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Abstract  20 

A framework model is proposed to evaluate the actual overall growth rate of microalgae in an 21 

outdoor tubular photobioreactor. A Monte Carlo-based radiative transfer modeling approach 22 

describes the local distribution of light energy inside the broth as a function of static (reactor 23 

geometry, location) and dynamic solar radiation parameters (angle of incidence, direct and diffuse 24 

solar contribution, incident radiation intensity). The light fields are coupled to a Lagrangian discrete 25 

random walk tracking of the cells to give the light variations experienced by each microalga for 26 

different broth flow rates. The cell light experiments are combined with a dynamic biological model 27 

to statistically calculate the actual overall growth rate. Using this model, 380 numerical experiments 28 

were performed for a wide range of geographic, light, biomass concentration, and broth flow 29 

turbulence conditions. Correlations for a normalized growth rate, Γ, relating the actual overall 30 

growth rate to its asymptotic behaviors (i.e., the instantaneous response and the full integration 31 

response), are proposed. The results clearly show that, for a fixed broth flowrate, Γ does not change 32 

with cell concentration variation. Under given light conditions, the level of turbulence linearly 33 

manages Γ, and thus the efficiency of sunlight utilization by the PBR biomass can be tuned by the 34 

broth flow rate in the tubular PBR. Γ also increases linearly with the diffuse fraction of solar 35 

radiation. A simple correlation is proposed for fast calculation of the actual overall growth rate.  36 

Keywords 37 

Tubular photobioreactor, Growth rate, Numerical experiments, Broth flowrate, Sunlight conditions.  38 
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 39 

Abbreviations   40 

Latin letters 

�� Azimuth solar angle (°) � Tube radius (m) 

D Tube diameter (m) �� Reynolds number (-) 

dt Simulation step time (s) � Time (s) 

dx Elementary volume (m3) �� Integration time (s) 

Es Mass scattering coefficient (m²/kg) �	 Fluid Lagrangian integral time (s) 


� Mass absorption coefficient (m²/kg) �� Bulk flow velocity (m/s) 

f Function 
� Mean longitudinal velocity (m/s) 

g Phase function coefficient (-) 
́ 
Longitudinal turbulent fluctuation 

(m/s) 

� Internal cell propriety (-) �́ Radial turbulent fluctuation (m/s) 

� Global irradiance field (-) V Photobioreactor volume (m3) 

�� Direct irradiance field (-) �́ Tangential turbulent fluctuation (m/s) 

�� Diffuse irradiance field (-) X Biomass concentration (g/L) 

�� 
Global incident irradiance value 

(µmol.m-2. s-1) 
(r,�,z) Cylindric spatial coordinates 

� Turbulent kinetic energy (m2. s-2) (x,y,z) Cartesian spatial coordinates (m) 

���  
Gain in mass per unit time over the 

entire volume 
� Spatial location  

�� Mass over the entire volume   

Greek letters 

α 
Contribution coefficient of the 

diffuse irradiance (-) 
ν Kinematic viscosity of the fluid 

� Probability density function in mass � Microalgae constant relaxation time (s) 
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�� 
Probability density function in 

reactor volume  
�� Eddy characteristic lifetime (s) 

Γ 
the integration rate of fluctuating 

light 
� Zenith solar angle (°) 

� 
Viscous dissipation rate of turbulent 

kinetic energy (m2. s-3) 
  

  Specific growth rate (d-1)   

μt Friction velocity (m/s)   

Indexes & 

Superscripts 

 
  

P-I 
Relationship between light intensity 

and photosynthesis growth 

 
 

V Photobioreactor volume  

p Particle (microalgae) 

k Event  

��! Root-mean-square 

a Actual (Real case) 

<  >� Volume average  
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 41 

1. Introduction  42 

One of the emerging fields of application of microalgae, which has been growing steadily over the 43 

last decade, is food and feed [1]. Due to their nutritional qualities, some microalgae (in particular 44 

Arthrospira Platensis and Chlorella Vulgaris) are used as food and /or feed supplement, they are 45 

marketed as dried powder or capsules but also as fresh raw biomass.  In addition, there are a wide 46 

variety of areas where microalgae could be a renewable bioresource, such as the cosmetics [2], 47 

pharmaceutical [3] green chemistry (biofuels in particular) and water treatment industries [4]. 48 

Industrial production of microalgae requires a high-performance system in terms of "optimal" 49 

growth and light conversion, which remains a challenge for processes operating in real outdoor 50 

conditions with sunlight.     51 

A wide range of technologies for outdoor microalgae production systems can be identified. They are 52 

classified and qualified according to their type either open, such as raceways, mainly used for large 53 

scale commercial production [5], or closed reactors called photobioreactors (PBR) which are more 54 

attractive compared to the first ones. Indeed, they offer the advantage of a controlled reaction 55 

condition and exist in a wide variety of designs depending on the production needs. In this context, 56 

exhaustive analyses of the limitations and advantages of each PBR configuration were carried out, 57 

the challenge being to design a closed system that is cost-effective, competitive and so efficient in 58 

terms of biomass productivity [6]–[10]. From a performance point of view, there are more 59 

arguments in favor of flat plan and tubular photobioreactors characterized by a high surface/volume 60 

ratio and efficient sunlight harvesting that guarantee a good photosynthetic efficiency [11]–[13]. 61 

They are commonly used either outdoor in direct sunlight or in a greenhouse to possibly control 62 

temperature and light. So far, there is no consensus on the ideal type of photobioreactor.  63 

Predicting the performance of a solar photobioreactor requires an essential analytical approach 64 

focused on radiative transfer, which allows a correct estimation of the light energy, brought by the 65 

radiation, distributed in the volume and converted into biomass using mineral nutrients and water. 66 

For outdoor systems, when all other physiological parameters are maintained at their optimal values, 67 

the productivity of solar systems in any configuration is limited by sunlight, which varies over time 68 
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and according to the geographical position and orientation of the system. Therefore, it should be 69 

possible either to account for this incoming and outgoing energy or to obtain accurate information 70 

on what is happening in the reaction volume where this energy is used. With this in mind, detailed 71 

modelling approaches have been developed to evaluate outdoor solar PBRs based on the coupling of 72 

variable irradiance conditions (i.e. sunlight fluctuations intensity and the diffuse fraction of 73 

intercepted radiation) with photosynthetic growth kinetics [14]–[18].  74 

Comprehensive and detailed models can provide a good simulation tool for solar systems despite 75 

their complexity. However, to the best of our knowledge, for the evaluation of photosynthetic 76 

growth rate, the aforementioned approaches focus on the instantaneous response of microalgae to 77 

local light. The latter is previously quantified by a light attenuation model either Beer-Lambert law 78 

or a two-flow model [19] which considers absorption without and with diffusion by microalgae 79 

respectively. Indeed, none of these simulations include the dynamic response of the cells to the light 80 

actually seen as they move along the light gradient, which allows to account for the effect of 81 

light/dark cycles called "flashing light" [20]–[22]. 82 

This effect, which is driven by the combination of mixing (large eddy scale and local turbulence) and 83 

spatial light heterogeneity, depends on bioreactor geometry.  Experimental and modelling studies of 84 

lab scale illuminated PBRs for different species have frequently shown that mixing can induce a 85 

range of fluctuating light levels, with frequencies ranging from 0.05 to 50 Hz, while frequencies 86 

above 1 Hz can improve  PBR performance [23]–[31]. 87 

Regarding the paramount importance of this rate of change in the light signal structure on the 88 

photosynthetic yield and consequently on the algae growth rate in PBR, in the last decade several 89 

numerical simulation studies have taken an interest in modeling the effect of coupling hydrodynamic, 90 

irradiance field and kinetics using different approaches. The latter were based on either direct 91 

numeric simulations [32], the integration of a dynamic kinetics of photosynthesis and the fluid 92 

dynamics [33], [34] or a stochastic Lagrangian approach for bubble column PBR  [35], [36] and 93 

for tubular PBR [37], [38]. Other more or less complex approaches have been proposed  [26], [39]  94 

[40], [41] to evaluate the performance of different photobioreactor configurations. 95 
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We note that a robust biological model is needed to properly describe the effect of light changes on 96 

the dynamics of photosynthesis. Some existing models involve internal metabolic processes acting at 97 

different time scales (i.e. photoinhibition and acclimatation) [27], [42]–[44]. These works are 98 

generally based on the concept of photosynthetic unit PSU initiated by Eilers & Peeters [45] and 99 

account for the dynamic response of photosynthetic processes with photoinhibition and recovery 100 

[46].  Despite their robustness, the application of these concepts for simulation requires the 101 

calibration of all model parameters for the species under study. Moreover, their computational 102 

accuracy is compromised by the wide range of spatio-temporal scales of kinetic and hydrodynamic 103 

phenomena involved in the process. Thus, this limits their use in large-scale modeling.  Other 104 

dynamic models have also already been put forward in literature  [47]–[50].  105 

In the same line, Gernigon et al., [35] proposed a first-order dynamic model to relate the algal 106 

response to light fluctuations in order to estimate the actual growth rate in a PBR. It considers the 107 

light history of the cells and introduces the internal physiological characteristics of the microalgae as 108 

a state variable. Their approach led to a simple expression for the photosynthetic rate, which is easily 109 

amenable to mathematical analysis under a quasi-stationary approximation. This model using a 110 

single-parameter (i.e. characteristic time) was easier to calibrate. Furthermore, it demonstrated  its 111 

predictive capabilities for our strain of interest on the basis of several data from the literature [28], 112 

[51].  Therefore, to contribute to a continuing modeling effort of our research team, the present 113 

work is based on this model which has been experimentally validated and whose structure and 114 

mathematical properties are well established for a PBR illuminated by constant artificial light. 115 

The main novelty of this paper is the extension of this coupling approach including fundamental 116 

investigations on: (1) the radiative transfer process, (2) Lagrangian cell tracking and (3) biological 117 

reaction dynamics, to calculate the actual performance (expressed as growth rate) in an outdoor 118 

tubular using variable sunlight. Specifically, massive simulations of 380 possible cases were 119 

performed to consider various photo-process parameters such as biomass concentration, flow rate of 120 

the culture medium as well as the characteristics of solar energy: direct sunlight incidence angles, 121 

diffuse light fraction and their intensities. The results of these numerical experiments were 122 

correlated to the investigated macroscopic parameters in order to provide a fast estimation of the 123 

growth rate. Indeed, the progression from the microscopic scale to the process scale is the key point 124 
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of this work. The ambition being later to be able to use this growth rate model correlation to foresee 125 

the productivity over a full year, at any place on earth, using geo-located weather data and operating 126 

conditions of the PBR investigated.    127 
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2. Modeling approaches  128 

2.1. Methodology  129 

The core of our approach lies in accessing the distribution of “light conversion efficiency” in the algae 130 

population. Basically, in culture volume, light is spatially heterogeneous due to absorption and 131 

scattering by microalgae. Therefore, in a stationary light field, flow-transported cells are exposed to 132 

a fluctuating light signal to which they respond dynamically. The features of this signal result from 133 

the convolution of the stationary light field and the cell’s velocity and location. The latter are 134 

calculated using a Discrete Random Walk model along with the known turbulent flow velocity 135 

profile (detailed in section 2.3). To establish the light field, a rigorous light transfer simulations were 136 

carried out using a Monte Carlo homemade algorithm including relevant parameters such as the 137 

PBR geometry, its wall’s characteristics (refraction, reflection, and transmission), and microalgae’s 138 

radiative properties (model description in section 2.2).The combination of these two independent 139 

fields determine “the rate of light change along the cell trajectory”.  140 

Microalgae are known to adopt a growth rate which is related to the integral of the light received 141 

over a defined time scale. Thus, microalgae are not at equilibrium with their local environment. In 142 

other words, their actual growth rate %&'  is not set by the average intensity received by the cells 143 

(defined as full light intensity integration i.e. %(〈*〉&,), nor by the local light fields as an 144 

instantaneous response (no light intensity integration i.e. 〈%(*,〉&) but must include the previously 145 

encountered light signal in a recent past (defined by the above-mentioned integration time scale). 146 

This  fact has been identified and reported by Terry in 1986 [22], who introduced the concept of 147 

“The proportional light integration” :   148 

 Γ = %&' − 〈%(*,〉&%(〈*〉&, − 〈%(*,〉& (1) 

 149 

This normalized specific growth rate, Γ, is observed and measured experimentally. However, there is 150 

no predictive method to quantify the actual growth rate and its departure from asymptotic cases 151 

namely (no or full light intensity integration). We propose to predict this quantity %&' from the local 152 



10 

 

distribution of individual cell capacity to convert light. In line with previous works, we name this cell 153 

property, 0, we assume that the microalgae population is segregated according to this property and 154 

put that microalgae characterized by 0 are able to grow at %(0 ,. The relationship % = 1(0, is known 155 

as “P-I relationship” describing the inherent link between constant light intensity I and 156 

photosynthesis P (see Appendix A). 157 

If we now define the probability density function in mass 2(�, 0, 4, such that 2(�, 0, 4,50 is the mass 158 

fraction of algae with their property 0 ∈ [0, 0 + 50] at location � at time 4. The local, actual, 159 

population averaged specific growth rate %'(�, 4, in mass, obeys the following definition: 160 

 %'(�, 4, = : %(0,2(�, 0, 4,50;
<  (2) 

 161 

Introducing the local concentration of algae, =(�,, as the total mass of algae in that elementary 162 

volume 5�,  the gain in mass per unit time over the entire volume of the reactor is retrieved from a 163 

volume integration. The resulting growth rate at the reactor scale is  164 

 %&' = >&�>& = ? =(�, ? %(0,2(�, 0, 4,50;<  5�&  ? =(�,5�&  (3) 

 165 

Thus, the major difficulty in calculating the actual growth rate at the reactor scale comes from 166 

determining the cell property distribution 2(�, 0, 4,. Indeed, the cell spatial distribution is uniform 167 

(cell iso-density is validated in section 3.2.2) so that the actual specific growth rate becomes:  168 

 %&'(4, = 1A :  : %(0,2(�, 0, 4,50;
<  5�&  (4) 

 169 

Interestingly, the same quantity can also be expressed using the distribution of cell property at the 170 

reactor scale, 2&(0, 4, 171 
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 %&'(4, = : %(0, 1A : 2(�, 0, 4, 5� 50 &
;

< = : %(0,2&(0, 4,50;
<  (5) 

 172 

In this work, the distribution 2&(0, 4, is approximated by the probability to find a cell with the 173 

property 0, whatever its location. 174 

 2&(0, 4, = B(0, 4,∑ B(0, 4, (6) 

 175 

 Hence, the problem is solved by tracking the location of a large number of particles while adapting 176 

their internal property 0. In our previous modelling works, a relaxation model was proposed and 177 

experimentally validated for a more realistic prediction of the PBR performances [35]. This non-178 

equilibrium model reflects this dynamic biological adaptation of microalgae to surrounding light 179 

fluctuations. According to [35], each cell is characterized by an internal propriety defined as its light 180 

conversion efficiency, i, that tends towards the local light experienced by cell, *(D,, and it is given by: 181 

 E0 E4F =   1 GF . (*(�, − 0, (7) 

 182 

with G = 0.3 K  being the microalga relaxation time constant which has been calibrated on the basis 183 

of fairly recent experimental data [28], [35]. This model enables description of the effect of flashing 184 

light frequency on the global growth rate. It has already demonstrated its reproducibility and 185 

success for a wide range of light frequencies (i.e. several durations of day/night cycle).  186 

From a calculation point of view, to compute the actual overall growth rate, the integration method 187 

chosen is to sum over a large number of Lagrangian particles BLand over BM consecutive sampling 188 

time events (Monte Carlo) until the initial condition BL(0, 0, is forgotten, i.e. the ensemble average is 189 

constant. 190 

 %&' = 1BL BM  N N μ(0,PQ

MRS
PT

LRS  (8) 
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From Eq.(4) and Eq.(7), it is straightforward to show that if the response time to light fluctuations is 191 

infinitely small 2(�, 0, 4, = U(0 − *(�, 4,, which means that all cells at � are in the same state 0 =192 

*(�, 4,. This case is commonly referred as instantaneous response. 193 

 %&,V→<' = 1A :  : %(0,UX0 − *(�, 4,Y50;
<  5�& = 1A : %X*(�, 4,Y5�& = 〈%(�,〉& (9) 

 194 

Similarly, if the response time to light fluctuation is infinite, 2(�, 0, 4, become independent of the 195 

spatial coordinate is 2(�, 0, 4, = U(0 − 〈*〉&,. This case is commonly referred as full integration. 196 

 %&,V→;' = 1A : : %(0,U(0 − 〈*〉&,50  5�;
<& = 1A : %(〈*〉&,5�& = %(〈�〉&, (10) 

 197 

These two asymptotic responses patterns (9) and (10), can be obtained by a direct coupling between 198 

the irradiance field results and the growth kinetic model without considering actual cell trajectories 199 

and cell capacity to convert light.  200 

 201 

The sketch in Fig. 1. summarizes the modeling methodology undertaken in this study to compute the 202 

overall growth rate in tubular PBR then deduce the value of normalized specific growth rate, Γ, using 203 

the two asymptotic cases mentioned above.   204 

This approach is applied to a horizontal tube (considered as the model element of a tubular PBR) 205 

operating under a range of dynamic functioning conditions such as biomass concentration and light 206 

energy, which vary in time and according to the plant geographic position.  207 

The key point of this work is to describe Z as a function of the studied operating parameters and thus 208 

theoretically infer the actual overall growth rate. Thus, a burst of 380 simulations were performed to 209 

sweep a wide range of operating cases, then Z were correlated to the main parameters. 210 
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 211 

Fig. 1. Diagram of the modelling approach. Green box: input parameter; Grey box: modeling 212 

method. Pink box:  results database 213 

 214 
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 215 

2.2. Local available light inside solar tubular PBR  216 

As the light is the main parameter affecting the growth of autotrophic microalgae, properly 217 

quantifying the local distribution of light within the PBR is important, especially when the irradiance 218 

heterogeneities are striking. In this section, the aim is to simulate the light distribution in the 219 

suspension as a function of the variable solar radiative flux, in a defined location.   220 

Unlike many existing models that often rely, in their calculation of the overall photosynthesis rate, 221 

on the incident or average light intensity reaching the culture [52], [53], we rigorously describe the 222 

propagation and distribution of sunlight (composed of direct and diffuse fractions) in the whole 223 

volume.  224 

 225 

Fig. 2. Diagram of sun's position angles and orientation of a tubular PBR 226 

The sun’s apparent position is described by two main angles zenith ([) and azimuth solar (\]) as 227 

shown in Fig. 2. These angles are calculated using equations from literature [54],  which include the 228 

geographic localization (latitude & longitude) of the site, the day in the year and the time.  229 
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For an outdoor tubular cultivation system, the maximum flux collected during the sun course is 230 

obtained when the tube is aligned on a north-south axis, this orientation was chosen.  231 

Our model includes these particular characteristics in the representation of: (i) the non-normal 232 

incidence of direct sunlight on the PBR surface that drives the photon entrance and propagation 233 

within the reactor, and (ii) the hourly and annual variation of the levels of diffuse irradiation and the 234 

flux density of the direct incident light. An appropriate OXYZ photon moving marker was defined 235 

for characterizing the incident light direction by two new angles (Ψ) and (θ), which are expressed as 236 

a function of zenith ([) and azimuth (\]) solar angles. The formulae used and the corresponding 237 

diagrams are presented in supplementary document (Appendix B.1). 238 

Because of the complexity in solving the RTE (The integro-differential Radiative Transfer Equation) 239 

analytically or even numerically when all phenomena are included, some approaches based on 240 

approximations can be found in the literature. For example, [56]–[58] used an analytical solution 241 

based  on a one-dimensional approximation of scattering known as the Two-flux method. In this 242 

approach, only the forward and backward propagation directions are considered, which corresponds 243 

to two diffuse radiation flows propagating inwards and outwards from the medium. Among the 244 

approximate analytical models, the P1 approach (assuming that energy is distributed uniformly over 245 

all directions) was proposed to solve the RTE in solar tubular photocatalytic reactors [59]. 246 

However, others studies have used numerical methods of resolution as the finite volume method 247 

[60], the discontinuous Galerkin method [15], and Monte Carlo method applied for a plane‐slab 248 

photocatalytic reactor [61] or for different PBR geometries [62]–[64].  249 

The simulation of the local irradiation field in solar PBR tubes should consider the corresponding 250 

light energy balance including: the transmission, absorption, diffusion in the algal broth, as well as 251 

the illuminated surface geometry (curvature of the walls). Previous works on the same PBR design 252 

neglected the light scattering by cells (light multiple diffusion) and used only Beer-Lambert law to 253 

estimate the internal attenuation of light [14], [17], [65]. In contrast to these studies, here the 254 

Monte Carlo method is employed as a suitable approach for multi-phenomena modeling (details 255 

about this method in [66]). In this technique, events are considered corresponding to the following 256 

physical phenomena: (i) the deviation of the photon path due to its reflection/refraction by the PBR 257 
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wall according to Snell-Descartes laws, (ii) the energy fraction carried towards the culture by 258 

reflection or transmission according to Fresnel laws, (iii) the absorption in the culture broth 259 

according to Beer-Lambert's laws, and (iv) the anisotropic multiple diffusion (i.e. diffraction effects) 260 

due to the interaction with the cells using the phase function [67] (see formula in Appendix B.2).  261 

 262 

 263 

Since the nature of incidence between direct and diffuse light is different, the corresponding 264 

irradiance fields are calculated separately. Indeed, the PBR is considered to receive parallel direct 265 

light rays on the upper hemicylindrical wall exposed to the sun, whereas the diffuse component of 266 

sunlight is assumed to have an isotropic Lambertian incidence. The diffuse light can come from any 267 

direction over the entire pipe wall (random propagation trough space). The global irradiance field * 268 

corresponding to the sunlight is finally calculated by the sum of the contributions resulting from 269 

each spatial distribution for direct *^ and diffuse *_  radiation:  270 

 *(D, `, a, = *< × [c × *_(D, `, a, + (1 − c, × *^(D, `, a,] (11) 

 271 

where \ is the diffuse light contribution fraction and *< is the global incident light intensity.  272 

To reduce the calculation cost and achieve a good simulation accuracy, it was found that a 2D matrix 273 

discretized with a square mesh of 10d segments, and about ten million photon’s trajectories, were 274 

necessary to obtain the convergence of the calculation and a satisfactory representation of the light 275 

distribution field. The model was implemented and simulations are performed using MATLAB 276 

R2017b software (Mathworks) thanks to parallelization option to span the various cases of irradiance 277 

fields simultaneously. The developed model based on Monte Carlo approach was validated using  278 

analytical models for different simplified cases (detailed results in Appendix B.3).    279 

 280 

2.3. Lagrangian study of cell transport in the pipe  281 

In addition to the irradiance field determination, it is important to simulate the individual cell 282 

trajectories driven by the carrier fluid flow in the PBR. As the light field is identical all along the 283 
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tubular reactor axis, only the radial and azimuthal microalgae movements change the light intensity 284 

they experience along their trajectory. These radial and azimuthal cell movements are generated by 285 

turbulence and wall ejections. The most complete and accurate approach for this situation would be 286 

the direct resolution of the Navier-Stokes equations DNS (Direct Numerical Simulation) or using 287 

LES (Large Eddy Simulation). However, their implementation is limited by the computational costs 288 

because it requires discretization in very small time and space steps in order to capture all the 289 

structures of the turbulence. Thus, the added value of such a complex simulation can only be justified 290 

if the fine details of the trajectories are of great importance. The particle trajectory in a RANS-based 291 

flow simulation very often refers to a discrete random walk model. In the present work, the 292 

modelling relies on a Lagrangian cell tracking method based the algal trajectories from well-known 293 

1-D turbulent flow profiles. In this case, a discrete random walk model provides a time-saving 294 

approach. Indeed, For a flow in a tube at different Reynolds numbers, the time required to perform 295 

an advanced CFD simulation as proposed in several studies[26], [29], [35], [69], [70], could take 296 

months, whereas the proposed approach takes only a few minutes 297 

 Only the radial and azimuthal velocity fluctuations are involved to produce the cell movement in the 298 

light field. They can be represented by two root-mean-square (RMS) components (efgh et ifgh) 299 

transversal to the main flow. A collection of some experimental and numerical data from the 300 

literature was used to observe and analyze these velocity fluctuations in turbulent flows in a 301 

horizontal pipe. Fig. 3. presents the profiles of the ratios of the radial and azimuthal RMS variances 302 

by the friction velocity %j corresponding to different case studies [71], [72]. This figure indicates 303 

that these two non-dimensional fluctuating velocities are almost similar regardless of the Reynolds 304 

number, namely 17800, 24600, 38000 and 44000. In addition, their values remain almost maintained 305 

in the inner region of the tube until the beginning of the viscous sub-layer where they start to 306 

progressively decrease. Indeed, the turbulence tends towards the isotropy in the pipe center and 307 

presents an increasing anisotropy towards the boundary layer whose thickness varies with Reynolds 308 

number. However, the two transverse fluctuations keep similar values. This reproduces the classical 309 

behavior of a turbulent single-phase flow in a cylindrical pipe, which has been widely studied for a 310 

long time [73]–[76]. 311 
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 312 

Fig. 3. Profiles of radial and tangential RMS components normalized by the friction velocity for 313 

several Re resulting from experimental data [71] and numerical works [72]. 314 

Based on this, in our cell tracking the two transverse components of standard deviation values of the 315 

fluid velocities (RMS velocities) are supposed to be equal and constant over the section. 316 

Furthermore, these fluctuation values can be deduced from the one obtained at the center of the tube 317 

where the turbulence is isotropic. To attain this value, calculation of turbulence in the continuous 318 

phase has to be performed.  319 

Some hypotheses have been considered: (i) the carrier fluid is assumed to be incompressible and 320 

Newtonian, and (ii) cells have a small size and a density equivalent to that of the continuous phase. 321 

Thus, they are considered as fluid particles that follow the flow lines without impacting the 322 

continuous phase flow. 323 

 324 

Numerical resolution of the continuity and Navier-Stokes equations was performed using the k − l 325 

model (RANS approach).  326 

The most faithful modeling of the irregularity and random characteristics of turbulent flow should 327 

be able to capture the details of turbulence diffusion due to vortex structures which is the main 328 

mechanism of particle dispersion in the fluid. Taylor [77] introduces the concept of turbulent 329 
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diffusion for the modeling of the transport of passive particles by proposing a stochastic model 330 

coupled to a Lagrangian approach for a statistically stationary isotropic homogeneous turbulent 331 

flow.  332 

The trajectories of particles are governed by a part related to the mean flow of the continuous phase 333 

and another part related to the action of the turbulence structures driven by the instantaneous 334 

fluctuations. It is therefore necessary to integrate the trajectory equation by using the instantaneous 335 

velocity components seen by the particle during their movements which, in the case of a horizontal 336 

pipe, are written in cylindrical coordinates such as:  337 

 

m] (4, = mn + ḿ(4, 

mf(4, = é(4, 

mo(4, = í(4, 

(12) 

 338 

With mn the average longitudinal velocity and ḿ(4,, é(4,, í(4, are the components of the 339 

instantaneous longitudinal, radial and tangential fluctuating velocities respectively.  340 

For a more realistic simulation of the fluctuating part, a stochastic approach was used here via a 341 

discrete random walk (DRW) model, initiated by Hutchinson et al.,  [78] for the study of particle 342 

dispersion in the turbulent flow field. 343 

The DRW model assumes that a particle interacts with a sequence of vortices that are characterized 344 

by a time interval of interaction Gp and random velocity fluctuations that are kept constant during 345 

this time. The principle is that once this interaction time has elapsed, a new random fluctuation 346 

independent of the previous one is introduced to account for an interaction with a new vortex. This 347 

characteristic time is known as "The characteristic lifetime of the eddy" and is defined as a constant 348 

given by local characteristics of the turbulent flow k and l:   349 

 Gp = 2 ∙ st (13) 

 st u 0.15 ∙ kl  (14) 

With  st “the fluid Lagrangian integral time”  350 
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The fluctuating velocities are randomly sampled in a normal distribution of zero mean and standard 351 

deviation equal to the RMS value of velocity fluctuations Eq.(15).  Assuming that the turbulence is 352 

isotropic at the tube center, the RMS at any point in the flow is written as a function of the local 353 

turbulent kinetic energy as follows: 354 

 m’fgh = e’fgh = i’fgh = x(2ky/3, (16) 

 355 

ky being the kinetic energy in tube center.  356 

The time step chosen for our simulation is 54 =0.05 (s). This value is set so that it is equal or inferior 357 

to the vortices lifetime in the tube center (resulting from considerations postulated in the previous 358 

paragraph) ranging from (0.09-0.44 (s)) for the case studied. This choice of time step is also made by 359 

respecting on one hand the classical conditions allowing an acceptable numerical stability of the 360 

solution with a lower cost of calculation time, and on the other hand the frequency range of the 361 

sampled irradiance signals (i.e. 20 Hz), thus, a good integration of the events undergone by the cell 362 

over its biological relaxation time G =0.3 (s).  363 

The particles positioning (r,{,z) is calculated as follows:  364 

 365 

 |R~��~ =  R~ + u� (t, ∙ dtΘ~��~ =  Θ~ + u� (t, ∙ dtZ~��~ =  Z~ + u� (t, ∙ dt  (17) 

 366 

Using Lagrangian approach provokes a preferential trapping of particles next to the walls of the 367 

PBR. This is due to the assumption that turbulence is isotropic everywhere in the bulk, however, in 368 

the parietal zone, the turbulence is neither homogeneous nor isotropic as observed previously in Fig. 369 

3. where the radial component of the velocity is smaller than the tangential one. As a result, the 370 

particles in the turbulent boundary layer are decelerated significantly and are not returned to the 371 

 e�~B(0, e’fgh, (15) 
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flow. The calculated radial fluctuations in the vicinity of the wall are not sufficient to generate the 372 

return of the particles inside the flow and so the continuity equation for the particle phase is not 373 

respected. This numerical problem has also been raised by several CFD simulation studies using the 374 

Lagrangian method to track particles in different types of PBR [26], [35], [69], [70].  375 

As it is not possible to reproduce numerically the turbulent structures called “Bursting” present in 376 

the boundary layer using k − l, (only DNS approach could do that), we tried to overcome this 377 

problem of accumulation by managing the particle wall ejection by their rebounds. The objective is 378 

to ensure that the concentration of particles in the cross-section respects as well as the continuity 379 

equation, i.e., their concentration keeps homogeneous since there is no phenomenon concentrating 380 

them somewhere in the flow. The principle is to eject low velocity particles from the viscous sub-381 

layer into the internal flow. The particle rebound is managed by an adapted rebound coefficient. The 382 

homogeneity of the cell’s concentration will be checked later (section 3.2.2). 383 

 384 

About one hundred thousand trajectories were simulated to form a statistically representative sample 385 

of numerous paths taken by the cells. The particles are initially sampled in the entrance cross-section 386 

of tube to ensure their homogenous distribution since the PBR is considered perfectly agitated.  387 
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3. Results and discussions  388 

The model is designed with the aim of simulating the dynamic evolution of the light distribution in 389 

whole-year, outdoor running, PBR. Time varying parameters are: cell concentration (in the case of 390 

batch reactor), direct light incident angles, global incident irradiance, fraction of diffuse radiation.  391 

The study case is a horizontal tubular PBR represented by a single isolated pipe with a diameter of 392 

D=0.05 m, and the broth medium containing the strain of species Arthrospira platensis (Spirulina). 393 

The list of physical quantities and parameters used for the simulations (model inputs) are presented 394 

in Table 1.  395 

Table 1. 396 

 Model inputs for the application case (spirulina culture in a tube in thin poly-methyl methacrylate 397 

PMMA) 398 

Parameter Values Reference 

System orientation  North- South  - 

Incidence light angles (��, �, Variable*  

Contribution coefficient of the diffuse 

irradiance  � 

Variable*  [55] 

Global incident irradiance �� Variable*  [55] 

Day of year  Variable*  - 

 Variable*  - 

Mass scattering coefficient Es 640 (m²/kg of dry 

Spirulina)  

[58] 

Mass absorption coefficient 
� 162 (m²/kg of dry 

Spirulina) 

[58] 

Phase function coefficient g 0.97 [67] 

Air refractive index ���� 1  

Refractive index of the broth ������ 1.34 [35] 
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PMMA refractive index �����  1.49 [79] 

Tube diameter �  0.05 (m)  - 

Wall thickness  0.004 (m)  - 

Biomass concentration  0.3-1.5 (g/L)  - 

*Variable value depends on location, day and time. 399 

We have tried to scan a range of representative flow velocities at typical velocities in tubular PBRs 400 

used at the technical scale [80], [81] to test the effect of turbulence on performance. Table 2 401 

summarizes the different parameters of the conditions tested in this work. 402 

Table 2. 403 

Details on the turbulent flow conditions in the pipe investigated  404 

Flow Velocity 

�^  (m/s) 
Re (�^.D/ν) 

μt (friction 

velocity) 

0.3 15000 0.0179 

0.4 20000 0.0231 

0.5 25000 0.028 

0.7 35000 0.0376 

1.68 84000 0.0791 
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3.1. Light field in tubular PBR  405 

Since the direct light characteristics vary over time, the range of possible values of Zenith and 406 

Azimuth angles was considered in order to represent several times of the day and in year. Therefore, 407 

using the symmetrical profile of the sun's path, it was possible to select a limited number of cases. 408 

Ten irradiance fields are calculated for cell concentrations ranging from 0.3 to 1.5 (g/L). Hence, 280 409 

cases were performed. Not all results for irradiance field simulation for selected cell concentrations 410 

and sun positions, are presented here.   411 

The fields are presented in normalized form with respect to the energy received in each illuminated 412 

elementary surface (i.e. divided by the number of photons used in simulation and the area of the 413 

mesh). Due to the invariance along the horizontal axis of the tube, the geometry is reduced to cross-414 

section. Therefore, the results are the projections of the 3D motion of the photons in the volume onto 415 

this cross-section.  416 

Only one example is shown here, a representative case of a typical summer day in Toulouse, France 417 

(43.36° N, 1.26° E) at solar noon where the Zenith angle  �= 20°, Azimuth angle \]=0° and diffuse 418 

fraction c=0.38. The irradiance fields with 1 (g/L) of biomass for the direct and diffuse solar 419 

radiation are shown in Fig. 4. (a) & (b) respectively and Fig. 4. (c) presents the total distribution of 420 

sunlight received on the culture. 421 

As can be seen, there is a striking spatial heterogeneity of light distribution, hence, a significant 

difference is noticed between the regions close to the wall and those in the center of the tube Fig. 4. 

This is a specific feature usually mentioned in the literature for light-limited PBRs, and which is due 

to the absorption and scattering of light in the medium. Furthermore, the effect of the refraction and 

reflection of direct collimated light on the wall is clearly seen in Fig. 4. (a). Thus, due to the incurved 

surface, direct sunlight passing through the PBR interface is subject to a redirecting effect and obeys 

Fresnel's laws. As a result, the fraction of energy transmitted into the reactor volume is less than the 

solar energy arriving at the surface. This explains the non-uniform distribution of irradiation in the 

area near the illuminated surface (i.e. the hemisphere facing the sun). This feature has been also 

observed in [65]. The diffuse light irradiance field shown in  Fig. 4. (b) is only concentration 
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dependent. Since this part of radiation is isotropic, the light come from any direction and it is better 

distributed than direct light over the entire wall of the pipe. However, compared to the overall field, 

the diffuse light field seems not significant even if its contribution is \=0.38. 

 

 422 

Fig. 4. Normalized local irradiance fields at biomass concentration ==1(g/L): (a) for direct sunlight 423 

with ϑ= 20° a�=0°, (b) diffuse sunlight, (c) the sum of the contribution of the two fields direct and 424 

diffuse for solar midday of summer day in Toulouse diffuse coefficient α=0.38. 425 

The irradiance distributions computed will be then multiplied by the global incident irradiance value 426 

*< corresponding to the investigated case, derived from the PVGIS data. The results for the selected 427 
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cell concentrations and sun positions constitute a data set to be combined with other modeling 428 

approaches in order to be exploited for photosynthetic growth calculation.   429 

With an appropriate adaptation of the model, this approach can be applied to (i) other PBR 430 

geometries (e.g. rectangular or flat PBR), and (ii) other types of surface or volume lighting (e.g. 431 

artificial LED). Cell spatial distribution  432 

3.1.1. Cell trajectories and their combination with the irradiance field  433 

 434 

The goal here is to obtain data on the history of each cell exposure to light in order to further exploit 435 

use it in the estimation of overall growth rate. A collection of various trajectories was acquired using 436 

the method of sampling cell movement in the reactor described above (subsection 2.3). The 437 

interaction between hydrodynamics and light transfer is highlighted here. To ensure the statistical 438 

convergence of numerical resolution and to guarantee a meaningful representation of all possible 439 

events that microalgae undergo in PBR, a choice of  1.5 × 10� particles to be simulated, for a 440 

duration of 5s and with a time step of 0.05 (s), were deemed necessary to generate sufficient amount 441 

of information (i.e. about 10�events). 442 

An example of trajectory recorded for an individual cell is illustrated in Fig. 5 for a given 443 

hydrodynamic conditions (a flow velocity of 0.4 (m/s) corresponding to Reynolds number of 20000) 444 

over 5s of simulation. The main point of interest in this investigation is shown in Fig. 5.(a) which 445 

describes the bidimensional motion of the particle in the cross section of the tube where the light 446 

gradient occurs. These radial transitions projected in 2D plan effectively reproduce the stochastic 447 

aspect of the cell displacement predicted by the random walk model. These purely random 448 

redirections enable the capture of all light variations due to the turbulence, i.e. the local fluctuations 449 

characterizing the local eddies established in this type of flow. Fig. 5(b) illustrates the real-time 450 

tracking of the same particle where the radial movement is depicted along the longitudinal axis in 451 

3D Cartesian coordinates. This database of the consecutive cell positions is then coupled directly 452 

with a given irradiation field (e.g. simulated for a concentration of 0.9 (g/L) and lighting conditions 453 

of a typical summer day in Toulouse at 10h solar time where c=0.4). Hence, the temporal light 454 
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regime seen by microalgae is recorded over 5 (s) with frequency of 20 (Hz) as represented in Fig. 455 

5(c). This procedure is performed for the whole set of simulated particles in order to represent the 456 

light regime actually seen by each particle along its travel in the reaction volume. Therefore, the 457 

interaction between turbulence and heterogeneity of illumination within a volume was highlighted.  458 

Some microalgal trajectories relatively similar to the one presented in Fig. 5. (c) have been reported 459 

in previous studies [26], [29], [35], [37]. However, the verification that the database of particle 460 

trajectory is correctly sampling the light volume distribution is almost never carried out. Here, we 461 

aim to validate the exploitation of light exposure database for the evaluation of growth rates for the 462 

different microalgae behaviors mentioned in section 2.1.  463 
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 464 

Fig. 5. Followed trajectory of an arbitrary cell for a Re= 20000 and during t= 5(s): (a) projection on an 465 

irradiation field (2D cross-section), with cell concentration of ==0.9 (g/L),  I< =1241(μmol. m��. s�S), diffuse 466 

coefficient α=0.4, (b) trajectory followed along the longitudinal axis in 3D and (c) temporal light intensity 467 

recorded during its motion. 468 

3.1.2. Validation of the homogeneous spatial distribution of the cells in the irradiance 469 

field  470 

The previously obtained results cannot be validated experimentally nor compared to other 471 

simulation studies. Hence, to guarantee the strength of the Lagrangian tracking method (DRW 472 

model), it is important to verify that: (i) this procedure ensure a homogeneous spatial distribution of 473 

the particles in the volume and (ii) the database generated on light signals recorded by the cells 474 

allows a good sampling of the local light intensity values.  475 
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First of all, Fig. 6. (a) shows a uniform spatial dispersion of cells along the tube radius, which is an 476 

important result in its own. Indeed, simulations reported in the literature [35] performed with CFD 477 

tools by using the standard turbulence model k − l coupled to the Lagrangian tracking, 478 

overestimate the turbulent kinetic energy in this area and thus generate a numerical bias on the 479 

subsequent trajectories’ calculation. These methods overestimate the particle concentration in the 480 

near walls. In our results, although this artificial buildup exists, due to the lack of the hydrodynamic 481 

boundary layer resolution and the insufficient geometric adaptation of the rebound laws, it is 482 

however reduced to less than 6% thanks to the particle wall ejection proposed here, which imposes a 483 

constraint that forces the cells back into the flow, as described in section 2.3.   484 

Moreover, an "at the point" validation was conducted according to the method described by 485 

Gernigon et al.,  [35] to confirm the uniformity of the distribution of cells in the volume and to 486 

analyze the acuity of the near-wall effect. This method consists in comparing the distribution of local 487 

light intensities obtained by the spatial irradiance field calculation and the database of light recorded 488 

by cells using the stochastic tracking model. This verification approach provides more sound 489 

information than an integral approach based on the comparison of the average light available in the 490 

volume and the population average obtained by the Lagrangian approach,  as has been performed in 491 

other studies [26], [36]. In Fig. 6. (b) the probability density results show that the validation of cell 492 

iso-distribution is successful since the irradiance seen by the whole population statistically converges 493 

towards the spatial irradiance field in the PBR under given operating conditions (i.e. cell 494 

concentration of 0.9 (g/L), I<=1241(μmol. m��. s�S), diffuse coefficient α=0.4,. Furthermore, it was 495 

also verified that the total average irradiation of all the generated data (all particles and all events) 496 

corresponds to the irradiance field volume average with less than 2% of relative error between the 497 

two values. 498 
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(a)  

 

 (b) 

 

Fig. 6. (a) The radial distribution of the cell population density in the tube, (b) Comparison of the irradiance 499 

distribution recorded by the cells (using. �^=0.4 (m/s) corresponding to a Reynold’s number of 20000) with 500 

light distribution given by the spatial field for cell concentration of ==0.9 (g/L),  *< =1241(μ>¡¢. >��. K�S), 501 

diffuse coefficient c=0.4. 502 
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3.1.3. Exposure time distribution in areas close to the wall 503 

Despite small erroneous predictions of particle concentration on the near wall region provided by 504 

our particle tracking model, we intend to analyze its impact on the irradiation field integration by the 505 

cell population. Indeed, the question that arises here is to know if an overexposure is possible in the 506 

zones with very high light intensities causing an eventual inhibition. 507 

 To answer this, we need information on the frequency of occurrence of "viscous layer passage" 508 

events and their duration.  A distribution of the exposure or residence times of all particles is 509 

calculated and normalized by the total simulation time, as shown in Fig. 7. The shape of this 510 

distribution is similar to a decreasing exponential. This latter leads to think of the residence time 511 

distribution for a perfectly agitated reactor. Once again, this finding supports the discussion 512 

mentioned previously concerning the uniform repartition of the cells in the reactor.   513 

 514 

 515 

Fig. 7. Distribution of normalized duration of cells exposure to the near-wall layer for the lowest 516 

flow velocity value tested in this study (i.e. �^=0.3 (m/s) corresponding to Re= 15000).  517 

More precisely, these data reveal the passage times of the particles through the entire viscous layer 518 

near the reactor walls (a ring of variable thickness according to flow velocity).  However, this 519 
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boundary layer, can be extremely heterogeneous in terms of light intensities. This heterogeneity 520 

increases as the biomass concentration increases.   521 

To our knowledge, there is no consensus on the exact value of the light intensity and the exposure 522 

duration that actually cause inhibition of spirulina. According to the experimental data of [28],  a 523 

period of more than 10s under an irradiance of about 2600 (μ>¡¢. >��. K�S) is sufficient to have a 524 

negative growth rate leading to a total collapse of the culture. These high irradiance intensities are 525 

rarely encountered in reality except in subtropical regions. The onset of inhibition under conditions 526 

of permanent lighting was also signaled for intensities > 1300 (μ>¡¢. >��. K�S). With this in mind, 527 

we analyzed our light exposure database for whole cells tracked to check the time of cell passage 528 

through the very high illuminated zones. To do this we have chosen an extreme operating condition 529 

where microalgae could be subject to inhibition (i.e. the highest incident irradiance recorded in 530 

Toulouse, France I< = 1402 (μmol. m��. s�S) α=0.33, the lower biomass concentration considered 531 

here X=0.3 (g/L), and at the lowest flow velocity tested �^=0.3 (m/s)). Then, we estimated for each 532 

cell the exposure time to irradiances above 1300 μ>¡¢. >��. K�S. The results plotted in Fig. 8. show 533 

that the cell switching events to high lights are occasional and of short duration.  Thus, this indicates 534 

that cells are rather exposed to high intensity flashes of light that are not harmful to growth as 535 

opposed to prolonged exposure as in the case of the permanent light regime which causes cell 536 

destruction. 537 

The results confirm the harmfulness of such overexposure to light when coupled with the turbulence 538 

induced by mixing.  539 
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(a) 

 

(b)  

 

Fig. 8. Light filed with  *< = 1402 (μ>¡¢. >��. K�S) c=0.33, ==0.3 (g/L), (b) Distribution of cell 540 

time exposure to inhibitory zones (flow velocity �^=0.3 (m/s) corresponding to Re= 15000).  541 

 542 

3.2. Analysis of growth rate results  543 

3.2.1. Biological dynamic response  544 

The database about the light history of each particle has fed the dynamic model expressed in Eq (7) 545 

to obtain the internal variable 0 evolution that represents the dynamic adaptation of individual cells 546 

to the detected light *L.  Fig. 9 presents the internal variable signal resulting from the biological 547 

response to the recorded light fluctuations, for the same cell as in Fig. 5. (c). It was found that the 548 

magnitude of strong fluctuations in light exposure is smoothed by the internal variable 0 due to 549 

turbulence induced by hydrodynamic microstructures (i.e. small swirls). This could be explained by 550 

the difference in time scales of the hydrodynamic and biological processes: the relaxation time or cell 551 

response, τ=0.3 (s), used in the dynamic model, is much greater than the sampling frequency of light 552 

exposure and eddy lifetime. Therefore, this allows to filter out the high variations in light exposure, 553 

to finally represent only the pattern of fluctuations inferred by the macro-instabilities (i.e. large 554 

eddies) of the studied flow. 555 
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 556 

Fig. 9. Dynamic response (red dashed line) of an arbitrary cell to the captured light (blue dashed line) with a 557 

characteristic time τ=0.3s using the dynamic model described by [35].  558 

The period and amplitude of the light fluctuations seen by the cells depend on the intensity of the 559 

turbulence induced by the fluid hydrodynamics and on the spatial light gradient governed by the 560 

biomass concentration and the sunlight energy supplied. The results presented here pertinently 561 

reflect the consequence of the combination of the cells light history with a dynamic response kinetic 562 

governed by the biological characteristic time. The simulation outcomes for the temporal evolution 563 

of the internal variable 0 constitute a database further used to calculate the global growth rate for a 564 

real dynamic biological behavior.  565 

3.2.2. Real growth Kinetics  566 

The PBR overall growth rate were calculated here, according to the modelling approach described in 567 

Fig. 1 in section 2.1, for 10 concentrations between 0.3-1.5 (g/L) and for different liquid flow 568 

velocities in the tube U¤ (see Table 2) expressed in Reynolds number. Fig. 10 presents the results of 569 

the instantaneous response %&,V→<' , the complete integration response  %&,V→;'  and dynamic response 570 

with biological adaptation %&' (section 2.1). At low biomass concentrations the growth rates 571 

corresponding to the two asymptotic cases and the real case %&' meet together, regardless of the 572 

applied flow velocity. This could be explained by the fact that the spatial gradient of light is very 573 
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slight which provides to cells the same light exposure, therefore the responses of the microalgae 574 

become similar. However, as the biomass concentration increases, the curves become steeper and the 575 

overall growth rate diverges according to the behavior of the cells towards the captured light. A 576 

deviation of about 60% is recorded at a concentration of 1.5 (g/L) between limit cases (i.e. %&,V→<'  and 577 

%&,V→;' ). In case of the dynamic biological response, the results are positioned between the two 578 

asymptotic cases. The mixing or turbulence effect becomes more remarkable with the increase of the 579 

biomass concentration since the fraction of dark volumes and light gradient increase. Indeed, as the 580 

liquid velocity increases, the growth rates tend toward the maximum limiting case. Simulation 581 

results indicate a 20% improvement in PBR performance when the velocity increases from 0.3 (m/s) 582 

to 1.68 (m/s) (i.e. Re = 15000 and Re=84000 respectively) for a cell concentration of 1.5 (g/L). This 583 

behavior can be explained by the fact that algae filter the fluctuations of light they see and respond to 584 

the captured light more slowly than the instantaneous adaptation. Thus, the greater the turbulence, 585 

the closer the growth rate is to the upper limit (i.e., the fully integrated case).This beneficial effect of 586 

turbulence has also been observed in the experimental results of [82] who recorded a 29% increase 587 

in spirulina productivity when the flow regime in a straight tubular PBR switches from laminar to 588 

turbulent regime. Indeed, this confirms that the strong turbulence is responsible for the beneficial 589 

effects of the strong intermittent exposure of cells at different light intensities in highly 590 

heterogeneous spatial gradients. Nevertheless, a too strong turbulence also increases the shear 591 

stresses, which must be limited to avoid culture damages. This later effect is not considered in this 592 

study.   593 
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 594 

Fig. 10. Influence of turbulence on algae biological growth rate with constant lighting conditions 595 

at *< =1241(μ>¡¢. >��. K�S), diffuse coefficient c=0.4; response with full light integration (plain red 596 

line); instantaneous response (plain blue line); dynamic response with biological adaptation (dashed 597 

lines).  598 

3.3.3. Towards a general correlation for the normalized specific growth rate Γ 599 

This whole procedure of specific growth rates calculation for both asymptotic and dynamic (real) 600 

cases, was performed for a wide range of operating conditions regarding microalgae concentration, 601 

flow rate expressed in Reynolds, and received sunlight characteristics (global incident irradiance, 602 

direct/ diffuse radiation contribution) in order to cover a wide spectrum of operating possibilities for 603 

an outdoor tubular PBR. The normalized growth rate Γ was calculated by Eq. (1) for each case 604 

simulated.  605 

In other words, Z translates the capacity of a PBR to reach its optimal performances according to the 606 

way the microalgae are exposed to light, which is driven by its operating conditions. Since numerical 607 

simulations require a coupling between large databases which is time-consuming, a reduction of the 608 

model seems attractive for application cases where PAR performance could be calculated for real 609 

operating conditions (i.e., biomass concentration, flow hydrodynamics, lighting quantity and quality). 610 
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Z varies between 0 and 1 indicating the efficiency of light use between instantaneous adaptation and 611 

full integration. To deeply understand the effect of different operating parameters on PBR ability to 612 

drive its performances towards the two asymptotic cases, we started to investigate whether the cell 613 

concentration =(g/L)   and incident sunlight intensity *< affect the rate of light utilization (i.e. Z, and 614 

consequently the real growth rate.  615 

At the sight of Fig. 10, it is easy to prejudge that the consequence of the biomass concentration on 616 

the kinetics is filtered out in the normalization ratio Eq.(1). Hence, to verify this, the corresponding 617 

values of Z as a function of concentration, and for several Reynolds values, were analyzed. The 618 

results in Fig. 11. (a) highlights the independence of Z to variation of the biomass concentration 619 

whatever Reynolds number except at low concentrations where a very slight non-uniformity is 620 

observed. This exception could be explained by a better integration of light heterogeneity due to low 621 

spatial gradients for low biomass concentrations.  622 

Fig. 11. (b) shows Z values obtained from simulations of several incident light flux values (in the 623 

range of daily and seasonal irradiances) provided by PVGIS [55], for Toulouse, France. At a flow 624 

velocity of �^ =0.4 (m/s),  Z is practically constant with an average value of Γ u 0.13, and similar to 625 

that shown in Fig. 11. (a) for the same ¥¦=20000. The small deviations from the mean observed 626 

especially for low irradiances may be explained by the contribution of the diffuse component of 627 

sunlight in the calculation of the light fields, which gives the PBR better integration of the light 628 

following an additional radial illumination and thus a better exposure of the microalgae to the 629 

penetrated light. Following these observations, in addition to the biomass concentration we can 630 

already free ourselves from second parameter which is the incident light intensity *< for the 631 

evaluation of this module Γ. The validation of the independency of *<(μ>¡¢. >��. K�S) in the gamma 632 

calculation based on literature is detailed in supplementary document (Appendix C)  633 
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(a) 

 

(b) 

 

Fig. 11. Γ values (a) as function of biomass concentration =(g/L), (b) as function of incident light 634 

intensity I0(μ>¡¢. >��. K�S) with constant ¥¦ = 20000.  635 

In order to evaluate the effect of turbulence-induced mixing on the ability to improve light 636 

utilization, Γ is plotted versus Re Fig. 12.  Not surprisingly, the value of Γ increases with increasing 637 

Re approaching the maximal asymptotic case (i.e. full integration case, when Γ=1). These results 638 

confirm again that increased turbulence improves growth rate. Experimental data leading to a 639 
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similar conclusion have been documented in the literature [81], [82]: biomass productivity was 640 

improved by increasing the flow velocity. This phenomenon can be represented by a linear 641 

correlation; however, the acuity of this correlation should be validated for high flow velocities where 642 

possible cell damage could occur which implies an upper limit to the flow rate. A total collapse of the 643 

culture was also reported in the absence of mixing (low Re <11500) [81], which demonstrates the 644 

role of turbulence on the light perceived and used by cells.  645 

Then, this procedure was carried out for four cases of irradiance fields which differs by the 646 

contribution of diffuse radiation in the supplied light, represented by the coefficient α. The values of 647 

α correspond to the range of the mean ratio of diffuse to global radiation given by PVGIS [55]. Fig. 648 

12. highlights the importance of the PBR lighting configuration on the light utilization rate. Indeed, 649 

for a given Re number, Γ values are different from one light field to another. Thus, as shown in Fig. 650 

12. the higher the fraction of diffuse radiation, which corresponds to a radial irradiation (see section 651 

3.1), the better is the transfer of light into the PBR volume and thus better is the light use by cells. 652 

Indeed, in addition to the turbulence induced by the flow velocity of the fluid, the way in which light 653 

is brought to the PBR is of major importance in the orientation of the growth kinetics towards the 654 

two limit cases. 655 
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 656 

Fig. 12. Γ vs Re for different diffuse sunlight fraction α. Round marks represent simulation results. 657 

dotted lines represent the correlation Γ= f (Re). 658 

To better illustrate the influence of the diffuse radiation on biological growth, the ratio Z ¥¦F  is 659 

plotted versus α.  in Fig. 13. Results showed that, unlike biomass and the intensity of incident light, 660 

hydrodynamics coupled with the way in which light energy is supplied to a culture system, has a 661 

considerable effect on its ability to use available light. A mathematic expression can be proposed to 662 

couple both flow and illumination configuration as follows:  663 

 Z = 6.19 10�d¥¦ c + 3.22 10�d ¥¦ (18) 

 664 

Since Re only varies, in our numerical experiments with the fluid velocity, it’s more suitable to write this 665 

correlation as function of �^ as follows as the tube diameter © =0.05 (m):  666 

 
Z = 0.31 10�d �ª̂ \ + 0.16 10�d �ª̂  

 

(19) 

where ª being the kinematic viscosity of the fluid (m²/s). For Spirulina case, we can suppose ª =667 

10�d(m²/s). So, Γ can be expressed directly as a function of the liquid flow velocity: 668 
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 Z = 0.31 �^c + 0.16 �^  (20) 

 669 

 670 

 671 

Fig. 13.  Effect of the diffuse radiation coefficient c on Z ¥¦F . 672 

From one of the two equations Eq.(19) or Eq.(20) it is possible to predict Γ without having to solve 673 

the coupled Monte Carlo light field - hydrodynamic - growth kinetics model. However, to avoid any 674 

confusion with the actual performance of the PBR, it is necessary to recall that Γ is an engineering 675 

module that describes the skill of the PBR to efficiently expose the cells to the various light 676 

fluctuations in its volume, or in other words, the efficiency of light utilization. Therefore, in order to 677 

predict the real global growth rate of the solar PBR, a prior estimation of the limit kinetics 678 

(instantaneous case and full integration case), relative to a given irradiance field, is required. Indeed, 679 

the actual performance is expressed, for each case, using Eq. (18) or Eq. (20) and Eq. (1) 680 

 %&' = [(0.31 �^c + 0.16 �^, %(〈�〉&, − 〈%(�,〉&] + 〈%(�,〉& (21) 

 681 
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The values of %&' calculated by Eq.(8) (i.e. resulting from combination of the three information: the 682 

light distribution, the cell motion and biological response time (inertia of the internal variable 0)), are 683 

compared in Fig. 14 to the values of %&' predicted by the expression Eq. (21) using Z’s correlation.  684 

Although, deviation of 20% between simulated and correlated data (probably due to the small errors 685 

made when correlating the link between Γ and turbulence and c), the linear trend is found with a 686 

coefficient of determination of ¥� =0.98. The results obtained by Eq.(21) can be considered in 687 

sufficient agreement with those obtained using the full modeling approach. Thus, the reliability of 688 

using these correlations for an easy estimation of the overall PBR specific growth rate is validated. 689 

 690 

Fig. 14. Comparison between %&'  predicated by Eq. (21)and %&'  from numerical experiments (from 691 

the simulation approach)   692 

 693 

4. Conclusion  694 

Through a rigorous modelling of the radiative field considering the solar regime dynamics (i.e. direct 695 

light angles and diffuse light contribution), the heterogeneous light structure characterizing a 696 

tubular PBR were simulated by a Monte Carlo technique including reflection and refraction on the 697 

walls, absorption and scattering by the cells, for 10 biomass concentrations.  698 
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Cells trajectories were simulated for five Reynolds number via a Discrete Random Walk model based 699 

on turbulent quantities calculated by a k − l turbulence model. For the 5 cases, trajectories coupled 700 

with the light fields provided the light signals experienced by each of the 1.5 × 10� cells. This 701 

database was verified to be representative of the light field inside the PBR. The time resolution 702 

(0.05s) is lower than the hydrodynamic and biological time scales involved.  703 

Using a dynamic model based on a biological adaptation of the cells characterized by a response time 704 

to temporal fluctuations of the recorded light, the real overall growth rate of the PBR is predicted for 705 

380 cases. The coupling of the flow and light distribution with a dynamic biological model 706 

determines the rate of light integration into growth kinetics. Indeed, under a given amount of 707 

radiative energy, the real overall PBR growth rate stands between two limit cases that define its 708 

extreme theoretical performance.  709 

The normalized growth rate Γ translates the PBR's capacity in orienting its real performances 710 

towards these limit cases obtained for a given light energy. This concept defines the efficiency of 711 

light utilization/integration by biomass circulating in the PBR. Therefore, it depends on the 712 

operating conditions and the PBR design including the way the system is subjected to light energy 713 

and the quality of the turbulence.  714 

For tubular photobioreactors exposed to the sun, the behavior of the sunlight, as well as the intensity 715 

of the turbulence induced by the flow rate (expressed by the Reynolds number), have a combined 716 

impact on the ability of the photobioreactor to expose its biomass to the energy received. In order to 717 

study the impact of each parameter, a sensitivity analysis was conducted. The results show that this 718 

rate of light integration by the PBR cells Γ is independent of biomass concentration variation 719 

however it depends entirely on turbulence (i.e., broth flow rate). With respect to light conditions, Γ is 720 

not influenced by the variation in intercepted light intensity, but is proportional to the fraction of the 721 

scattered radiation that illuminates the entire surface of the PBR.  722 

Hence, a correlation for a fast calculation of Γ was proposed f(¥¦, c) and it highlights the effect of the 723 

PBR design and operation through the inclusion of macroscopic process variables: Reynolds (or 724 

implicitly the flow rate) and the light distribution quality at the reactor surface (diffuse light 725 
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coefficient). Finally, this correlation was used to predict the real overall PBR growth rate, based on 726 

the two asymptotic growth kinetics, which were estimated directly by coupling the irradiance field 727 

with the photosynthetic growth model.  728 
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