the adhesive fracture mechanism.

A first criterion sorts all energy release rates G 0 > G 1 > ... > G N along the adhesive interface where N is the last state number on the fixed protected length. Inequality (2) imposes a maximum slope of 5 % 2) is met, the interface energy stored locally at each discretization point decreases with the length of the adhesive fracture. The criterion a priori implies that the local stress on the adhesive interface also decreases with the fracture length, avoiding unwanted fracture initiation, except at the considered discretization point. The idea behind that criterion is thus to enforce the assumed fracture path. Note that criterion (2) is limited to local areas around discretization points and fracture initiations elsewhere on the adhesive interface is uncontrolled. For computational considerations, the energy release rate replaces the stress in (2). The stress needs very fine meshes to be well resolved, in particular when only local values on discretization points are of interest. Finally, criterion (2) does not consider cohesive fracture initiation within the ice. The last point will be explored in the numerical results.

(2) G i+1 -G i G i ≤ G c , i = 0, … , N -1,
The second criterion writes [START_REF] Budinger | Electromechanical resonant ice protection systems: energetic and power considerations[END_REF] where VM N denotes the maximum Von-Mises stress within the substrate at the state N and VM c is the critical Von-Mises stress. The criterion (3) combines the two inequalities G c ≤ G N and VM N ≤ VM c . Both bounds G c and VM c depend on the applied displacement amplitude. [START_REF] Martin | Initiation of edge debonding: coupled criterion versus cohesive zone model[END_REF] showed by dimensional analysis that the quantity G∕ 2 is both representative of the fracturing mechanism and independent of the displacement amplitude. The quantity G∕ 2 is therefore more easily boundable. While no damage model is taken into account in the substrate, the criterion (3) allows to control the stress within the substrate: it undergoes bounded Von-Mises stresses

Optimization problem

The material is described in this paper with a modified SIMP approach [START_REF] Sigmund | A 99 line topology optimization code written in matlab[END_REF][START_REF] Andreassen | Efficient topology optimization in matlab using 88 lines of code[END_REF]. In each element cell c, Young's modulus E c and stress c are degrad- ing according to the material presence c

(3)

G c VM c 2 ≤ G N VM N 2 VM N ≤ √ G N G c VM c . (4) E c = E min + p c E mat -E min (5) c = q c mat
where E mat is the material Young's modulus, E min = 10 -4 allows keeping an invertible stiffness matrix, p = 3 and q = 1.5 are penalization parameters. The parameter p allows a more black & white solution [START_REF] Andreassen | Efficient topology optimization in matlab using 88 lines of code[END_REF]) while q is a numerical parameter to ease the convergence [START_REF] Holmberg | Stress constrained topology optimization[END_REF].

Given the set-up introduced in the previous section, the optimization problem is formulated as follows:

where = ( c ) t is the collection of all design variables, m is the mass proportion and i denotes the state number. The objective is weighted thanks to parameters r = 2 and s = 1 . A few tests were run with different combinations of r and s and it shows that the mass should be more weighted in order to obtain sufficiently light structures. Moreover, a large value of r is useless and values given here seem to be a good compromise.

The optimization problem (6) allows minimizing the mass proportion while maximizing the last energy release rate G N of the protected zone. The two first constraints in (6) are described in the previous section and control the fracture mechanism. Problem ( 6) is now solved using classical existing techniques in literature. A smoothing filter [START_REF] Andreassen | Efficient topology optimization in matlab using 88 lines of code[END_REF][START_REF] Lazarov | Filters in topology optimization based on Helmholtz-type differential equations[END_REF]) reduces meshdependency and improves convergence. The length parameter R = 5.0 is chosen in numerical results leading to a smoothing over approximately 5 cells. No Black and White filter [START_REF] Andreassen | Efficient topology optimization in matlab using 88 lines of code[END_REF][START_REF] Russ | Topology optimization for brittle fracture resistance[END_REF]) is used to remove intermediate values 0 < < 1 . The first con- straint in problem (6) proves to be very sensitive to a Black & White filter. Removing intermediate densities, unavoidable because of the first smoothing filter, at specific locations, often violates the constraint

G i+1 -G i G i
≤ G c . This will be further discussed with the numerical results. The maximum Von-Mises stress within the substrate at the State N VM N is approximated thanks to an aggregate function depending on all local stresses in each element of the mesh. The discrete L k -norm where k = 4 is used as the aggregate function. The approximation is improved thanks to the clustering-based approach of [START_REF] Holmberg | Stress constrained topology optimization[END_REF]. Stresses values are sorted into 3 clusters from the lower to the higher value. Finally, MMA [START_REF] Svanberg | The method of moving asymptotes-a new method for structural optimization[END_REF]) solves the problem (6). As it is stated before, it is a widely used method for topology optimization since it can handle an arbitrary number of non-linear constraints. However, it requires the computation of gradients with respect to design variables c (6)

min m r G s N submitted to: ⎧ ⎪ ⎨ ⎪ ⎩ G i+1 -G i G i ≤ G c i = 0, ..., N G c ( VM c ) 2 ≤ G N ( VM N ) 2 0 ≤ ≤ 1
which is detailed in the following section. Figure 4 displays the flowchart of the topology optimization algorithm.

Sensitivity analysis

Sensitivities with respect to design variables c required by MMA are computed with the adjoint method: see Russ and Waisman (2019); [START_REF] Holmberg | Stress constrained topology optimization[END_REF] for an example of adjoint sensitivity computations.

Let U = (u p ) t the displacement vector for all computa- tional nodes p and J s the operator such that [[u]] s = J s U for each discrete segment s of the adhesive interface. The vector n s (resp. s ) denotes the normal (resp. tangential) vector of segment s and is function of U . In this section, the state number is dropped for the sake of clarity. The discretized form of Eq. ( 1) writes where + is a regularized function approximated the positive part < . > + . That function is given by with = 5 × 10 4 a user-defined parameter controlling the regularization length around zero. Partial derivation of G with respect to a design variable c yields One gets ( 7)

G = 1 ∑ s 1 2 k n + (n t s J s U) 2 + k t s J s U 2 + (x) = 1 2 (1 + tanh( x)) x G c = 1 𝓁 ∑ s 1 2 k n c + (n t s J s U) 2 + k c t s J s U⋅ 2 = 1 𝓁 ∑ s k n + (n t s J s U) + (n t s J s U) c + k t s J s U ( t s J s U) c
The partial derivative s c follows from the same calculation Eq. ( 7) now becomes

The adjoint method allows an efficient computation of ( 8).

An adjoint variable 1 is first computed with where K is the FE stiffness matrix. With the adjoint variable, Eq. ( 8) writes Moving on the Von-Mises stress derivative, one follows the same procedure of [START_REF] Holmberg | Stress constrained topology optimization[END_REF]. Recalling that the discrete L k -norm is used as an aggregate function, the discrete maximum Von-Mises stress in cluster number j is where j is the set of all computational cells in the cluster j and 

+ (n t s J s U) c = � + (n t s J s U) (n t s J s U) c = � + (n t s J s U) n s c t J s U + n t s J s U c = � + (n t s J s U) U t J t s n s U + n t s J s U c s c = U t J t s s U + t s J s U c . ( 8 
) G c = 1 ∑ s k n + (n t s J s U) � + (n t s J s U) U t J t s n s U + n t s J s + k t s J s U U t J t s s U + t s J s U c . t 1 = 1 ∑ s k n + (n t s J s U) � + (n t s J s U) U t J t s n s U + n t s J s + k t s J s U U t J t s s U + t s J s K -1 K 1 = 1 ∑ s k n + (n t s J s U) � + (n t s J s U) n s U t J s U + J t s n s + k t s J s U s U t J s U + J t s s (9) G c = -t 1 K c U.
2 ) t K c U. j 
Sensitivity computations are checked with a first-order finite difference computation on 20 cells randomly picked up inside the optimizable domain. More precisely, the following relation is checked for each random cell c , where

= ( 0 , ⋯ , c , ⋯ , dim ) is a design variable state, Δ = ( 0 , … , c + Δ , … , dim )
, dim the number of design variables, and Δ a small parameter going to zero.

Numerical results

All test cases performed on this paper are summarized in Table 1. A reference configuration of the substrate serves as a comparison on every test cases. In particular, the improved performance of the optimized design is deduced by analyzing the criterion G∕ 2 with respect to the reference. This reference configuration corresponds to a uniform substrate of 1.5 mm for Configuration 1 and approximately 2.5 mm for Configuration 2, i.e., = 0 is taken as a reference for all configurations. A classical stiffness optimization problem also serves as a comparison for Cases 1 and 2. Note that only the overall stiffness of the structure at the state N is maximized. The mass constraint m c is set according to the opti- mized result of problem (6) in order to have the same amount of mass. Initial designs are = 1 or = 0.5 depending on the numerical convergence. The Von-Mises critical stress VM c , involved in the second constraint of problem (6), is taken to 40 MPa. The optimal design often results in a strict inequality

G c ∕(𝜎 VM c ) 2 < G N ∕(𝜎 VM N ) 2 . An effective stress is then defined as T = √ G c G N
VM N and that value will be given for each test case. Cases 1, 2, and 3 are computed on the finer possible mesh according to the current limitations of the code, i.e., a mesh around 620000 cells.

Cases 1 and 2

Figures 5(top) and 6(top), respectively, show the optimal design for Cases 1 and 2. Both designs are similar. The optimal structure can be viewed as a sandwich structure with a maximum 4.5 mm thickness. The structure is composed of two skins with reinforcement bars. Most of the material between the two skins is removed in order to light as Figure 7 displays the Von-Mises stress for the optimal design of Case 2. The stress within the ice is particularly interesting. Stress peaks appear at the ice surface between 15 and 35 mm. A high stress zone is also located on the ice left boundary. These high stress values could be the locations of cohesive fracture initiations. This illustrates one limitation 1) of the total length covered by ice, and (bottom) on 0 % of the total length covered by ice of the first constraint (2): it does not control stresses within the ice but only local stresses around discretization points on the adhesive interface.

f c ( ) - f ( Δ ) -f ( ) Δ = O(Δ ) (11) max u t K u N
Table 2 sums up the comparison with the reference configuration. In particular, the delamination improvement is given together with the added mass after optimization. Figures 8 and 9 present the criteria G i ∕( VM i ) 2 along the adhe- sive interface. It is recalled that a value under the threshold means the adhesive fracture cannot propagate without damaging the substrate. The adhesive fracture propagates with an effective limit for the Von-Mises stress in the substrate around T = 35 MPa for the Case 1 (pinned boundary condi- tion) and T = 19 MPa for the Case 2 (clamped boundary condition). The propagation length reaches the goal given in Table 1, i.e., 90 % for Case 1 and 50 % for Case 2. Regarding the reference configuration, the optimization improves the delamination by 37 % and 250 % while adding 38 % and 24 % of mass for, respectively, Cases 1 and 2. Unsurprisingly, the gain is thus much better for the clamped boundary condition. Both for Cases 1 and 2, optimized designs obtained by the problem (11) show less efficiency than the ones from problem (6) in terms of the delamination length, with the same amount of added mass. Keeping the same effective stress T = 19 MPa, problem (11) even leads to an optimal design with no ice delamination for Case 2: see Table 2. The effective stress should be increased to T = 33 MPa to recover the same delamination length obtained with problem (6), i.e., a 250 % improvement compared to the reference configura- tion. Peaks on the quantity G∕ 2 also appear for the stiffness 6) is clearly not fullfilled in that case. These peaks correspond to much higher local values of G, and possibly much higher local stresses, on the adhesive interface and could lead to unwanted adhesive fracture initiations.

Cases 1 and 2 are also performed with an applied displacement amplitude of u imp = 2 mm instead of u imp = 1 mm. Very similar optimal results are obtained showing that problem (6) is not sensitive to the applied displacement amplitude.

Case 3

Optimized design is shown in Fig. 10. The optimal shapes share many similarities with Cases 1 and 2: (i) a main bar is added at the symmetry boundary condition playing the role of the second skin; and (ii) a spider web-like structure is placed between the two skins to mimick the truss or honeycomb-like structure. Reinforcements complete the optimal structure when the ice does not cover the substrate anymore. Its goal is twofold: (i) reducing the stress concentration in the substrate where the ice disappears and (ii) reducing stress concentration peaks at the clamped boundary condition.

Criteria G i ∕( VM i ) 2 plotted in Fig. 11 give a 400 % improvement of the delamination length compared to the reference design with a added mass of 287% as described in Table 3.

Conclusion

This paper presents a topology optimization problem for maximizing the delamination efficiency in the context of electromechanical ice protection systems. The optimization problem is formulated in a quasi-static framework and based on energy release rates computed thanks to a novel approach inspired by [START_REF] Bennani | A mixed adhesion-brittle fracture model and its application to the numerical study of ice shedding mechanisms[END_REF]; [START_REF] Marboeuf | Electromechanical resonant ice protection systems: numerical investigation through a phase-field mixed adhesive/brittle fracture model[END_REF]. The mass and the maximum Von-Mises stress within the substrate are also considered in the problem. Three different configurations are tested to gradually improve the geometry complexity from the beam to a realistic NACA12 configuration. These results show that topology optimization successfully increases the delamination efficiency compared to simple reference designs. An improvement of 400 % is even reached on the NACA12 configuration.

Ongoing work includes many possible improvements. First of all, it would be interesting to run more tests modifying parameters. Numerical parameters such as the stress penalization parameter q, the smooth filter parameter R or geometrical parameters such as the thickness of the optimizable zone are worth investigating. Then, the method can be improved in many ways. Parallelization and optimization of the code should be done to run tests with finer meshes. The code is currently limited to meshes around 620000 cells, considered for all test cases in this paper. Reformulation of the first constraint (2) in problem ( 6) is needed to avoid a large number of constraints when increasing the number of discretization points. That first constraint (2) also has to be improved for enforcing the fracture path. In particular, the stress within the ice should be taken into account. Finally, modal analysis should replace the quasi-static assumption in the topology optimization problem as electromechanical ice protection systems are based on resonant modes of the structure.

Fig. 1

 1 Fig. 1 Configuration 1. Material's parameters are displayed. Each state corresponds to a static FE computation given a fracture delamination length where the energy release rate is computed. Ice covers L tot = 65 mm of the half-beam

Fig. 3

 3 Fig.3Adhesive microscopic bonds modeling the adhesive interface. These bonds store energy which is released during the fracture process. Both Mode I and II are taken into account

Fig. 4

 4 Fig. 4 Flowchart of the topology optimization algorithm

e

  N j its cardinal. Using the chain rule, one has where e = ( ) t in Voigt notation for 2D plain strain geometry. Expressing the stress e in the cell e under the form e = ℂ e 𝔹 e U with ℂ e the element constitutive matrix and e the element strain-displacement matrix, the simple expressions of, respectively, VM j , VM e , and ℂ e . The reader can refer to Holmberg et al. (2013) for further details.

  the structure. The first skin corresponds to the non-optimizable area of 1.5 mm thickness. The second skin is less thick and presents a decreasing thickness when moving away from the center of the beam. Hence, the overall stiffness of the structure also decreases and consequently the energy release rate along the adhesive interface in accordance with the first constraint in problem (6). Topology optimization allows here to keep the same delamination performance with much lighter structures compared to a thickness parametric optimization[START_REF] Palanque | Improving mechanical ice protection systems with substrate thickness and topology optimization. In preparation Parks DM (1974) A stiffness derivative finite element technique for determination of crack tip stress intensity factors[END_REF] where the structure is full. In the truss-shaped structure, the reinforcement bars keep the two skins bonded and resist to normal (with respect to the interface) compression and shear deformations but allow tangential deformations coming from flexion. It seems that these bars are mainly placed at discretization point locations on the adhesive interface. The stiffness at these specific locations is locally increased to maintain a minimum energy release rate level. The result thus depends on the discretization performed. It is particularly visible on Figure6(top). Computations were run with more discretization points and show that the material between the two skins is rearranged differently and more reinforcement bars are added. No particular structure appears with that increase of discretization points but it seems that a truss structure, with a sufficient number of reinforcement bars, or a honeycomb-like structure would do a perfect job. Note that topology optimization adds the second skin on the bottom boundary of the optimizable domain. It would be interesting to change boundaries of the optimizable zone to determine if it gives more optimal results. The classical stiffness topology optimization problem (11) leads to similar designs as it is shown in Figures 5(bottom) and 6(bottom). However, less reinforcement bars are present for the benefit of thicker skins. The truss structure (or honeycomb-like structure) thus seems to disappear: the stiffness topology optimization problem (11) only takes into account the overall stiffness of the structure at the state N and does not constrain the other states. This confirms that a truss or honeycomb-like structure in the optimized designs aims at controlling the fracture mechanism all along the adhesive interface.

Fig. 5

 5 Fig. 5 Case 1: (top) optimized design of problem (6); and (bottom) stiffness optimized design of problem (11). Designs are obtained for the pinned boundary condition in configuration 1. Blank line sepa-

Fig. 7 Fig. 8 Fig. 9

 789 Fig. 7 Case 2: rescaled Von-Mises stress for state 0. Design is obtained with problem (6) for the clamped boundary condition in configuration 1. Blank line separates the ice from the substrate

Fig. 10 Fig. 11

 1011 Fig.10Case 3: Aluminum optimized design for configuration 2. Blank line separates the ice from the substrate. Delamination occurs on the protected length, i.e., on 90 % (Table1) of the total length covering by ice

Table 1

 1 Test cases performed in this paper. N a denotes the number of discretization points on the adhesive interface. L a is the fixed protected length. It is recalled that ice covers L tot = 65 mm of the halfbeam for Cases 1 and 2, and L tot = 112.2 mm for Case 3

		Figure	Mat.	N a	BC	L a ∕L tot (%)
	Case 1	1	Alu	10	Pinned	90
	Case 2	1	Alu	10	Clamped	50
	Case 3	2	Alu	10	Clamped	90

Table 2

 2 Summary of Cases 1 and 2 for topology optimization problems (6) and (11). Ref values correspond to a uniform substrate of 1.5 mm Exponent VM is dropped on the stress for more clarity. T is the threshold stress value used in Figs.8 and 9. L is the optimized delamination length determined thanks to the ratio G∕ 2

		m m ref	(G∕ 2 ) N N (G∕ 2 ) ref	T	L L ref
	Case 1: (6)	1.38	8.2	35 MPa	1.37
	Case 1: (11)	1.38	3.22	35 MPa	1.26
	Case 2: (6)	1.24	772.4	19 MPa	2.5
	Case 2: (11)	1.24	448.5	19 MPa	0
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Replication of results

The algorithm is described in this paper together with numerical parameters. Numerical results are obtained with a 2D sequential code writing in Python and starting from scratch. The code implements mesh reading and writing, ℙ 1 finite element solver, fil- tering, objective and constraints evaluations, and sensitivities' computation. The external Python package nlopt [START_REF] Johnson | The NLopt nonlinear-optimization package[END_REF]) is used for updating densities with MMA. Mesh generation is done with gmsh [START_REF] Geuzaine | Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities[END_REF] which provides MSH files to the code. Results are written in the VTK file format and are visualized with paraview [START_REF] Ahrens | Paraview: an end-user tool for large data visualization[END_REF]).
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