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Abstract

Identification from field measurements allows several parameters to be identified
from a single test, provided that the measurements are sensitive enough to the
parameters to be identified. To do this, authors use empirically defined
geometries (with holes, notches...). The first attempts to optimize the specimen
to maximize the sensitivity of the measurement are linked to a design space that
is either very small (parametric optimization), which does not allow the
exploration of very different designs, or, conversely, very large (topology
optimization), which sometimes leads to designs that are not regular and cannot
be manufactured. In this paper, an intermediate approach based on a
non-invasive CAD-inspired optimization strategy is proposed. It relies on the
definition of univariate spline Free-Form Deformation boxes to reduce the design
space and thus regularize the problem. Then, from the modeling point of view, a
new objective function is proposed that takes into account the experimental
setup and constraint functions are added to ensure that the gain is real and the
shape physically sound. Several examples show that with this method and at low
cost, one can significantly improve the identification of constitutive parameters
without changing the experimental setup.

Keywords: identification; digital image correlation; CAD; free-form deformation;
reduced-order modeling; non-invasive

1 Introduction
Along with the design of manufactured materials (composites, architected materi-

als, lattices...) or the development of advanced manufacturing processes comes the

need to develop simulation tools capable of predicting the behaviour of complex

parts. Although purely model-free data-driven simulation tools have been proposed

very recently [1], most of the tools are essentially based on more or less sophisti-

cated constitutive models [2] or their hybridization with artificial intelligence [3].

From an experimental point of view, identifying the possibly large number of pa-

rameters of such complex models requires designing several different experiments

[4]. Calibrating a single material model can require today carrying out up to dozens

of experiments, which makes the overall process very costly and time consuming.

The current trend is to develop procedures that minimize the number of tests

; maximize the benefits of the necessary tests by optimizing them (sample shape,

loading path, reduced design of experiments...) ; getting more and richer data from

it and better integrate it with finite element simulations. This approach is referred

to as smart testing [5]. For instance, it is possible to calibrate as many parameters as

possible at once from a very small number of tests thanks to the identification from
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full-field measurements [6]. Many identification methods have been proposed [7].

Roux et al. [8] reformulated most of them as the minimization of a metric used to

measure the distance between measured and computed displacement fields. In this

respect, identification can be viewed as data assimilation in mechanics of material.

The proposed methodology in this paper will be illustrated with the weighted Finite

Element Model Updating (FEMU [9, 10]), but, following [8], it could also be applied

with other identification procedures.

To do this, the testing and instrumentation must meet the following two conditions

[6]: first, rich instrumentation techniques must be used, such as field measurements,

in order to increase the amount of data (i.e. measured quantities); second, the

measured quantities must be sufficiently heterogeneous and, more precisely, sensi-

tive to the sought constitutive parameters. To achieve this, instead of standardized

(uni-axial) tests, authors considered complex specimens shapes (along with possi-

bly complex loading conditions [11]) to better sample the material response. For

instance, authors drilled holes [12, 13], machined different notch shapes [14] or de-

signed cruciform samples [15] with different shapes and fillet radii, to name a few.

But the choice of notched geometry, hole radius and position is often made empiri-

cally and does not guarantee any form of optimality with regard to the identification

of the parameters.

Going further in the optimization of the shape of the specimen and improving

the identification of constitutive parameters requires: (a) defining one or more op-

timality criteria (modeling stage) and (b) building a suitable shape optimization

algorithm (solution stage).

Regarding the modeling stage, numerous criteria for the optimality of a specimen

have been proposed in the literature. They can be classified into two main families.

The first family does not consider any specific constitutive model: it relies on a

measure of the heterogeneity of material states. The idea is usually to quantify the

ability of a specimen to well sample the behaviour in the principal stresses/strains

plane [15, 16, 17, 18] or to target a specific triaxiality [19]. These methods are de-

signed to ensure that the specimen correctly samples the behaviour, which is useful

for discriminating between different constitutive models. Although the identification

of constitutive parameters can be improved, it is not guaranteed, as the objective

function does not measure the accuracy with which parameters are identified.

The second, and more recent, approach consists in optimizing the shape of the

specimen with respect to one given constitutive model. The criterion, originally

proposed by Bertin et al. [20] is based on the minimization of the covariance matrix

of the identified material parameters. It relies on a fine analysis of the propaga-

tion of the measurement noise in the identification process [21, 8]. This approach

is particularly attractive since it can allow to reduce the identified parameters un-

certainty by orders of magnitude. However, let us underline that the modeling is

usually based on the sole minimization of a cost function (without constraints) and

that the latter is only related to the spectrum of the covariance matrix. As such,

there may be competitions between the specimen shape and other experimental

settings. For instance, from an experimental point of view, if the overall size of

the specimen changes, the field of view of the camera must be adapted so that it

covers the entire specimen. This will modify the image resolution and therefore the
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uncertainty. On the other hand, in the above cited works, the maximum strain can

increase during optimization. There is then a competition between modifying the

shape of the specimen and increasing the loading level, whereas the latter is not a

design variable.

Regarding the solution stage, it has first to be said that most studies do not

truly run optimization algorithms but rather use the two above criteria families

to compare existing or manually updated designs. Only few authors did rely on

automatic optimization algorithms to explore larger design spaces. In this context,

most of the proposed optimizations (e.g., [20, 19, 22]) are carried out in very small

design spaces, where only geometric parameters such as radii and hole positions are

modified. This is generally known as parametric optimization. The advantage with

one or two design variables is that a real optimization algorithm is not mandatory,

since a graphical or manual optimization may be sufficient. However, this is reduced

to very limited variations of the geometry. At the opposite extreme, very large

design spaces were considered to explore completely generic designs in [23] where

the authors developed a SIMP-type topology optimization algorithm. The method

has the advantage of being able to evolve the topology and therefore to create holes

or notches if necessary. Yet, there are still many limitations. The design space is very

large which results in prohibitive computational costs and may lead to unrealistic

irregular shapes. The optimized shape must be redesigned manually in a post-

processing phase to improve regularity and/or machinability without considering

the effect on optimality nor on the sensitivity fields.

In this paper, it is proposed to follow an intermediate path regarding the de-

sign space. Given the highly ill-posed nature of the problem, the spirit is not to

determine the ideal specimen (if it exists) but to further improve an existing manu-

ally designed or parametrically optimized specimen. Here, the use of a spline-based

geometric shape optimization as in [18] is proposed because it allows free-form ge-

ometry modifications with unchanged topology. It is possible to keep a low number

of design variables and a design sub-space made of regular shapes thanks to spline

functions. However, for the sake of having a generic and simple method from an im-

plementation point of view, let us underline that a ”classical” Finite Element (FE)

mesh is considered for the computation (with a sufficient refinement to obtain good

accuracy). A non-invasive CAD-based optimization strategy is therefore developed

with the help of univariate spline Free-Form Deformation (FFD) boxes that relate

the movement of the FE mesh to spline design variables during the optimization.

Formally, the spline design space can be interpreted as a reduced-order space from

a FE design space that would be directly associated to the FE mesh, which enables

to regularize the optimization problem in a flexible way (see, e.g., [24, 25] for sim-

ilar ideas in other contexts). Then, from a modeling point of view, the aim is to

improve the sensitivity to several constitutive parameters, for the purposes of iden-

tifying several parameters at once. It requires to make modifications to the usual

formulation of the optimization problem (objective functions and constraints), in

particular to take into account the image resolution and the loading magnitude.

This paper is organized as follows: Section 2 quickly reviews the process of param-

eter identification, namely the FEMU method and its functional, and the covariance

matrix that comes from coupling FEMU to Digital Image Correlation (DIC) and
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that gives a representation of the uncertainty over the identified constitutive param-

eters. Section 3 focuses on the non-invasive spline optimization strategy, based on

FFD [26] as reduced-order modeling for the design variables, that is implemented

to make the method suitable to any possible geometry. Then, Section 4 presents

the developed modeling for the specimen shape optimization problem. In particu-

lar, our choices are explained regarding the cost function and constraints so that

the optimization results are physically meaningful and the obtained geometries are

machinable. These choices are illustrated and validated through a simple analytic

example. Finally, numerical experiments are conducted in Section 5 to assess the

performance of the methodology on more complex structures with both isotropic

and orthotropic linear elastic constitutive relations, and concluding remarks are

drawn in Section 6.

2 Constitutive parameter identification from DIC
In this work, let us recall that the FEMU method was considered for material

constitutive parameter identification and, without loss of generality, in the context

of 2D-DIC.

2.1 FEMU method

The FEMU method consists in comparing a measured quantity to a simulated

one, typically a measured displacement field on a specimen obtained with DIC to

a displacement field obtained from numerical computation with similar boundary

conditions and the chosen material constitutive law [27, 28]. The aim is to find

constitutive parameters values that minimize the discrepancy between the simulated

field and the measured field. The functional to minimize thus reads:

Fp(q) = ‖v(q)− u‖2H , (1)

where v(q) and u are vectors gathering the simulated and measured displacements

respectively.

Remark In this paper, the analysis focuses on the case of full-field measurement

performed by DIC [29, 30]. Simulated displacement fields v generally come from

FE software and therefore are expressed at the nodes of a FE mesh. An easy way

to compare a measured displacement field u with a simulated one is to seek the

measured displacement field in the same FE space as used for the simulation. It is

usually referred to as FE-DIC in the community [31, 32, 21, 33, 13]. Note that there

exists many weak [21, 34, 35] or strong [32, 25] regularization techniques which

make it possible to perform FE-DIC on arbitrarily fine (let us say analysis-suitable)

FE meshes and which remove any limitation for element size (or degree, or type)

in the simulation. From now on, v and u will represent the displacement values

(DOF) at the nodes of a unique FE mesh (same for simulation and measurement).

Vector q is the set of sought constitutive parameters and H a symmetric positive

definite operator such that ‖a‖2H = aTH a. One can imagine that the quality of

the results depends on the quality of the measurement. A consequence is that there
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exists a ”best” norm to choose in order to quantify the discrepancy between these

two fields, which consists in taking H equal to the inverse of the covariance matrix

of the measured quantity [Covu]−1 [36, 8]. This norm gives to each DOF a weight

that is inversely proportional to its uncertainty.

To find q that minimizes Fp(q), a Gauss-Newton algorithm was used. Starting

from an initial set q(0), each Gauss-Newton iteration k updates the values of the

constitutive parameters as follows:

∀k ∈ N, q(k+1) = q(k) + δq(k) . (2)

δq(k) is computed as the solution of a linear system:

H
(k)
FEMU δq(k) = b

(k)
FEMU , with

{
H

(k)
FEMU = ∇qv

(k) H ∇qv
(k)T

b
(k)
FEMU = ∇qv

(k) H
(
u− v(k))

) , (3)

where v(k) = v(q(k)) and ∇q is the gradient with respect to the sought constitu-

tive parameters, i.e. line i is ∂
∂qi

, the sensitivity field to parameter qi. Note that

the normalization of the constitutive parameters is of utmost importance for such

analysis.

2.2 Noise propagation in FE-DIC

DIC aims at measuring a displacement field u from the comparison of a reference

state image I with a deformed state image J . Errors can arise from any step of

the DIC procedure (speckle pattern quality, light, air heat gradient, camera cali-

bration, camera noise, subpixel interpolation, displacement field numerical approx-

imation...). In this paper, the optimality will be based on noise uncertainty and will

omit other possible biases.

The effect of image noise on displacement uncertainty (or on its covariance) can

be characterized explicitely in DIC. Indeed, following [31, 33, 20], I and J are

assumed to be independently affected by white noise of variance γ2 or equivalently

that only J is affected by white noise of variance 2γ2. In this context, it can be

shown that the covariance of the measured displacements is such that [20]:

[Covu] = 2γ2H−1
DIC .

Operator HDIC is the approximation of the Hessian of the DIC functional which is

a cost-free output of the DIC problem and which has the following form [37]:

HDIC =

∫
I

NT∇I ∇ITN dx , (4)

where I is the Region Of Interest (ROI) in the images and N the matrix gathering

the FE shape functions.

2.3 Noise propagation in FEMU

From (3), the covariance of the identified constitutive parameters reads [21, 20]:

[Covq] = H−1
FEMU = 2γ2

(
∇qv HDIC ∇qv

T
)−1

, (5)
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where ∇qv is the sensitivity field with respect to a set of parameters that should

be close to the actual ones (see beginning of Section 4.1.3 for further details). This

covariance matrix [Covq] is of size nq × nq with nq the number of sought constitu-

tive parameters. It contains helpful information in order to derive a representative

criteria of a ”good” constitutive parameter identification [20].

3 A spline-based regular reduced-order design space
Before detailing the developed modeling of the specimen shape optimization prob-

lem (i.e., cost function + constraints), let us introduce here the strategy imple-

mented in terms of design space. From a general point of view, it is necessary to (i)

choose a suitable and flexible design space to parametrize the shape modifications

and (ii) build an efficient technique to update the FE mesh when the geometry

evolves. Let us remind that the method relies on a unique FE mesh which is used

for both the simulation and the measurement. It is this mesh that describes the

geometry of the sample and its updating.

3.1 Design space using spline FFD

As stated in the introduction, our objective in this work is to further improve

the shape of a manually designed or a parametrically optimized specimen. Thus,

no topology optimization will be performed. Such strategies proved to be useful

in the field of structural optimization [38, 39, 40, 41, 42] since they offer a very

large design space. Conversely, they usually imply prohibitive computational costs

with numerous remeshing steps and may require specific regularization procedures

to obtain realistic shapes. In our case of an optimization problem related to the

minimization of the identification uncertainty, the last point appears even more

challenging (see [23]). Alternatively, only shape optimization will be carried out in

this work. In this context, the displacements of the mesh nodes could be directly

used as design variables. The literature, once again in the field of structural shape

optimization, shows that it corresponds to excessively large design spaces, which

may lead to irregular shapes that inherits the C0 properties of FE basis functions

without additional smoothing filters [43, 44, 45].

To circumvent these issues, a more regular spline space was used as a search space,

as performed originally in so-called CAD-based structural shape optimization [43,

46], and more recently in isogeometric shape optimization [47, 48, 49, 50, 51, 52].

The spline functions are well suited for shape optimization since they have been built

for geometric modeling in CAD. More precisely, they are of higher regularity and

thus imply few DOF associated to control points positions. They can conveniently

describe a geometry and, more importantly, a geometry evolution. For specimen

shape optimization in our context, let us note that splines were also used in [18],

where the obtained spline geometry was given as an input to Abaqus for each

computation in the optimization process. Such a technique may require a lot a

remeshing steps, especially when estimating sensitivities.

3.1.1 Standard FFD

Our goal is to take advantage of the spline properties but also to use them in a

non-invasive way so that usual FE simulation software can be called upon without
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remeshing. To do so, it is proposed to rely on the FFD concept that was first

introduced in [26] in the field of computer graphics and later applied for shape

optimization in many contexts [53, 54, 55, 56, 25]. In some sense, the FFD technique

allows to build the spline space as a vector subspace of the FE vector space [25].

More precisely, FFD consists in embedding the initial FE geometry into a (usually)

spline morphing box. Therefore the deformation of the FE mesh during the shape

update can be constrained to follow the deformation of the morphing box, the latter

being related to the movement of its control points. More precisely, the deformation

of the morphing box is applied to the nodes of the FE mesh; that is, each FE node is

prescribed to move as the point at the corresponding location inside the morphing

box. Denoting by sfe and scp the vectors collecting the FE design variables (i.e. the

movement of the FE nodes) and spline design variables (i.e. the movement of the

box control points), respectively, it can thus be written:

sfe = CT
FFD scp, (6)

where CFFD is the FFD operator that gathers the evaluation of the spline functions

at the FE nodes of the mesh, see [25]. This method is interesting because it decouples

the design space (spline-based) from that of the geometry description (FE-based).

Not all DOF associated to each control point of the morphing box are necessarily

considered as independent design variables. A linear operator Cs can be defined to

group some of the design variables in scp:

scp = Cs s, (7)

which leads to consider vector s that gathers the truly independent design variables.

Recapitulating, the link between the design variables s and sfe can be written as

follows:

sfe = Cupdate s with Cupdate = CT
FFD Cs, (8)

which exhibits the reduced-order treatment performed in terms of design. At this

stage, let us mention that, in opposition to classic reduced basis methods in simu-

lation, Cupdate is sparse.

3.1.2 Univariate spline-based FFD

Following the common practice in shape optimization with FFD, a first path would

be to embed the whole specimen FE mesh into a single bivariate FFD morphing box

[25]. The main advantage is that it would be possible to update, up to a certain ex-

tent, the whole mesh directly with control points. The problem is that it introduces

unnecessary control points in volume which can distort the mesh without chang-

ing the shape. Alternatively, it is proposed to create, in this work, one univariate

morphing box for each geometrical feature edge (circle, notch, line...) that is to be

optimized. Therefore, the morphing box, which is a curve in 2D has to conform to

the initial geometry of the feature edge it controls.
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Similarly to Eq. (6), we end up with a FFD matrix Ce
FFD linking the FE design

variables sefe that move the edge (i.e. not all the FE mesh nodes) to the design

variables secp associated to the control points of the spline FFD curve:

sefe = (Ce
FFD)

T
secp. (9)

From a practical point of view, this variant requires knowing the location of the FE

nodes in the parametric space of the spline FFD curve. This may imply inverting the

spline curve mapping (the parametric space is no longer the same as the physical

space as with simple bivariate boxes). For an easiest treatment, the edge nodes

were directly defined in the parametric space of the FFD curve and mapped onto

the physical space using the spline transformation before generating the FE mesh.

Further details will be given in Section 5 (see, in particular, Fig. 9).

With such a choice, all control points have an equivalent influence on the edges

they control. This choice avoids the condition number related issues (if a volume

control points has a slight influence on the geometry) as in [25]. Moreover, refinement

of the box does not lead to extra treatment if needed. However, the drawback is

that only a subset of the FE nodes is controlled by the modification of the morphing

boxes. An efficient technique to update the FE mesh in the bulk, given an evolution

of the features edge nodes through sefe needs to be built.

3.2 Mesh updating strategy

In order to avoid remeshing during optimization, it is proposed to use a mesh mor-

phing technique that allows to propagate inside the domain a variation of the edge

geometry through sefe. To do so, a simple linear elastic boundary value problem is

defined with a unitary elastic modulus E = 1 and a zero Poisson ratio. The deforma-

tion of the edges is considered as a prescribed displacement on the corresponding

nodes, and the goal is to obtain the resulting displacement sfe of all FE nodes,

which is the sought mesh correction field [57, 58]. In practice, a static condensation

is performed which leads to the morphing matrix Cm such that:

sfe = Cm sefe with Cm =

[
I

− (Km
rr)
−1

Km
re

]
, (10)

where Km
rr and Km

re are the sub-matrices of the stiffness matrix Km of the morphing

problem and indices e and r define the DOF of the edge nodes and of the remaining

nodes, respectively. The inverse of operator Km
rr is obviously not explicitly com-

puted. Only a LU factorization is performed and an efficient multi right-hand side

solver is used to compute Cm.

From all these steps, a unique matrix Cupdate can be defined that reduces the

initial design space related to the movement of all FE nodes to a low-dimensional

design subspace associated to the sole independent edge design variables collected

into se:

sfe = Cupdate s
e with Cupdate = Cm (Ce

FFD)
T

Ce
s. (11)
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Obviously, operator Ce
s is the counterpart of Cs in (7) for edge design variables.

Once again, this composition of operators allows an explicit link between (few)

edge design variables and the movement of all mesh nodes. Figure 1 illustrates the

transformations involved by the different operators. Starting from any FE mesh,

it defines a reduced design subspace, similarly to the reduced basis methods in

computational mechanics which performs a projection onto a reduced approximation

subspace. This operator is assembled once before starting the optimization solver.

Figure 1: Illustration of the mesh updating strategy with minimal remeshing:

(top-left) design variables se defined as a subset of edge control points DOF ; (top-

right) edge control points displacement secp = Ce
s s

e ; (bottom-left) edge FE nodes

displacement sefe = (Ce
FFD)T secp ; (bottom right) all FE nodes displacement

sfe = Cm sefe.

3.3 Control of mesh distortion

A typical issue to avoid during shape update is the intersection of an edge with itself

or with another edge. This issue can happen if control points associated to design

variables se cross each other. It results in geometries that have no physical meaning,

and some mesh elements can be totally or partially flipped as exemplified in Fig.

2. The elastic morphing can also lead to excessive distortion of the mesh elements.

Indeed, this morphing is based on the resolution of an unphysical boundary value

linear elastic problem that could lead to strain smaller than -1 in some elements,

thereby making them flip. Other types of morphing could also be used [58].

Excessive element distortion results in a small transformation Jacobian determi-

nant whereas it becomes negative for flipped elements. Therefore, a constraint func-

tion was defined that helps keeping this quantity above a certain positive threshold
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Figure 2: Non permissible geometry, due to the loop made by the upper edge.

εJac at each Gauss point throughout the optimization process. Besides, this quan-

tity is already computed to obtain the stiffness matrix needed for the cost function,

so it adds a marginal computational cost. For computation purposes, the constraint

function is normalized with the initial values of the transformation Jacobian deter-

minant. The constraint reads:

∀k ∈ [1..npg],
(det(J(se)))k

(det(J0))k
≥ εJac , (12)

where npg is the number of Gauss points in the FE model, (det(J))k is the trans-

formation Jacobian determinant at Gauss point k, (det(J0))k is the initial transfor-

mation Jacobian determinant at Gauss point k, and εJac is the chosen threshold.

Remark. If at convergence of the optimization algorithm, this constraint is active,

it means that the morphing may have distorted the mesh too much. This is a good

indicator that allows us to remesh the domain with the new shape and restart a

new optimization phase [58].

4 Appropriate modeling of the specimen shape optimization
problem

Now that the design space has been defined, the proposed modeling approach to

formulate the original shape optimization problem is presented. The cost function

used today in the field are first reviewed (see, e.g., [22, 20, 23]). They are based

on the knowledge on noise propagation in the identification workflow recalled in

section 2. They all aim at optimizing the shape of a specimen to best identify

the constitutive parameters of a specific model. Then, the optimization problem

is improved and complemented with constrains in order to get a physically sound

geometry. An example with a simple tension beam is presented at the end of this

section to validate our modeling choices.
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4.1 Construction and evaluation of the cost function

As recalled in Section 2, the covariance matrix provides an estimation of the qual-

ity of the identified parameters [22, 20, 23]. Improving the quality of the iden-

tification can thus be achieved by ”minimizing” this covariance matrix that ex-

presses the uncertainty on the constitutive parameter values, i.e. by ”minimizing”

[Covq](se) = H−1
FEMU (se) (see Eq. (5)) with respect to design variables se that

modify the geometry of the specimen. This section defines what ”minimize” means

for a matrix.

4.1.1 Physical meaning of the eigenvalues of the covariance matrix

The idea proposed in [22, 20, 23] is to work on the eigenvalues of the covariance

matrix. These eigenvalues have a physical meaning when looking at the multivari-

ate normal distribution associated to the covariance matrix [Covq]. In fact, the

isosurface where qT [Covq] q equals 1 is an ellipsoid where each principal semi-axe

direction is given by an eigenvector of [Covq], and their size is the square root of

the associated eigenvalue. An illustration is shown with 2 variables on Fig. 3.

Figure 3: Bivariate normal distribution associated with variances 1. and 2. and

covariance 0.5. Eigenvalues are Λ1 = 0.79 and Λ2 = 2.21, associated to eigenvec-

tors [−0.92, 0.38] and [0.38, 0.92]. In black, the ellipse with semi-axes of lenghts√
Λ1 and

√
Λ2.

To minimize the uncertainty on the identified constitutive parameters, this el-

lipse should be as small as possible, meaning that [Covq] eigenvalues should

be as small as possible. These eigenvalues also correspond to the inverse of the

FEMU functional curvatures near the optimum set of constitutive parameters, since

[Covq] = H−1
FEMU and HFEMU is an approximation of the Hessian matrix of Fp

(see Eq. (1)). With this point of view, decreasing [Covq] eigenvalues improves the

FEMU functional convexity, which also translates in a better confidence in the

identified constitutive parameters.
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4.1.2 Defining a criterion over eigenvalues

In order to perform an optimization of the constitutive parameter identification

procedure, we need to derive a unique scalar criterion from [Covq] eigenvalues.

Several choices exist.

Feld et al. [22] minimize the ratio of the largest eigenvalue over the lowest. This

choice improves the conditioning of [Covq] and also HFEMU . Hence, the numerical

errors are reduced during the Gauss-Newton FEMU minimization. However, it does

not necessarily enhance the sensitivity to the sought parameters. Indeed, an increase

of both eigenvalues can lead to a decrease of this ratio, which means that the

optimized experiment may be less sensitive to the sought constitutive parameters.

Graphically, with the example of Figure 3, this criterion leads to an ellipse looking

more like a circle, but it does not affect the size of that circle.

Bertin et al. [20] and Chamoin et al. [23] suggest that the determinant of [Covq]

can be used as a criterion – they call it the uncertainty volume. In this case, all

eigenvalues are contained equally in the criterion. But once again, it does not nec-

essarily enhance the sensitivity to all constitutive parameters. As a matter of fact,

the optimization procedure can lead to decreasing some eigenvalues and increasing

others at the same time. In this case, parameters that were not well identified with

the initial experiment can be even less well identified in the optimized experiment.

Graphically, with the example of Figure 3, this choice results in an ellipse with a

smaller surface. Yet it does not prevent the ellipse from getting thinner and longer.

Bertin et al. [20] and Chamoin et al. [23] minimize the largest [Covq] eigenvalue.

In this case, only the worst parameter sensitivity matters. This choice ensures that

each constitutive parameter will be identified with an uncertainty that will not be

greater than the initial maximum uncertainty. Graphically, this choice makes the

circumscribed circle of the ellipse smaller. The shape of the ellipse can vary but

its largest semi-axis is necessarily smaller at the end of the optimization than the

largest initial semi-axis. In the same spirit, the optimization problem will consist in

minimizing the largest eigenvalue of [Covq] or equivalently to maximize the smallest

eigenvalue of HFEMU :

se
?

= arg min
se

λmax ([Covq]) , (13)

= arg min
se

1

λmin (HFEMU )
, (14)

= arg min
se

2γ2

λmin

(
∇qv HDIC ∇qvT

) . (15)

The objective function to minimize, scales with the image noise variance γ2. One

way to improve parameter identification from full-field measurement thus consists

in developing alternative DIC algorithms which are less sensitive to image noise

[59, 60]. The noise being independent on the sample shape, it will not be taken into

account in the sequel.

4.1.3 Computation of the sensitivity fields w.r.t. constitutive parameters

First, in order to compute the sensitivity fields ∇qv, it is necessary to choose values

for the different constitutive parameters of the selected constitutive law, because
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of the need to know v(q). These parameters are defined numerically before the

optimization process and are not modified during the optimization. Hence, it may

be preferable to choose values that are not too different from those expected.

Since we aim at identifying linear elastic constitutive parameters, it is possible to

compute the derivative analytically for the simulated field with respect to a given

parameter qi. Indeed, v comes from a FE static problem resolution Kv = f , where

the stiffness matrix K depends on q and the applied load f does not. The derivative

reads:

K,qi v + Kv,qi = 0 , (16)

which leads to:

v,qi = −K−1K,qi v , (17)

where ,qi denotes ∂
∂qi

. Since the FE basis functions do not depend on q, only the

Hooke matrix derivative is needed to compute K,qi . This derivative can be computed

exactly when the constitutive law is linear. K,qi can then be assembled with the

same routines as for the stiffness matrix K using the Hooke matrix derivative instead

of the Hooke matrix.

Each parameter qi is usually normalized with its chosen initial value q0
i in the

FEMU minimization process (to reach a balance of the sensitivities of the different

parameters). Let us denote by qi the normalized parameter such that qi = q0
i qi. As

a result, we use v,qi instead of v,qi , and we have the following relation:

v,qi = q0
i v,qi . (18)

4.2 Approximation of the DIC Hessian to take into account the camera’s field of view

The last thing to compute the cost function in (15) is to evaluate the approximation

of the Hessian HDIC of the DIC functional. This operator is given as an output

of the DIC problem. Its form is detailed in (4). The optimization of the specimen

geometry is intended to be carried out before any experiment. And since the speckle

pattern is generally not known a priori, the HDIC matrix cannot be computed as

such, because I and thus ∇I do not yet exist.

Feld et al. [22] proposed to replace HDIC with an identity matrix. In contrast,

Bertin et al. [20] and Chamoin et al. [23] recommended the use of a mean-field as-

sumption. This latter assumption consists in considering that the graylevel gradient

∇I varies a lot more than the shape functions N in (4). As a consequence, we can

make the following approximation:

HDIC ≈ G2
I M , (19)

with

M =

∫
I

NTN dx and G2
I =

1

|I|

∫
I

[(
∂I
∂x

)2

+

(
∂I
∂y

)2
]
dx .
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M is a pseudo mass matrix and GI is a measure of the mean graylevel gradient

similar (yet not exactly equal) to the Mean Intensity Gradient (MIG) as defined by

Pan et al. [61]. Similarly to the image noise variance term, this factor was removed

from the objective function in this study, since its value depends on a speckle pattern

which is unknown at this stage and constant with respect to the design variables

se. Note that it is possible to maximize this value by working on the pattern itself

regardless of the shape [61, 62].

Now, since the aim is to optimize the shape of the specimen, its overall size may

change. Consequently, the experimental set-up may have to be adapted, especially

the camera’s field of view. Indeed, if the specimen is larger, the camera has to

be placed further away (increase of the distance Z between the object and the

camera) or the focal length f must be reduced in order to capture the whole ROI.

By doing so, a given physical displacement will lead to a smaller displacement in

pixels, given the finiteness of the image definition. To take this effect into account,

the HDIC matrix is written by considering world coordinates, in contrast to (19)

and [20, 23] where fields are expressed in the pixel coordinates. To this end, the

change of variables I = p(Ω) is performed in (4), where Ω is the physical ROI on

the specimen, and p is the camera projector model [63]. To improve readability,

N is redefined to be FE shape functions in the physical ROI Ω, as if N ◦ p−1 was

written instead of N in the previous equations where quantities are defined in the

image. HDIC becomes:

HDIC ≈
G2
I

2

∫
Ω

|det(∇p)| NTN dX . (20)

A pin-hole camera model (see, e.g., [63]) is considered as a first order approxi-

mation of the mapping from a point in the world at coordinates (X,Y, Z) to its

projection at coordinates (x, y) in the image. It is possible to express ∇p. Indeed,

the pinhole model states:

p : X,Y 7→ x = −fx
X

Z
+ x0, y = −fy

Y

Z
+ y0 , (21)

where fx and fy, in pixels, are the camera focal sampling parameters along the 2

image directions, Z is the distance between the specimen and the camera, and x0

and y0 are the center of the image (in pixels). The projector gradient can then be

obtained:

∇p =

[
− fx

Z 0

0 − fy
Z

]
. (22)

HDIC thus reads:

HDIC ≈
G2
I

2

fxfy
Z2

M(se) with M(se) =

∫
Ω

NTN dX, (23)

and where M is a true mass matrix computed in the FE coordinate system. We

end up with an additional weighting coefficient which depends on the experimental
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setting: fx (respectively fy) depends on the focal length f with a parameter kx

(resp. ky) that is intrinsic to the camera (it corresponds to a number of pixels per

meter on the sensor), such that fx = kx f (resp. fy = ky f) (see, again, [63]).

Assuming kx ≈ ky = k, the DIC Hessian reads:

HDIC ≈
G2
I

2

k2f2

Z2
M(se). (24)

This expression has the advantage of taking explicitely into account camera settings

that have an effect on the field of view. It is theoretically possible to increase the

sensor definition k to improve identification by considering higher definition sensors.

But as this parameter depends on the choice of a camera and is anyway limited to

the technological capabilities, it is considered fixed.

So far, we are only looking to improve a test piece, without considering a particular

experimental setup. In the following, an equivalent objective function is formulated

that does not involve any camera parameters. Indeed, by application of Thales

theorem and assuming that pictures are always taken so as to maximize the images

resolution on the ROI, the coefficient f2

Z2 can be linked to the surface ratio of area

of the sensor S0 to that of the ROI S:

fxfy
Z2

=
k2f2

Z2
= k2 S0

S
. (25)

S depends on the specimen geometry. Therefore, it should be in the cost function,

in the form of the surface of the rectangle that is tangent to the ROI. Conversely,

S0 being the sensor size, it is considered fixed. Eventually, the DIC Hessian is

approximated by:

HDIC ≈
G2
I

2

k2S0

S
M(se). (26)

4.3 Improvement with constraints to take into account the boundary conditions

magnitude

A tension test is considered for the identification of elastic constitutive parameters.

In this work, only the shape was optimized. Boundary conditions are fixed during

the optimization process.

As mentioned in the introduction, studies of the literature do not limit the max-

imum admissible strain or stress. As a result, there may be a competition between

the loading magnitude and the shape parametrization. Indeed, if the maximum

strain can increase during shape optimization, then the question is: which shape is

better? (1) the optimized one with a fixed loading or (2) the initial one with an

increased loading? This competition is due to the fact that the loading magnitude

is not one of the design variables. It seems extremely important to consider the

loading level in the optimization problem. In the following, given the linear elastic-

ity context, it is chosen to optimize the shape without changing either the force (or

imposed displacement) applied to the specimen or the maximum strain.

Limiting the maximum strain does not prohibit having a specimen which presents

a strain concentration. It only allows to separate the improvement due to a better
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strain distribution within the specimen from that due to the increase of the strain

level due to loading magnitude increase. Finally, a model often needs to be calibrated

in a certain strain range and this optimization constraint also forces the experiment

to properly sample the behavior in the desired strain range.

This equivalent strain can be computed thanks to the displacement field v that

can be retrieved from the cost function sensitivity field computations (see (17)

where v also has to be computed to get v,qi). Hence, a constraint that takes into

account the equivalent strain values on the specimen under loading was added to

the optimization problem. The constraint reads:

∀k ∈ [1..npg],
(εeq(se))k
εmax

≤ 1 , (27)

where (εeq)k is the equivalent strain value at the Gauss point k and εmax is a given

threshold. In this study, the Von Mises equivalent strain was chosen arbitrarily.

4.4 Resulting constrained optimization problem

Recapitulating, let us now write the full constrained optimization problem to solve.

As stated above, although they could be optimized independently, the external

loading magnitude, the image noise γ, the image gradient GI , the sensor definition

k and the sensor size S0 are considered fixed since they do not depend on the shape

of the object. Consequently, we end up with the following constrained optimization

problem to solve:

se
?

= arg min
se∈Rns

S(se)

λmin

(
∇pv(se) M(se) ∇pvT (se)

) ,
subject to

(det(J(se)))k
(det(J0))k

− εJac ≥ 0, ∀k ∈ [1..npg], (28)

1− (εeq(se))k
εmax

≥ 0, ∀k ∈ [1..npg].

In other words, the aim is to find the design variables se that minimize the largest

eigenvalue of the approximate covariance matrix of constitutive parameters q un-

der the constraint that the Jacobian of the transformation on each Gauss point k

remains strictly positive and that the maximum equivalent strain does not increase.

A flowchart of the overall optimization process proposed to optimize a specimen

shape with respect to identification uncertainty is depicted in Figure 4.

Figure 4: Flowchart of the proposed spline-based optimization process to improve

a specimen shape with respect to identification uncertainty.
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4.5 Analysis of a toy problem

To analyze the cost function, let us consider the analytic optimization of a simple

isotropic plain specimen in tension as presented in Figure 5. An isotropic linear

Figure 5: Example of the simple isotropic plain specimen in tension: definition of

the dimensions of the domain and the applied boundary conditions in the (x, y)

coordinate system.

elastic material is chosen, thus involving two parameters: the Young modulus E

and the Poisson coefficient ν. Symmetry Dirichlet boundary conditions are applied

at the bottom and right edges, the upper edge remains free, and the left edge is

subjected to a uniformly distributed load. F denotes the resultant force, which is

kept constant.

In this very simple case, a closed form solution can be found when only the

height h and the length L of the rectangle are the design variables. The resulting

displacement field is the following:

ux(x, y) =
F

hE
x , (29)

uy(x, y) = −νF
hE

y . (30)

When only one constitutive parameter is considered, the operator whose smallest

eigenvalue is involved in the cost function of (28) is a scalar which consists in

integrating the sensitivity field over the ROI:

vT
,qi M v,qi =

∫
Ω

vT
,qi v,qi dx =

∫
Ω

‖v,qi‖
2
dx . (31)

Note that in the case of only one single constitutive parameter, normalization (18)

was not applied.

4.5.1 Cost function w.r.t. Poisson ratio only

Optimizing the specimen shape through Problem (28) with respect to the Poisson

ratio only reads:

(L, h)? = arg min
(L,h)

3E2

F 2Lh
or (L, h)? = arg min

(L,h)

3E2

F 2
, (32)

without or with the weighting of the cost function by the specimen area S = hL,

respectively. Without weighting, the cost function will push the sample thickness h
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to infinity. This is indeed relevant because the displacements related to the Poisson

effect are maximum far from the horizontal symmetry axis. In reality, increasing

the thickness h of the specimen will require increasing the field of view by moving

back (increasing Z) or adjusting the lens (reducing f), which, given the finiteness

of the sensor, does not change the optimality of the specimen. When the field of

view of the camera is considered by adding the weight S to the functional, it can

be seen that the latter no longer depends on h (or L), which is consistent with the

previous analysis.

4.5.2 Cost function w.r.t. Young Modulus only

When the cost function (28) is written with respect to the Young modulus E only,

and setting ν = 0, it is defined as follows:

(L, h)? = arg min
(L,h)

3h2E4

F 2L2
, (33)

which clearly illustrates the competition between the thickness h and the resultant

of the load F . In this example, optimizing the shape of the specimen (by reducing

the height h) is strictly equivalent to increasing the external force F by the same

amount. In this case, the intrinsic quality of the geometry is not improved. Worse,

the risk is to produce more complex geometries, therefore more expensive to ma-

chine, whereas an increase in the load is sufficient. Finally, one could imagine even

worse situations where the refinement of the specimen improves the identification

less than a simple increase of the loading.

It is then important to consider the magnitude of the loading in the cost function.

It was done, here in an elastic context, by limiting the maximum strain to its initial

value, which allows to decouple the improvement of the specimen due to an apparent

increase of the loading (increase of the strains) and the one due to an improvement

of the strain distribution in the specimen at constant maximum strain.

5 Numerical examples
As a preamble, let us specify that all the numerical experiments were made in a

home-made code written in python language and GMSH was used for FE mesh

generations. Then, an optimization algorithm relying on gradient-based algorithms

as commonly performed in spline-based shape optimization [47, 48, 49, 51] was cho-

sen. More precisely, the built-in SLSQP function from the library scipy.minimize

was used as a black box. It is based on the SQP method [64] that can be viewed

as an extension of the Newton method for constrained optimization. At each ma-

jor iteration, an approximation is made of the Hessian of the Lagrangian function

associated to (28) using a quasi-Newton updating method. These methods are ap-

pealing because the Hessian is not directly computed but approximated through

the gradient variations during the resolution, thereby offering simplicity, minimal

computational cost and good convergence properties.

5.1 Validation of the optimization procedure on an isotropic plain specimen with

respect to one single constitutive parameter.

To start with, the tension beam of section 4.5 was considered with L = 200 mm.

Instead of the derivation of an analytic optimization, we perform now the numerical
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resolution of problem (28). The height h(x) of the specimen is adjusted to minimize

the variance of the Young modulus only. It is parametrized by the evolution of the

top line which plays the role of the feature. The design space is built from 6 control

points of a quadratic morphing box.

Only two design variables were actually chosen in this example. These design

variables were chosen so as to keep the left side of the top edge horizontal, as

shown in Figure 6. To do so, a C0 line was added at x = 100 mm by repeating

Figure 6: Example of the isotropic plain specimen: definition of the two design

variables. First design variable: displacement along y of the 4 left control points.

Second design variable: displacement along y of the 2 right control points. A C0

line was added at x = 100 mm. In light gray, the initial shape (h(x) = 100mm)

and; in dark grey, the result of the optimization process (hopt(x) = 16.67mm).

a knot. C1-continuity was then ensured by imposing some control points to move

like their neighbors, hence enforcing tangential directions [51]. Exceptionally in this

example, to verify that the algorithm is robust, the initial shape was set such that

h(x) = 100 mm, which corresponds to an homogeneous strain 6 times smaller than

the maximum strain allowed. Otherwise the initial shape would already be optimal

and the convergence of the algorithm could not be analysed.

Figure 7 shows the results with the optimization algorithm. As one would expect,

the optimal shape is still a rectangle but the height is devided by 6. This simple

example allows to validate the expression of the cost function as well as the numer-

ical FFD-based procedure for updating the geometry. The optimal value of the cost

function is divided by one and a half orders of magnitude (divided by 36) which is

consistent with the analytic expression of (33).

Remark. Let us notice that at the first iteration the objective function is lower

than its value at convergence. However, the algorithm used (which is based on the

SQP method) may not lead to feasible solutions at all iterations in the sense that

the constraints may not be satisfied at each iteration. This may explain why the

algorithm did not stop with this first solution.

5.2 A more complex example: open hole orthotropic specimen optimization with

respect to several constitutive parameters.

The developed methodology was next applied to a more complex problem. For

demonstration purpose, let us investigate the example depicted in Figure 8. This
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Figure 7: Example of the isotropic plain specimen with only two spline-based

design variables: evolution of the cost function value and geometry with the

iteration number of the optimization process.

problem, inspired from [22], consists in optimizing an orthotropic specimen in ten-

sion in order to minimize the uncertainty with respect to the elastic parameters.

In [22], the position of the holes was already optimized. The study presented here

goes further by improving the geometry of the two holes in addition to their posi-

tion. Note that this choice of limiting the analysis to the holes shape is arbitrary;

obviously, the optimization of the outer edge of the specimen could have also been

considered with our methodology, as in Section 5.1 . In this example, two quadratic

Figure 8: Example of the orthotropic specimen with two holes: boundary condi-

tion definition, initial geometry to be optimized and corresponding finite element

mesh (inspired from [22]).

periodic univariate spline boxes (1D-FFD) were used to optimize the hole shapes as

shown in Figure 9. Note that the position of the FE nodes in the parametric space

of the spline curves is denoted by ξFE .

Similarly to [22] and to reduce the number of design variables in this specific case,

the specimen geometry was treated so as to keep the central symmetry. It divides
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Figure 9: Definition of the design space for the orthotropic specimen with two

holes: 1D-FFD morphing box (left: parametric space; right: physical space) with

its control points (black points) and position of the controlled FE nodes (blue

points).

the number of design variables by a factor 2. This symmetry can be expressed as a

special form of reduction matrix Ce
s, and the matrix Cupdate can be defined to map

the design variables se to the modification of all FE nodes position sfe (see (11)).

5.2.1 Optimization w.r.t. to orthotropic linear elastic parameters

The goal is to improve this geometry with respect to its sensitivity to orthotropic lin-

ear elastic constitutive parameters: the longitudinal Young modulus E1, the trans-

verse Young modulus E2, the shear modulus G12 and the Poisson ratio ν12. Similarly

to [22], Dirichlet boundary conditions were prescribed and no other information

other than the displacement field was used. As a consequence, the Young mod-

ulus and the shear modulus cannot be identified as such. Therefore, the sample

is optimized with ratios E2

E1
, G12

E1
, used together with ν12, as constitutive parame-

ters of interest in this example. The strain constraint is expressed as in (27) with

εmax = max
k

(εeq(se0))k.

First optimization phase. The optimization leads to the geometry shown in Fig-

ure 10. The optimal shape is superimposed on the initial shape and the deformed

morphing box (along with the optimal position of the control points) is also repre-

sented in red. It is interesting to see that the size of the holes has increased without

increasing the maximum equivalent stress. In fact, the area of stress concentration

has expanded. Figure 11 shows the evolution of the cost function. It can be seen

that it is possible to improve the cost function value by a factor 10 without reach-

ing higher equivalent strain values. This means that the uncertainty on the worst

identified parameters was reduced by more than 3 with the very same experimental

set-up.

Next, in Figure 12 the absolute value of the determinant of the transformation

Jacobian of each Gauss point is plotted against the iteration number. The con-

straint was set with εJac = 0.1. It can be noticed that at the end of the optimization

process, the Jacobian constraint is active for some Gauss points, that is to say, the

determinant of the jacobian is exaclty equal to 0.1. This is not due to purely geomet-

rical issues such as loops on the edges, but it comes from the used mesh morphing
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Figure 10: Improved geometry (in black) compared to the initial geometry (in

grey), and 1D-FFD morphing box and its control points position at the end of

the first optimization (in red).

Figure 11: Example of the orthotropic plate with two holes: evolution of the cost

function value and specimen shape as a function of the iteration number in the

first optimization run.

Figure 12: Example of the orthotropic plate with two holes: evolution of the

transformation Jacobian of each Gauss point as a function of the iteration number

for the first optimization run (εJac = 0.1).
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technique that propagated the edges deformation to the rest of the FE nodes (mesh

morphing step). Indeed, when the edges deformation is too large, using an elastic

morphing can lead to flipped (or highly warped) elements, even if the specimen

edges remain physically sound (see Figure 13). In this situation, it means that the

shape morphing technique used to limit the computational cost actually restricts

the shape evolutions. There is thus no other choice but performing a remeshing step

and restarting the optimization.

Figure 13: Flipped elements when the deformation of the edges is too important

(circled in blue).

Second optimization phase. As mentioned in a remark at the end of section 3, a

solution is then to remesh the interior of the specimen at the end of the optimization

process, and to run another shape optimization with this new mesh. By keeping the

same nodes as for the old mesh on the feature edges, in particular for the optimized

holes, the same FFD matrix CFFD as for the first optimization process can be kept.

Hence, only the morphing operator Cm is to be re-assembled.

The results obtained after the second optimization step are shown in Figures 14

and 15. With the new mesh, it is possible to reach higher free form deformations

of the holes and obtain larger holes. During this step, the cost function value is

reduced by a factor 3, which brings the overall reduction factor more than 30.

Figure 14: Example of the orthotropic plate with two holes: improved geometry

after the second optimization run (in black) compared to the optimal shape

obtained after the first optimization run (in grey), and corresponding 1D-FFD

morphing box and its control points position (in red).

Again, the evolution of the transformation Jacobian of each Gauss point is plotted

against the iteration number (see Figure 16). This time, the constraint is not active

at convergence. What stopped the optimization are bounds that were arbitrarily

chosen for the design variables.
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Figure 15: Example of the orthotropic specimen with two holes: evolution of the

cost function value and specimen shape during the second optimization process

(after the remeshing step).

Figure 16: Example of the orthotropic plate with two holes: evolution of the

transformation Jacobian of each Gauss point as a function of the iteration number

for the second optimization run (εJac = 0.1).
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Overview of the results. To have an overview of how all three parameters sensi-

tivity have been impacted by the optimization process, looking at H−1
FEMU and its

eigenvalues λi, as detailed in Table 1, is convenient. Here, the parameters are rather

decoupled (covariance values are small compared to variance values), and the worst

initially identifiable parameter was E2

E1
. At the end of the first optimization step,

its variance is divided by 10 and parameters are still rather decoupled. At the end

of the second optimization step, its variance decreases again. Note that some pa-

rameters are now coupled (E2

E1
and ν12). It can be also observe that G12

E1
variance

decreases at each step, and ν12 variance slightly increases, in such a way that the

eigenvector wi associated to the greatest eigenvalue at the last step has its larger

component on this constitutive parameter.

Initial geometry End of 1st optim. step End of 2nd optim. step

H−1
FEMU

 27 −0.50 −0.047
−0.50 1.6 0.0072
−0.047 0.0072 0.31

  2.6 −0.28 0.24
−0.28 0.29 −0.020
0.24 −0.020 0.47

  0.63 −0.050 0.14
−0.050 0.14 −0.017
0.14 −0.017 0.67


λi

0.31
1.5
27

0.26
0.45
2.7

0.14
0.51
0.80

wi

 0.0017 0.020 −1.0
−0.0051 1.0 0.020

1.0 0.0051 0.0018

  0.12 0.10 −0.99
0.99 −0.058 0.12

−0.046 −0.99 −0.11

  0.099 0.74 −0.66
1.0 −0.070 0.070

0.0056 −0.67 −0.74


Table 1: Covariance matrix H−1

FEMU (the three parameters are ordered as: E2

E1
, G12

E1
,

ν12), its eigenvalues λi and the associated eigenvectors wi (same order).

These observations can also be made by looking at the sensitivity fields for each

constitutive parameter. Indeed, Figure 17 shows that the sensitivity magnitude

increases for E2

E1
and G12

E1
, and slightly decreases for ν12.

(a) Initial sensitivity to E2
E1

. (b) Initial sensitivity to G12
E1

. (c) Initial sensitivity to ν12.

(d) Step 1 sensitivity to E2
E1

. (e) Step 1 sensitivity to G12
E1

. (f) Step 1 sensitivity to ν12.

(g) Step 2 sensitivity to E2
E1

. (h) Step 2 sensitivity to G12
E1

. (i) Step 2 sensitivity to ν12.

Figure 17: Sensitivity fields magnitude for each constitutive parameter, initially

and at each optimization step.

5.2.2 A very ill-posed problem

To illustrate the high ill-posedness of the problem, the algorithm is started from two

different initial shapes. The orthotropic linear elastic open hole tensile test of the

previous section was considered again with two slightly different initial positions of

the holes.
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Figure 18 presents the evolution of the objective function during the convergence

of the algorithm for both initializations along with the evolution of the correspond-

ing shapes. It can be noticed that the two different initial guesses lead to signifi-

Figure 18: Example of the orthotropic specimen with two holes: evolution of the

cost function value and zooms on the hole shapes during the optimization process

(including one remeshing step each) for 2 different initial positions of the holes.

cantly different optimized shapes. However, the objective functions of the optimized

shapes is of the same order of magnitude, which means that they are two differ-

ent new designs which both significantly improve identification. This illustrates the

presence of a possibly large number of local minima. This property strengthen our

choice to consider reduced and regular design spaces in such problems instead of too

large and too generic design spaces like FE-based or topology optimization. From

an engineering point of view, considering the very same algorithm with multistart

could be interesting as it may provide a set of equivalently optimal shapes, that the

engineers could select based on other criteria like, for instance, machinability.

6 Conclusion
In this paper, a methodology has been proposed to improve the sensitivity of a test

to the constitutive parameters of a given model through specimen shape optimiza-

tion. Our approach relies on non-invasive spline tools to enable kipping a classic

FE formalism and yet limit optimization to regular, manufacturable designs. It is

also meant to fill the gap between the existing approaches in terms of design space

halfway between topology and parametric optimization. Indeed, the FFD-based re-

duced basis approach developed herein allows working with few design variables,

yet keeping a rich search space that leads to a vast range of geometries, provided

that their topology is the same. We considered the case where a pre-design of the

specimen was available and the goal was to further improve its geometry, with re-

spect to the sensitivity to constitutive parameters for given boundary conditions.

In other words, the method is not intended to determine the ideal specimen (if one

exists), but more to improve an existing empirically designed specimen.

Overall, the developed solution strategy consists in a non-invasive modern CAD-

based shape optimization that could obviously be applied successfully to other op-

timization problems (such as structural shape optimization).
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To define the optimization problem, the starting point was the cost function for-

mulation of Bertin et al. [20], which makes sense from experimental and mathe-

matical points of view. This objective function was improved including information

coming from the camera modeling, in order to tackle possible size changes through-

out the optimization process. Furthermore, material sensitivity fields, which are the

derivatives of the displacement field with respect to constitutive parameters, were

computed analytically, i.e. without using Finite Difference methods. Constraint

functions were also added to ensure that the obtained geometry remained physi-

cally sound. The first one involves the Jacobian of the FE mesh transformation from

the reference elements to the physical element and ensures that no element is flipped

or too much distorted. The second one sets a maximum equivalent strain, which is

kept equal to the initial maximum equivalent strain in order to guarantee that the

cost function decrease could not be impacted by the boundary conditions values.

Let us note that these modeling ingredients could be applied to other optimization

solution strategies (independently of the definition of the design variables), which

should improve the obtained specimen shape in any case.

The validation of our methodology was in particular carried out on a tension beam

with two holes C1-continuous periodic B-splines were used to create univariate

morphing boxes that control the FE nodes on the edge of each hole. The edge

deformation then propagated to the rest of the mesh via the solution of an elastic

morphing problem. Like this, no remeshing is necessary during the optimization

process. The cost function value was reduced by a factor 10 plus an additional

factor 3 if the sample is re-meshed and the optimization run again. Overall, the

method was able to reduce the identification uncertainty by a factor 6.

This work offers many opportunities for future investigations. Considering only the

solution of the optimization problem, a multilevel optimization of the shape could

be performed. Other algorithms or multi-start procedures could also be employed to

avoid being too dependent on the initialization. From the problem modeling point

of view, a first improvement could consist in making a difference between the ROI

(where a good sensitivity is needed) and the whole structure (on which the me-

chanical problem is solved). The position and size of the ROI could also be defined

as design variables. Finally, the extension to non-linear material behaviors consti-

tutes one of the major prospects of this work. Although the proposed methodology

may be applied from a fundamental point of view, its detailed implementation in

case of non-linear constitutive laws will require further developments. It will not be

straightforward, for example, to calculate the sensitivity displacement fields w.r.t.

the constitutive parameters in a fully analytical way. The proper computation of

such fields will depend on the non-linearity type, and it may become invasive with

respect to the simulation tool. If it is desired to remain non-invasive, brute global

finite difference approaches may be required, thereby involving large computational

cost. Furthermore, from a modeling point of view, boundary conditions should be

considered as design variables as well in a non-linear context.
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