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Toulouse, France8

Abstract9

Measuring displacement and strain fields at low observable scales of complex microstruc-

tures still remains a challenge in experimental mechanics often because of the combination

of low definition images with poor texture at this scale. This is the case for cellular ma-

terials, for which complex local phenomena can occur. The aim of this paper is to design

and validate numerically and experimentally a Digital Image Correlation (DIC) technique

for the measurement of local displacement fields of samples with complex cellular geometries

(i.e samples presenting multiple random holes). It consists of a DIC method assisted with

a physically sound weak regularization using an elastic B-spline image-based model. This

technique introduces a separation of scales above which DIC is dominant and below which

it is assisted with image-based modeling. Several in-silico experimentations are performed

in order to finely analyze the influence of the introduced regularization lengths for differ-

ent input mechanical behaviors (elastic, elasto-plastic and geometrically non-linear) and in

comparison with true error quantification. We show that the method can estimate complex

local displacement and strain fields with speckle-free low definition images, even in non-linear

regimes such as local buckling or plasticity. Finally, an experimental validation is proposed

in 2D-DIC to allow for the comparison of the proposed method on low resolution speckle-free

images with a classic DIC on speckled high resolution images.
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Image-based models, B-splines, Isogeometric analysis11

1. Introduction12

The development of volume imaging opens up attractive horizons in the field of the13

mechanical characterization of materials, and in particular of architectured materials [1]. X-14

ray tomography, in particular, currently makes it possible to reveal the internal architecture15

of certain materials at a micrometric scale [2], or even information on the microstructure of16

metallic materials [3, 4]. The reconstructed volumetric images are therefore commonly used17

to build so-called Digital Image-Based (DIB) models [5, 6, 7, 8, 9]. Furthermore, by using in18

situ testing machines [10], it is possible to assess the effects of loading on internal deformation19

at various scales [11] or damage [2]. In this context, digital volume correlation (DVC) is now20

commonly used to obtain a 3D displacement field from a sequence of absorption contrast21

tomographic images [12]. It is then tempting to take advantage of such measurements to22

validate the DIB models, or even to identify the parameters of the model used to describe the23

behaviour of the constituent material(s). However, such comparisons are usually conducted24

at low spatial resolution and in the case of an elastic behaviour [13]. One of the challenges25

in the field of experimental mechanics is indeed to perform such DVC measurements at the26

micro architecture scale [14, 15]. The reason for this is related to the origin of the texture27

that can be used for image correlation. The typical materials of interest in this study are28

single-phase materials with complex micro-scale architecture, such as cellular materials. This29

may include metallic/polymeric foams, biological tissues (trabecular bones), cell woods, or30

additive manufacturing materials such as lattice structures, to name a few. As an example,31

an image of a Rohacell-51 polymetacrylimid closed cell foam microstructure obtained using32

X-ray micro-tomography is given in Fig. 1.33
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Figure 1: Image of a Rohacell-51 polymetacrylimid closed cell foam microstructure obtained using X-ray

micro-tomography. The voxel size is equal to 6µm and the cell-struts are defined by only 2 to 3 pixels along

the thickness direction.

In 2D analysis (DIC or Stereo-DIC), this is possible by artificially adding a high frequency34

speckle pattern to the observed surface. Numerous techniques exist that allow textures to35

be deposited over a wide range of scales. However, in volume analysis (DVC), depending36

on the imaging modality, the variations in grey-levels that generate a DIC suitable texture37

are associated with the micro architecture and/or the heterogeneity of the constituents. For38

instance in Fig. 1, the acquisition parameters and the size of the sample were such that the39

resolution of 6 microns per voxel allows for only 3 voxels on average in the strut thickness.40

We can see that the struts are not textured at all. Anyway, with such a resolution, one would41

not even be able to see a sub-cellular speckle, even if it existed. With such microstructures,42

we are confronted with a paradox: the scale of the constituents is merged with that of the43

texture, whereas the texture should be defined at a lower scale. This problem has led DVC44

users to consider elements (global DVC) or subsets (local DVC) of very large size compared45

to the micro-architecture [12, 16, 17, 18, 19, 20, 15]. The strain fields obtained with such46

choices are therefore associated with a meso (or macro) scale which is homogenized with47

respect to the material architecture scale. The lack of texture at a smaller scale precludes48
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the consideration of smaller elements or subsets, and therefore to access to more resolved49

measurements. Of course, there have been attempts to deposit texture in volume, especially50

in manufactured materials using Barium Sulfate [21] or copper particles [22] as contrast51

agent for instance. But, apart from the fact that it is not easy to guarantee a homogeneous52

and isotropic texture and that it cannot be generalised to all materials (especially biological53

ones), this invasive technique may have effects on the behaviour of the material we want to54

characterize.55

This technical barrier which prevents performing strain measurement under the cellular56

scale represents today’s most challenging issue in DVC. For the first time, we propose a57

method that breaks this barrier and reduces the resolution despite the absence of texture. In58

order to be able to quantitatively compare the proposed approach (on low resolution images59

without texture) with a classical method (on high resolution images with painted speckle60

pattern), we focus in this article on 2D applications. Generalization to 3D, with expected61

difficulties both in terms of implementation and numerical complexity, will be addressed at62

a later stage.63

The method relies on immersed B-spline image-based mechanical modeling for the auto-64

matic and accurate description of the local kinematic of the imaged sample without using the65

classical meshing procedures [23]. Then we make use of a tuned equilibrium gap method for66

the weak regularization of the DIC problem [24, 25]. The 2D numerical and experimental67

tests are performed on a sample that mimics a slice of a cellular foam as the one of Fig. 1.68

The novelty of our contribution is a measurement method at the scale of the architecture69

(using the highest possible spatial measurement resolution) and basing it only on the tex-70

ture of the sample. As it is based on the use of a regularization model representative of the71

micro architecture of the material, we called our method Architecture-Driven Digital Image72

Correlation Technique (ADDICT).73

As the mechanical response of cellular patterns can be complex and local, the validation of74

the DIC method must be performed using general mechanical displacement fields that include75

transformations that are not only reduced to translations and rotations. For this reason, the76
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suggested DIC validation method consists in generating synthetic images of cellular materials77

from finite element (FE) simulations and comparing the measured displacement fields to the78

FE reference displacement field. Although it is possible to consider non-linear regularization79

models [26], the model used here for weak regularization is elastic. The efficiency of the80

method to estimate local strain fields of samples undergoing possibly non-linear mechanical81

behaviours is analyzed considering 3 regimes (elasticity, elasto-plasticity and geometric non-82

linearity) for the generation of the synthetic images. The Tikhonov-like terms used for the83

regularization of the DIC problem introduces two parameters that are trade-offs between84

data fidelity and regularity. A detailed investigation of this trade-off is performed based on85

a L-curve study [27]. Additionally, the influence of the regularization parameters on the86

true measurement error is performed. Finally, an experimental validation is performed by87

comparing the results of proposed method on low resolution speckle-free images with those88

of a classic DIC on speckled high resolution images.89

The present paper is organized as follows: after this introduction, section 2 reviews the90

foundations of our approach by recalling the DIC problem and its weak regularization. Af-91

terwards, we present the automatic image-based model that allows to obtain the geometric92

and mechanical descriptions of the cell-struts. Section 3 concerns numerical results that are93

based on DIC virtual tests using an artificial two-dimensional cellular material. In this sec-94

tion, we firstly compare visually the results of our approach with those of the classical subset95

method and secondly investigate the influence of the regularization parameters on the mea-96

sured solution for the three different deformation regimes listed previously. Then, in section97

4, the proposed DIC measurement method is assessed through a real tensile test. Finally98

section 5 concludes on this work by summarizing our main contributions and motivating99

future research based on the proposed methodology.100

2. ADDICT: assisting DIC with mechanical image-based modeling101

The proposed ADDICT draws on research dealing with FE-DIC [28, 29, 30, 31, 32],102

weak mechanical regularization [24, 16, 33, 34], and immersed image-based modeling [8, 35,103

9, 23]. This section introduces the main ingredients of the method and accounts for the104
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choices performed from the current technologies of the literature. More precisely, we start105

by outlining the foundations, which are related to an enhanced DIC scheme with weak elastic106

regularization, and then briefly describe the constructed specimen specific image-based model107

that is the key component of our methodology.108

2.1. Foundations: mechanically regularized global DIC109

2.1.1. Global DIC110

DIC consists in finding the unknown kinematic transformation that conserves the grey-111

level values of the images taken at different loading steps of a material sample. Within112

this work, we recall that we restrict ourselves to 2D-DIC but mention that extension to113

DVC [12, 17, 18] is straightforward from a methodological point of view. More precisely,114

given two images showing two configurations of a material sample (here let us denote f115

the image of the material at rest and g the image after load), DIC undertakes to solve the116

grey-level conservation equation [36]. Mathematically, it reads: find the 2D displacement117

field u(x, y) such that:118

f(x, y) = g ((x, y) + u(x, y)) , ∀(x, y) ∈ Ω, (1)119

where Ω ⊂ R2 is the ROI, and x and y define the coordinates of any point in the ROI.120

In practice, the grey-level conservation assumption cannot be guaranteed exactly due to121

multiple factors (noise, grey-level quantization, sub-pixel interpolation errors...). Therefore,122

problem (1) is rather solved in a least-squares sense for which a distance of dissimilarity is123

minimized:124

u∗ = arg min
u∈V

S(u) = arg min
u∈V

1

2

∫
Ω

(
f(x, y)− g((x, y) + u(x, y))

)2

dxdy. (2)125

In order to do so, images f and g need to be somehow interpolated. In this work, a con-126

tinuous B-spline representation [37] will be used, as specified in section 2.2. The unknown127

displacement field is searched for in V which is a space spanned by a set of basis functions:128

u(x, y) = N(x, y)u, (3)129
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where N(x, y) is the considered shape functions matrix and u ∈ Rndof is the total unknown130

degrees of freedom (dof) vector. Depending on the choice made for N, the DIC methods are131

divided into two main families: subset methods using mostly low-order piecewise polynomials132

that are discontinuous across the subsets [38, 39, 40, 41], and global methods mainly based133

on mechanically sound finite elements [28, 29, 42, 43]. Global DIC is considered in this work134

since this is the starting point to regularize DIC using a mechanical knowledge of the solution.135

In this context, the basis functions defining V can be chosen, for example, as the standard136

nodal Lagrange polynomial functions [29, 44, 32], or more regular spline functions in the137

spirit of free-form deformation models [45, 46, 47] or isogeometric analysis [30, 31, 48, 23].138

In any way, these Galerkin approximations introduce a spatial regularization which is related139

to the size and polynomial degree of the considered finite elements.140

Since problem (2) simply consists in a non-linear least-squares problem, it is solved with141

a Gauss-Newton type algorithm [49]. Given an initial displacement guess u(0), the solution142

u(k) at iteration k is updated as follows:143

u(k+1) = u(k) + d(k) with HS(u(k))d(k) = −∇S(u(k)), (4)144

where ∇S(u(k)) is the gradient of S and HS(u(k)) is an approximation using only first-order145

partial derivatives of the Hessian matrix of S. These operators are constructed from image146

gradients. In the context of the studied images, we perform as usually in the experimental147

mechanics community; that is, we actually use a modified Gauss-Newton algorithm which148

consists in approximating the terms ∇g((x, y)+u(x, y)) in the Hessian matrix and the right-149

hand side by ∇f(x, y) [49, 50]. This is usually sufficient to capture mechanical kinematic150

transformations and has the strong benefit to lead to a constant operator HS, which can151

thus be inverted once and for all before running the optimization. Further details regarding152

the implementation of the method can be found in, e.g., [25, 51, 33].153

2.1.2. Weak mechanical regularization154

As mentioned above, discretization (3) introduces a spatial regularization that can be155

characterized as a strong regularization in the sense that it is directly related to the size of156
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the approximation subspace. Roughly speaking, to be able to solve the inverse problem (2),157

the subset or finite element size must be chosen so that the amount of grey-level data158

available in a subset or finite element is richer than the corresponding elementary kinematic159

basis. In the conventionally used subset-DIC framework, the usual rule in this respect is160

to set a subset size that contains at least 3 speckle dots [52, 53, 54]. For our images of161

speckle-free cellular type materials, this would lead to a subset size as depicted in Fig. 2162

(see also section 3.4 where further details regarding this image are provided). Obviously, the163

resulting approximation space appears too coarse in view of estimating the kinematic fields164

at the sub-cellular scale. A finite element mesh as fine as the one of Fig. 2 would be necessary165

instead but, in this case, the strong regularization would not be sufficient anymore, thereby166

leading to a singular matrix HS in (4).167

Figure 2: Size of subset (red rectangle) to properly regularize the DIC problem coming from images of speckle-

free cellular type materials. The resulting approximation space appears too coarse in view of estimating the

kinematic fields at the sub-cellular scale. A finite element mesh as fine as the one depicted in this figure

would be necessary instead, thus leading to a severely ill-posed inverse problem.

An alternative approach is to resort to Tikhonov regularization techniques [55]. These are168

weak regularization schemes that consist in adding to the initial DIC objective function (2)169

a specific term, based on differential operators, to smooth the solution fields [56, 57, 20, 58].170

In particular, it may be proposed within the FE-DIC technology to penalize the L2-norm171

of the gradient of each component of the measured field. This technique is often referred172
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to as the Tikhonov regularization technique in the field [59, 60, 19, 48]. In this work, we173

will indifferently denote this regularization by the Laplacian-based technique in the sense174

that it uses the vector Laplacian operator L [19, 23], see Eq. (5). More interestingly, using175

finite elements in DIC also offers the opportunity to design mechanically sound Tikhonov-176

like methods by penalizing the distance between the estimated displacement field and its177

projection onto the space of expected mechanical solutions [24, 25, 16, 17, 61, 33, 34]).178

This variant will be classified as the mechanically regularized DIC in this paper. In this179

work, we use these two regularization schemes together (as in, e.g., [16, 23]): in the part of180

the ROI where no relevant physical information is available, we perform a Laplacian-based181

regularization, and in the remaining domain where the discrete mechanical equilibrium can182

be safely formulated, a mechanically regularized DIC based on an elastic behavior of the183

specimen is performed.184

From a numerical point of view, the Laplacian-based regularization consists in augment-185

ing (2) as follows:186

u∗ = arg min
u∈Rndof

(
S(u) +

λ

2
||Lu||22

)
, (5)187

where λ is the weighting parameter. For the mechanically regularized DIC counterpart,188

equation (2) is rather complemented by the L2-norm of the internal forces produced by an189

elastic model (in the spirit of the equilibrium gap method [62]):190

u∗ = arg min
u∈Rndof

(
S(u) +

λK
2
||DKK(E = 1, ν)u||22

)
. (6)191

The weighting parameter is this time denoted λK . K is the stiffness matrix of an isotropic and192

homogeneous elastic model defined at the sub-cellular scale of the material. The associated193

Young’s modulus E is fixed to 1 as K is proportional to E (the influence of E is thus taken194

into account through λK). DK is a boolean dof selection operator that selects the dof located195

in the bulk and on the free edges. Such a dof selection appears necessary because we do not196

know well the Dirichlet and non-zero Neumann boundary conditions (in practice, we may197

barely access to a resultant in one direction). Finally, we combine both schemes (5) and (6)198

to regularize each dof of the unknown measured field, which leads to the following enhanced199
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DIC problem:200

u∗ = arg min
u∈Rndof

(
S(u) +

λK
2
||DKK(E = 1, ν)u||22 +

λL
2
||DLLu||22

)
, (7)201

where operator DL selects the Dirichlet and non-zero Neumann edges of the ROI, and λL is202

the weighting parameter for the Laplacian-based part of the regularization.203

Remark 1. Let us note here that the Dirichlet and non-zero Neumann boundary regular-204

ization is only used in order to stabilize the measurement at the boundaries. It uses the205

Laplacian operator so the only physics prescribed on these boundaries is related to a diffu-206

sion problem. For more mechanically sound regularizations on theses boundaries, we refer207

the reader to other boundary stabilization strategies used in the case of the equilibrium gap208

method [63, 34].209

Finally, it has to be underlined that the (homogeneous and isotropic) elastic behavior210

at the sub-cellular scale is not prescribed in a strong way in (7). It is only used as a low211

pass filter to alleviate oscillatory effects [16, 17]. From a global point of view, we exploit the212

information coming from the movement of cell boundaries (with S(u) in (7)) and weakly213

prescribe a locally elastic behavior to softly regularize DIC in the textureless microstructure,214

which makes sense in continuum mechanics, even for measuring inelastic fields as will be215

demonstrated in sections 3 and 4. In some sense, such a procedure enables to mitigate216

the tradeoff between the FE interpolation error (sometimes referred to as model error in217

DIC) and so-called ultimate random error (that is related to the ill-posedness of the inverse218

problem) [53, 51]. Overall, when using this regularization, three a priori input parameters219

(λK , λL, ν) influence the DIC measurement quality. In theory, a correct estimation of ν must220

be provided which remains a problem for this class of methods. However it can be updated221

[25]. The problem thus focus on the fine tuning of (λK , λL), which will be addressed in222

section 3.223

2.1.3. Functional normalization and physical regularization lengths224

As the different optimization residuals are not normalized in (7), typical values of λL and225

λK range from 101 to 109 and their sensitivity to the measured field is not constant across226
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this interval. Besides, the link between λL and λK and physical lengths is not obvious. As a227

remedy, a mechanical interpretation of these regularization schemes has been introduced in228

[16, 17]. To start with, a normalization of the residual can be considered using a reference229

shear wave displacement v, here chosen in the form:230

vx(x, y) = cos

(
2π

T
y

)
, vy(x, y) = 0, (8)231

where T is the wave-length. The normalization of the functional (7) consists in dividing232

each optimization term in (7) by its evaluation at the displacement v. Denoting by v the dof233

vector associated to the finite element discretization of v, the descent direction using this234

normalization is therefore given by the following linear system:235 (
HS + λK

vTHSv

||DKKv||22
KTDKK + λL

vTHSv

||DLLv||22
LTDLL

)
d(k) =

−∇S(u(k))−
(
λK

vTHSv

||DKKv||22
KTDKK + λL

vTHv

||DLLv||22
LTDLL

)
u(k).

(9)236

Let us note at this stage that the left-hand side operator still remains constant and only237

the right-hand side is updated during the optimization iterations. Using spectral analysis, it238

can be shown that the linear operators L and K used for regularization can be interpreted239

as low-pass filters (see, again, [16, 17]). More precisely, regularizing using the L2-norm of240

the second-order differential operators L and K can be seen as a fourth-order low-pass filter241

acting on the measured displacements on both the bulk and boundary regions. As a result,242

the regularization weights λL and λK can be related to cut-off characteristic lengths denoted243

lK and lL which verify:244

λK =

(
lK
T

)4

, λL =

(
lL
T

)4

. (10)245

As λK and λL are dimensionless, the characteristic lengths lK and lL have the same unit246

as the period T of the shear wave which is in pixels. For a proper study and a mechanical247

interpretation of the implemented methodology, the regularization weights will be tuned248

in this paper by changing the values of the cut-off wave-lengths lK and lL (see section 3 in249

particular). The value of parameter T has no real influence on the results: it is just requested250
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to take it large enough so that the wave v can be accurately described by the considered251

finite element mesh (at least T should be equal to 4 element lengths).252

2.2. Specimen specific regularization using an immersed B-spline image-based model253

The main feature of our solver (9) is to make use of a stiffness matrix accounting for the254

cellular architecture to drive DIC within the struts and/or walls of the material. Building255

such a stiffness matrix requires to investigate the field of image-based modeling which aims256

at performing mechanical simulation directly on grey-scale data. In this work, we propose to257

make use of the advanced immersed B-spline image-based model built in [23] which has the258

interest of being fully automatic, higher accurate and with a proper description of strain fields259

compared to more standard voxel-based approaches [7, 64], and fairly-priced in the sense that260

it provides the best possible accuracy (bounded by pixelation errors) while ensuring minimal261

complexity.262

2.2.1. Construction of the automatic and fairly-priced image-based model263

We now briefly review the construction of the considered image-based model. Only the264

fundamentals are given here. For further details, the interested reader is referred to [23]265

and the works cited hereafter. The model is based on three main ingredients: (i) a level-266

set characterization of the boundary [9], (ii) a higher-order spline fictitious domain analysis267

approach, often referred to as the isogeometric Finite Cell Method (FCM) [35] in the field,268

and (iii) a fine tuning of the related discretization parameters (quadrature rule, element size,269

polynomial degree) to make it fairly-priced.270

271

More precisely, Fig. 3 summarizes the different steps of the construction of the model.272

• First, a level-set characterization of the material’s boundary is performed by construct-273

ing a binary function that is equal to 1 if the evaluated point is in the region of interest274

and 0 in void areas (see Fig. 3a). In order to do so, we apply the simple and robust275

strategy of [9] that consists in building a smooth B-spline representation of the im-276

age and obtaining a regular contour of the boundary by taking an iso-value of the277
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representation.278

• In a second step, the region of interest is embedded in a structured smooth and279

higher-order B-spline grid for the discretization of the measured displacement field280

(see Fig. 3b). The matrix N in (3) contains therefore B-spline basis functions whose281

supports are dissociated from the actual geometry. This is the key point of fictitious282

domain techniques that allow for great accuracy and flexibility in image-based mod-283

eling. Resorting to smooth B-spline functions is also interesting to properly describe284

derivative fields such as strains.285

• In a third step, it is requested to integrate over a restriction of the B-spline grid in286

order to compute a stiffness matrix related to the physical domain As the level-set287

characterization is a signed distance, the integration is performed easily by means of288

a quad-tree decomposition which is widely used in FCM (see, e.g., [65, 8, 35, 9]).289

Each element of the B-spline grid is divided into four integration elements if it cuts290

the boundary (see Fig. 3c). The integration elements that do not cut the geometric291

boundary are integrated with a full Gauss quadrature. This decomposition is repeated292

until a predefined maximum level is reached. In addition, in order to improve the293

geometric description, the last cut integration elements are subdivided into integration294

triangles equipped with an exact quadrature rule (see Fig. 3c again).295
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(a) Level-set characterization of the

material’s boundary.

(b) Embedding of the region of interest

in a smooth and higher-order cartesian

B-spline grid.

(c) Quad-tree scheme with a closure

linear tessellation for defining the domain

of integration corresponding to the cell

struts (zoomed window w.r.t. Figs. 3a

and 3b).

Figure 3: Main steps to build the specimen-specific, immersed B-spline image-based model.

The three fictitious domain parameters are adjusted following [23]: the maximum level of296

quad-tree decomposition is taken so that the minimal size of an integration element is about297

the same as the pixel size, and smooth cubic B-spline elements of size approximately equal298

to the cell strut thickness are employed. For illustration purpose, the considered cellular-like299

specimen is shown in Fig. 4 along with the chosen B-spline mesh that is composed of nx = 87300

and ny = 64 elements in the x and y direction, respectively. The corresponding approximate301

element size is equal to 2.5 pixels.302

Figure 4: Cubic B-spline grid taken to discretize the measured displacement field for the considered 2D

cellular-like specimen.
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2.2.2. Conditioning concerns and final fictitious domain DIC approach303

In the end, we make use of the B-spline grid and constructed fictitious domain integration304

rule not only to compute K but also HS and ∇S (and L) in (7). In addition, we interpolate305

the images by using the smooth B-spline representation constructed at the first step of the306

image-based model to define the level-set function, which is interesting from a noise and307

gradient computation point of view [66, 9, 67]. The remaining issue to address is that these308

operators are in general severely ill-conditioned due to the fact that some basis functions309

can have their support that do not or slightly intersect the physical domain. As a remedy,310

we remove the dof corresponding the basis function Ni such that [23]:311

s(i) =

∫
Supp(Ni)∩Ω

Ni(x, y)dxdy∫
Supp(Ni)

Ni(x, y)dxdy
≤ ε, (s(i) ∈ [0, 1]), (11)312

where Supp(Ni) stands for the support of the considered basis function. In this work, we fix313

ε = 10−4 in order to obtain a good compromise between the conditioning of the left-hand314

side operator and the accuracy of the solution. In Fig. 5, we show the retained control315

points after applying (11) with the considered geometry and mesh. Overall, the strategy (7)316

can be seen as an optimized version, using advanced image-based model techniques, of the317

mechanically regularized DIC scheme (see, e.g., [24, 16, 17]).318

Figure 5: Retained B-spline control points to describe the mechanically regularized DIC solution for the

considered 2D cellular-like specimen.
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3. Analysis of synthetic images based on virtual tests319

In this section, the performance of the proposed speckle-free ADDICT is assessed by320

analyzing a set of three synthetic test-cases. Namely, given a fine FE mesh fitting the321

architecture of the cellular material, wisely chosen constitutive properties, and boundary322

conditions, a displacement field ufem is computed from a standard FE analysis, as detailed323

in section 3.1. Then, synthetic images of the reference and of the deformed configurations are324

generated, as described in section 3.2. The interest of such virtual tests lies in the fact that325

the measured fields umeas can be compared with the ground truth ufem using appropriate326

measurement errors, see section 3.3. Fig. 6 summarises the process of constructing and327

analyzing images for our virtual experiment. In addition to performing a virtual elastic328

test, we will also investigate the ability of our method to estimate local kinematic fields in329

non-linear regimes (in particular, plasticity and/or geometric non-linearities).330

FE mesh of the exact 

geometry

FE simulation

(Elasticity, plasticity and 

2d buckling )

Reference FE solution

Virtual image acquisition 

with low resolution:

(4 pixels in the cell-strut) and 

without speckle pattern.

  

  

DIC measurement

Image deformation

using the reference FE field

  

  

Image at rest Image after load
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Figure 6: Synthetic image generation and procedure to assess the performance of the DIC measurements.
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We proceed as follows for the discussion of the results: in section 3.4, it is shown how331

challenging it is to estimate sub-cellular kinematic fields with classical subset DIC approaches332

from such images. The latter are then analyzed with the proposed method. Finally, for each333

of the three test cases, the influence of the regularization cut-off wave-length is analyzed in334

section 3.5 based on the so-called L-curves of the optimization problems (5) and (7) and335

their relation to the true measurement errors.336

3.1. Construction of the three virtual tests337

For the construction of the reference displacement field ufem, we considered the mechani-338

cal problem depicted in Fig. 7. The left boundary of the sample was fixed (ux = uy = 0) and339

an homogeneous displacement was prescribed at the right boundary (uy = 0 and ux = u0).340

The top and bottom boundaries were assumed traction-free (σ.n = 0). The finite element341

mesh was chosen fine enough to correctly represent the local behavior of the cell struts:342

approximately six triangular finite elements in a cell strut were considered.343

Figure 7: Definition of the virtual experiment: FE mesh of the exact geometric object displayed with the

boundary conditions. The sample corners are defined by xmin = 0 mm, xmax = 110 mm, ymin = 0 mm,

ymax = 50 mm.

In this study, three different mechanical regimes were investigated: (i) linear elasticity344

and (ii) non-linear elasto-plastic constitutive relation under infinitesimal strain theory in345
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tension (u0 > 0), and (iii) non-linear elasto-plastic constitutive relation under finite strain346

theory in compression (u0 < 0) including post-buckling. For each regime, a Young’s modulus347

of E = 187 GPa and a Poisson coefficient ν = 0.3 were chosen for the sample material. The348

material’s non-linear behavior was based on the piecewise linear hardening law given in349

Table.1.350

Plastic strain 0% 0.2% 1% 10%

Yield stress 230 MPa 295 MPa 340 MPa 425 MPa

Table 1: Elasto-plastic law used for the reference FE simulation.

Figs. 8a-8b-8c show the global force-displacement mechanical response for the three test351

cases (i), (ii) and (iii), respectively. The red dots correspond to the mechanical states chosen352

to generate the digital images g in the deformed configuration.353

(a) Elastic simulation (tensile test u0 > 0). (b) Elasto-plastic simulation (tensile test u0 > 0).

(c) Elasto-plastic simulation with non-linear geometric analysis (compression test u0 < 0).

Figure 8: Evolution of the resultant of reaction forces at the right end of the specimen with respect to the

prescribed displacement u0 in x direction: (a) linear elasticity test (i), (b) elasto-plastic tension test (ii) and

(c) geometric non-linear elasto-plastic compression test (iii). The red dots represent the mechanical states

used to generate the deformed images.
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3.2. Generation of the synthetic images354

The virtual DIC testing consists in generating a virtual image of the FE model of Fig. 7355

in the load-free configuration f , and another one after loading g from the above computed356

displacements fields ufem. In order to mimic the generation of grey-scale images from the357

geometry of the sample, a first high-resolution binary image is generated using a cartesian358

grid of pixels over the rectangle with vertices (xmin, xmax) and (ymin, ymax). Afterwards,359

a pixel grey-level value is assigned proportional to its surface fraction to meet the desired360

low resolution (about 4 pixels in the strut thickness). The same treatment is performed in361

order to generate the image of the sample in the reference and deformed configurations. This362

simple rendering method was sufficient in our 2D-DIC analysis whereas other more complex363

physically sound rendering models could have also been considered, (see, for instance, [68,364

51, 69] in the context of Stereo-DIC).365

Let us recall that the images are chosen for the loading states corresponding to the red366

bullets in Fig. 8. For the non-linear regimes (see, in particular, Figs. 8b and 8c), this ensures367

that the behaviour has clearly entered a non-linear regime. The corresponding images f and368

g are shown in Fig. 9 for each of the three mechanical problems.369
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(a) Image of the reference configuration f (load-free). (b) Image of the deformed configuration for the elastic model

subjected to tension corresponding to Fig. 8a.

(c) Image of the deformed configuration for the elasto-plastic

model subjected to tension corresponding to Fig. 8b.

(d) Image of the deformed configuration for the geometrically

non-linear elasto-plastic model subjected to compression

corresponding to Fig. 8c.

Figure 9: Example of pairs of DIC test images based on the same sample but with different mechanical

models. Image dynamic is equal to 255 in the whole image area and equal to 127 in the cell area only.

3.3. Error quantification370

As indicated in the overview of the synthetic experimental setup in Fig. 6, the com-371

putation of the measurement errors was performed by comparison with the reference FE372

displacement ufem used for generating the synthetic images. Since the reference FE mesh373

is consistent with the cell geometry, we choose to compute the error between the measured374

umeas
x ,umeas

y and simulated ufem
x ,ufem

y displacements at the np Gauss points defined on all375

triangular elements of the simulation mesh. In Fig. 10, a zoomed window is provided to see376

the FE mesh and corresponding integration points located in the image domain. In order to377

quantify the measurement errors, we consider the measurement uncertainty denoted U . For378
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instance, for the x-component of the displacement it is defined as follows:379

U(ux) =

√√√√ 1

np − 1

np∑
i=1

(ufem
x i − umeas

x i)
2 , (12)380

where uxi stands for the evaluation at the ith Gauss point. The uncertainty U will be used381

for characterizing the measurement error for ux and uy with respect to ground truth.382

Figure 10: Zoom on an image area. The finite element mesh is superimposed on the image. Green points

are the Gauss integration points of the reference triangular FE mesh used for the computation of the error.

3.4. A first analysis vs Subset based DIC383

As mentioned in section 2 and illustrated in Fig. 2, the usual practice in subset based384

DIC/DVC is to set a subset size according to the characteristic length of the image pattern.385

Based on the auto-correlation function of the image, we can first estimate the microstruc-386

ture’s characteristic length.387

Figure 11: Radially averaged normalized auto-correlation function.
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More precisely, by performing the analysis of the evolution of the radially averaged nor-388

malized auto-correlation, we can estimate an averaged speckle size in the image and the389

periods existing thanks to the auto-correlation peaks. The 1/2 or 1/e pre-image of the auto-390

correlation can characterize the thickness of a cell strut (here around 4 pixels) [53]. The391

secondary peak at around 30 pixels characterizes the mean cell size. Based on the usual392

practice in subset DIC [52, 53, 54], it is stated that the subset should contain a minimum of393

three DIC pattern features, which leads, in our case, to choose very large subset sizes inca-394

pable of reconstructing the local kinematic associated to strut bending (see also discussion395

related to Fig. 2).396

As a concrete example, we consider test case (i) where the underlying model is linear397

elastic. The subset-method was applied with affine subset shape functions. In the case of398

using the image of Fig. 9a, the subset DIC tool used herein (VIC-2D) suggests an automatic399

subset size based on the auto-correlation function. A subset size of 63 pixels is suggested in400

this case (approximately 3 pores per subset as shown by the orange square in Fig. 12), which401

is consistent with the usual practice. The step size was set to 1. The measurement points402

are marked by the red dots in Fig. 12. It should be noted that such a large subset size only403

allows measurement in an area relatively far from the edges.404

Figure 12: Necessary discretization for the standard subset DIC. The measurement points are marked by the

red dots. A large part of the boundary subsets are automatically removed in order to avoid high uncertainty

measurements in theses zones. The orange square depicts the subset size.

A visual comparison of the reference (left) and measured (center) displacements and405
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strains is given in Figs. 13 and 14, respectively. As we are interested by the measurement406

within the cell struts only, we show the post-processed results in the cell regions using a407

a posteriori binary segmentation. In Fig. 13, it can be seen that the displacement field408

estimated with the subset method is consistent with the reference field, at least at the409

macroscopic scale. But when analyzing the field measured by the subset approach in more410

detail, by looking in particular at the strain field in Fig. 14, we notice that the strain provided411

by the subset method is completely inconsistent and very far from the reference strain field.412

More precisely, the obtained strain fields are homogeneous at the scale of the cell-struts and413

the local bending observed in Fig. 14a is not identified. This shows that large subsets only414

allow to identify macroscopic (or homogenized) displacements and strain fields.415

This problem is due to the difficult compromise in choosing the subset size. Indeed, this416

parameter alone is used to set both the regularization length and the measurement resolution.417

This motivates the use of a richer kinematic (small resolution) associated to an alternative418

regularization technique to better capture the sub-cellular displacement field gradients.419

(a) Finite element reference. (b) Subset DIC measurement. (c) Proposed ADDICT measurement.

Figure 13: Horizontal component ux of the displacement field in the ROI of the subset method (in pixel

units).
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(a) Finite element reference. (b) Subset DIC measurement. (c) Proposed ADDICT measurement.

Figure 14: Plot of the equivalent strain field εvm =
√
ε2xx + ε2yy + 2ε2xy.

This same set of images is now analyzed with the proposed ADDICT. An image-based420

model, using a B-spline fictitious domain technology, is constructed from the grey-scale421

images, as described in section 2.2. This model is used to weakly regularize the FE-DIC422

problem, as explained in section 2.1 (see, in particular, Eq. (7)). The corresponding measured423

displacement and strain fields are presented in Figs. 13c and 14c. It can be observed that424

the displacement field is much better resolved. It shows typical bending gradients which425

are quite similar to the reference fields. This is a clear illustration of the interest of the FE426

approach in DIC in its ability to use a mechanical model to improve DIC and to break the427

aforementioned trade-off.428

In the following section we will study the two main parameters of our method: (a) the429

choice of the regularization lengths lL and lK (see Eq. (10)), and (b) the relevance of the430

model (here linear elastic) used for the regularization operator with respect to the nature of431

the non-linearity of the measured behaviours.432

3.5. Numerical investigation of the influence of the model and parameters used for the reg-433

ularization434

In this section, the influence of the regularization lengths lL and lK for different lin-435

ear and non-linear mechanical regimes is investigated using L-curves. The L-curve study436

of regularized least-squares problems helps finding the optimal regularization parameter as437

the one corresponding to the highest curvature point in a log-log plot of the regulariza-438

tion term versus the data fidelity term [27]. For our mechanically regularized scheme (see439
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Eq. (7)), we thus consider on the horizontal axis the dimensionless data-fidelity term de-440

fined by S(u)/(max(f)−min(f)), and on the vertical axis the variation of the mechanical441

equilibrium, i.e. such that ||DKKu∗||22. In order to investigate the filtering properties of442

the equilibrium gap based regularization, the plots are performed for different values of the443

characteristic lengths: lL and lK are respectively varied in J0, 40K pixels and J0, 200K pixels.444

The L-curve corresponding to the less physically sound Tikhonov variant (5) is also given445

for comparison purpose regarding the employed regularization model. In a next step, to ac-446

count for the relevance of the regularization parameters selected with the L-curve approach, a447

measurement error study (w.r.t. ground truth) is carried out. Eventually, several deformed448

configurations of the material sample are provided with different values of regularization449

parameters to appreciate visually their influence on the results.450

Linear elastic case. First, let us consider the L-curve when regularizing DIC with our ap-451

proach (7) in case (i), i.e. where the synthetic images were generated with a linear elastic452

model (corresponding to Figs. 8a and 9b). The obtained plot is shown in Fig. 15. The453

left and right sides of this figure exactly correspond to the same plot, only the colour of the454

markers changes. On the left, the colour depends on the value of the edge regularization455

length lL, and on the right on the bulk elastic regularization length lK .456

(a) Variation of lL. (b) Variation of lK .

Figure 15: Elastic regularization versus data fidelity for ADDICT on an elastic problem.
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The first thing that stands out is that the parameter lL has very little influence on the L-457

curve. It only has an effect when the volume elastic regularization parameter lK is very large458

(see bottom zone in the figure), which corresponds to very strong regularization. In such459

a situation, it can be seen as an integrated type DIC method [70] which gives good results460

provided that (a) the imposed mechanical behaviour in the bulk is the right one (which is461

the case on this test) and (b) the edge displacements are relevant. This is the reason why462

edge regularization has an effect in this zone. Fig. 15a shows that lL should be considered463

very small (1 to 5 pixels) in order to get an accurate measurement.464

Concerning the influence of the bulk regularization given by lK , while increasing this465

regularization weight, the equilibrium term keeps decreasing without a significant increase466

of the grey-level residual (the curve somehow plunges down). This implies that the L-curve467

does not present a local convexity. The optimal regularization value would be theoretically468

infinity. This is the typical behaviour of a perfect (here elastic) regularization term. This469

can be observed since the synthetic example actually exhibits a full linear elastic behavior.470

Non-linear cases. The proposed ADDICT with elastic regularization is now applied to the471

images of test cases (ii) and (iii), i.e. with elasto-plastic constitutive relation without and472

with geometric non-linearities, as shown in Figs. 8b-9c, and 8c-9d, respectively. On Fig. 16a,473

the corresponding L-curves are presented for the three input models (elastic, elasto-plastic474

and elasto-plastic with possible geometric non-linearities). Only the influence of lK is con-475

sidered, lL being fixed to its optimal value following previous discussion.476

We can now observe three main regions in the L-curve (denoted R1, R2 and R3 in477

Fig. 16a). On the region R1 (i.e, lK < 25), the weight is put more on the grey-level478

conservation and the standard deviation is higher, the obtained solution is not accurate as479

will be shown in Fig. 17. Conversely, on the region R3 (i.e, lK > 30), the weight is put more480

on (elastic) regularity. In this case, the grey-level residual increases as the elastic regularity is481

no longer valid for describing the actual mechanics (here plasticity without or with geometric482

non-linearities). The choice of lK must be a compromise between regularity and grey-level483

conservation. The optimal value for the regularization length is at the point of maximum484
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curvature [27], i.e. between 25 and 30 pixels, which defined region R2.485

Through this study, it can also be emphasized that the L-curve is proving to be an486

excellent indicator of the relevance of a model in the context of validation [70]. If the487

L-curve tends to plunges down as the regularization length increases, then the model is488

probably compatible with the observed mechanical field.489

(a) Variation of lK for the proposed ADDICT. lL is fixed to its

optimal value.

(b) Variation of λ =
(

l
T

)4
(see Eq. (5)) for the

Laplacian-based regularization.

Figure 16: Influence of the regularization lengths for the three input models. M1: Elastic model (i), M2:

Elasto-plastic model (ii), and M3: Geometrically non-linear elasto-plastic model (iii).

Comparison with a less physically sound regularization kernel. As mentioned above, the490

choice of the model used for regularization is one of the two important parameters of the491

approach. Here, the less physically sound Laplacian-based model of Eq. (5) was used to492

regularize the same set of images. Note that operator L is built by integrating only on the493

physical cell struts (i.e. avoiding the holes), which differs from the current practice in other494

fields where such regularization operators are used in both strut and void parts [19, 20]. The495

corresponding L-curves are given in Fig. 16b. Looking closely at the L-curves of Fig. 16a with496

the different regularization operators, we can see that the L-curve is clearly more sensitive497

to the increase of the regularization length when using Laplacian-type regularization as498

compared to the elastic one.499
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Link between L-curve and error. In this section, the L-curves are compared to the true errors500

in order to numerically validate the optimality of the regularization length associated to the501

maximum curvature. In Fig. 17, the evolution of the measurement error is plotted as a502

function of the regularization lengths. We recall that, to compute the measurement error503

defined by (12), the displacement fields are computed on the Gauss-integration points that504

belong to both the reference finite element geometry and the constructed geometry using505

the level-set function. First, this figure provides numerical evidence that the optimal value506

of the regularization calculated from the maximum curvature point also corresponds to the507

minimum error. Second, this figure also provide numerical evidence that a weak elastic508

regularization, even when it is not representative of the actual mechanics of the observed509

specimen, is better than all the other less physical regularization techniques considered in510

this study, either in a strong way based on polynomials (subset) or in a weak way based on511

the gradient of the solution (Laplacian).512

Figure 17: Influence of the regularization parameter on the mean displacement error (U(ux) + U(uy))/2.

Overall, the interpretation that can be made of these results is that the term associated513

with the grey-level residuals (S(u) in (7)) captures the low frequency part of the solution,514

here associated with characteristic lengths higher than the cell length (≈ 30 pixels), i.e. the515
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meso scale. In other words, it helps computing the part of the displacement field that aligns516

the mesh to the edges of the struts. The local part of the displacements, i.e. inside the struts517

or at the micro-scale, which do not modify the grey-level conservation term, are driven by518

the regularization. It therefore seems consistent that the optimal regularization length is519

close to the characteristic cell size.520

Deformed configurations with different values of regularization parameters. In order to visu-521

ally appreciate the above interpretation, we eventually show several deformed configurations522

with different regularization weights. First, considering the elasto-plastic case (ii) (Figs.523

8b-9c), we superpose the reference (red) and measured (green) cloud points for a very low524

regularization (see Fig. 18a) and for an optimal regularization (see Fig. 18b). Following525

previous discussion, the low regularization allows to satisfy more data fidelity (region R1)526

and the optimal regularization corresponds to the inflexion point obtained from the results527

of Fig. 16a (region R2)). When putting more weight on data-fidelity, Fig. 18a shows that528

non-physical displacements are observed within the cell-struts as the green points move dif-529

ferently than the reference points. Conversely, when considering the optimal regularization530

weight, the movement inside the cell struts is closer to their reference value, see Fig. 18b531

where the red and green point clouds are superimposed.532
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(a) Very low regularization. (b) Optimal regularization.

Figure 18: Superposition of the deformed point clouds using the reference finite element field (red point

cloud) and the measured field using the equilibrium gap method (green point cloud). Figures

corresponding to the elasto-plastic problem (ii).

Secondly, in the case of the geometrically non-linear elasto-plastic model (iii) (Figs.8c-9d),533

when putting a very large weight on the mechanical term (region R3), the correlation fails534

to correctly represent the geometric non-linearities (see Fig. 19a). In fact, we observe that535

the regularization model forces the cell struts to bend in an elastic way whereas they should536

exhibit a post-buckling behavior. When choosing the optimal weight lK (region R2), the537

buckling is correctly measured using the same elastic hypothesis for the regularization model,538

see Fig. 19b. These examples show that even when the observed fields are the response of a539

more complex behaviour (here geometrically non-linear with elasto-plasticity) than the model540

used for regularization (here linear elastic), the displacement fields are correctly estimated.541

30



(a) Very high regularization. (b) Optimal regularization.

Figure 19: Superposition of the deformed point clouds using the reference finite element field (red point

cloud) and the measured field using the equilibrium gap method (green point cloud). Figures are

corresponding to the geometrically non-linear elasto-plastic problem (iii). (The point clouds are amplified

with amplification factor of 2).

Finally, Fig. 20 compares the local distribution of strains in the worst case (geometrically542

non-linear with elasto-plasticity). Even if the value of the local strain is not totally correct,543

it is much better than with the other regularization technique considered in this study, and544

it allows at least the location of high gradient areas.545
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(a) Reference. (b) Measure using the elastic regularization.

(c) εxx range values.

Figure 20: εxx strain.

4. Application to a 2D experiment546

We now propose to demonstrate the potential of our ADDICT in an experimental situa-547

tion where inelastic strains take place. To this end, we have chosen to perform a tensile test548

on a macroscopic two-dimensional cellular like specimen and to compare the 2D kinematic549

measurements provided by ADDICT using low-definition speckle-free images of the main550

side with those obtained by a FE-DIC measurement based on high definition images of the551

opposite speckled side, considered as the reference (see Fig. 21). A classic FE-DIC approach552

is here preferred for the reference to obtain a dense continuous displacement everywhere in553

the struts.554

We first chose a suitable geometry, material and production method to build our model555

material. The geometry adopted is identical to the one used in the previous section (see556

Fig. 7). The total width of the specimen is 50 mm, and the minimal struts thickness is557

approximately 0.5 mm. The sample was machined in a 4 mm thick 2024-T3 aluminum558

sheet from the CAD file using a 5 axis CNC milling machine. This process was preferred to559

waterjet and laser cutting in order to obtain the desired geometry while minimizing the heat560

affected zone and avoiding the need to deburr the part. The minimum radii of the fillets561

were therefore limited in the CAD by the radius of the cutting tool.562

32



(a) Speckle free side for ADDICT. (b) Speckled side for reference FE-DIC.

Figure 21: Specimen and preparation for DIC - The 50 mm large sample is milled from a 4 mm 2024-T3

aluminum sheet, then painted white between the regions where it will be fixed in the jaws. One side is

simply left as it is, while on the opposite side, a speckle is deposited by means of an airbrush.

Once machined, properly prepared and cleaned, the sample was sprayed with white matt563

paint in its entire central region, up to the areas that were to be clamped (see Fig. 21a).564

Then, thin matt black spots were sprayed on the side where FE-DIC measurements were565

planned (see Fig. 21b). The idea being to capture displacement gradients within the struts566

thickness, the deposit of this speckle is done here with an airbrush. Fig. 23b shows the567

distribution of the speckles obtained on the cell sample. The average diameter of the spots568

is estimated to be around 0.1 mm.569

An Instron 8561 100 kN electromechanical tensile machine equipped with a 10 kN cell570

was used for this test. This machine can be equipped with hydraulic jaws, which avoids571

accidental twisting of the sample during clamping. Particular care was taken to align the jaws572

beforehand. The test was carried out under displacement control at a constant displacement573

rate of 0.12 mm/min.574
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(a) Basic optical setup. (b) Overview of the experimental setup.

Figure 22: Experimental setup.

The experiment was monitored by multiple cameras triggered using an external TTL575

square signal. The frame rate was set at 0.2 fps. Fig. 22 shows the basic optical setup576

chosen for the present analysis. It consists of 2 systems that were very carefully positioned577

on either side of the sample and oriented (using laser devices) so that the optical axes were578

perpendicular to the filmed faces. A telecentric lens (Opto Engineering TC ZR 072-C) was579

used to film the speckle-free side of the sample. This type of lens allow to maintain the580

magnification independently of the working distance and therefore allow to remove depth581

effect. It allows here to obtain images of the whole region of interest (field of view: 70.4 mm582

×52.8 mm). This lens is equipped with a 5Mp CCD camera (Camera 1: Allied Vision Pike).583

On the opposite side, a 29Mp CCD camera (Camera 2: Allied Vision Prosilica GT6600)584

equipped with a macro lens (ZEISS PLANAR T 2.0/100 ZF MACRO) were rather selected585

to retrieve high resolution images of the speckled surface. In this case, the intention was586

to correctly resolve the small pattern created on the surface. The working distance of the587

macro lens was set to encompass almost the same region of interest (see Fig. 25). The588

resulting image has a resolution of about 78 pixels/mm. The zoom presented in Fig. 23b589

allows to better apprehend the type of texture which are later treated by the FE-DIC. Note590

that the spots are on average more than 7 pixels, which is a little larger than the value591

recommended for DIC [54]. The lighting during such an experiment is a problem in itself.592
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It was indeed tricky to light correctly one side without dazzling the cameras placed on the593

opposite side. Fig. 22 illustrates how this problem was solved: 2 LED spotlights were used594

on each side. This same figure reveals an additional stereo DIC bench in the background.595

The latter allowed us to verify that there was no significant out-of-plane movement during596

sample clamping or during the test (the maximum out-of-plane displacement measured is at597

most a few tenths of a millimeter in the gauge region). This feature will consequently no598

longer be used, or commented on, in what follows.599

(a) Image of the unspeckled face provided to the ADDICT.

Image resolution: 4.5 pixels per mm. Definition of the

sub-image presented: 88× 73.

(b) Image of the speckled face provided to the FE-DIC. Image

resolution: 78 pixels per mm. Definition of the sub-image

presented: 1218× 1558.

Figure 23: Zoom on a specific region of the sample.

The macroscopic load (F̄ ) - displacement (Ū) curve recorded during the experiment is600

plotted in Fig. 24. The dots indicate when the images were captured. For the DIC analysis601

which follow, we set the reference image fi (i = 1 unspeckled face, i = 2 speckled face) as602

the first images captured after the mechanical jaws were clamped (point (Ū , F̄ ) = (0, 0) of603

the curve in Fig. 24). Up to about 3 kN, the sample exhibit an elastic macroscopic response.604

Beyond that, the sample undergoes an irreversible strain, highlighted by the discharges.605

From now on, we will limit ourselves to present the DIC measurements only for a deformed606

state indicated by the red dot on Fig. 24 (point (Ū , F̄ ) = (1.05 mm, 4.73kN)). The total607
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macroscopic strain is then estimated at 1.5%, while the corresponding residual macroscopic608

strain is about 0.8%. The corresponding images are then noted gi.609

Figure 24: Experimental force (F̄ )-displacement (Ū) curve. Discharges were performed to highlight the

non-linear nature of the deformation. Each point corresponds to the acquisition of images. The red one

indicates the state that is analyzed in the sequel.

We now propose to measure the displacement fields by image correlation between the610

reference state (f) and the deformed state (g) images. The recorded images on the speckle-611

free side (f1 and g1) are processed by ADDICT. As we want to test our method in conditions612

similar to those described above (i.e. with only a few pixels in the strut thickness), the613

images are downsampled before being processed. Here, we proceed to three successive data614

binning leading to images of 256 pixel ×306 pixels definition (see Fig. 23a). The resolution615

of the resulting images is then about 4.5 pixels/mm. We then automatically define the616

implicit geometry of the ROI by building an image-based model as detailed in Section 2.2617

(see Fig. 25a). The binary threshold value for the level-set segmentation is here simply set to618

(max(f1)+min(f1))/2. Since plastic strains are expected, the regularization parameter λK is619

set approximately to the optimal value identified in Fig. 17 of section 3.5. When taking into620

account the resolution of the experimental images, the corresponding cut-off wave-length is621

set lK = 50 pixels. This is confirmed by a new study based on the L-curve. Fig. 26 shows622

that the optimal regularization length lies indeed in the interval J25, 75K pixels. For their623
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part, the high-resolution images (f2 and g2) of the speckled side of the specimen are analyzed624

using the open-source FE-DIC library Pyxel [71]. The unstructured T3 measurement mesh625

is generated from the very same CAD data used for machining. The average element size626

is set to 0.2 mm to ensure theoretically that any element encompasses at least one spot. In627

this 2D configuration, the transformation between the mesh reference frame and the image628

reference frame (designated projector in this library) is described here with 4 parameters: one629

rotation around the optical axis, two in plane translations and one scaling. Those parameters630

are automatically identified by imposing that the projection of nodes on the edges must be631

aligned with the corresponding edges detected in the images (see Fig. 25b). In practice, we632

can check that only a few elements do not benefit from grey-scale gradients (see Fig. 29).633

(a) Grid and level-set used to perform ADDICT on the

speckle-free face.

(b) FE-DIC mesh used to measure the displacement field on

the speckled face.

Figure 25: ADDICT (speckle-free face) and FE-DIC (speckled face) discretizations.
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Figure 26: Influence of the regularization lengths for the experimental test-case. Variation of lK .

The longitudinal displacement ux and transverse displacement uy fields measured by634

ADDICT (exponent 1) and FE-DIC (exponent 2) are respectively compared in Figs. 27 and635

28. The maps provided by the two techniques are practically indistinguishable to the naked636

eye.637

A quantitative analysis based on the hypothesis of 2D kinematics is now proposed. In638

the present situation, as in section 3, we can indeed directly project the displacement fields639

provided by ADDICT on the integration points of the FE-DIC technique (see Fig. 29).640

Fig. 30 presents the relative difference between the ADDICT and the FE-DIC measurements641

|u1 − u2|
Ū

, where Ū stands for the imposed grips displacement. In no case do the observed642

differences exceed 3% of Ū . The local fluctuations for both components are explained by the643

uncertainty of the FE-DIC measurement. To complete these comparisons, we propose to look644

at the strains inside the struts (see Fig. 31). Not surprisingly, the regularized measurement645

leads to less noisy strains and less sharp gradients. Nevertheless, ADDICT allows us to646

correctly locate the most severely strained regions. In general, we note that the largest647

deviations are observed on the left and right edges of the ROI. This was expected and is due648

to the non-physical regularization required on these edges to force ADDICT to converge.649

The information provided in the immediate vicinity of these regions should therefore be650

taken with caution.651

In addition to the relevance of the results provided, it should be noted that the use of652
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ADDICT does not require any wizardly parameterisation. Indeed, it should be remembered653

that the behaviour chosen for the regularization is elastic, and no optimization of the gray654

level threshold to adjust the position of the level-set has been performed (i.e. the description655

of the geometry has not be optimized - see Fig. 29).656

(a) ADDICT measurements with low

resolution speckle-free images.

(b) FE-DIC measurement with high

resolution speckled images.

(c) FE displacement field computed with

Abaqus.

Figure 27: Comparison of the longitudinal displacement fields ux(mm) measured with ADDICT (u1),

FE-DIC (u2) and computed with Abaqus (section 3.1) for an imposed displacement Ū = 1.05 (Fig. 7).

(a) ADDICT measurements with low

resolution speckle-free images.

(b) FE-DIC measurement with high

resolution speckled images.

(c) FE displacement field computed with

Abaqus.

Figure 28: Comparison of the transverse displacement fields uy(mm) measured by ADDICT (u1), FE-DIC

(u2) and computed with Abaqus (section 3.1) for an imposed displacement Ū = 1.05 (Fig. 7).
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Figure 29: Point cloud belonging to the intersection of the level-set geometry and the FE geometry.

(a) Longitudinal relative error
|u1x − u2x|

Ū
. (b) Transverse relative error

|u1y − u2y |
Ū

.

Figure 30: Relative displacement error map between ADDICT (u1) and FE-DIC measurements (u2). The

difference is scaled by the displacement Ū imposed to the grips.
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(a) ADDICT measurements with low resolution unspeckled

images.

(b) FE-DIC measurement with high resolution speckled

images.

Figure 31: Measured Von Mises strain εvm.

Since the ADDICT measured a relevant displacement field, it becomes possible to validate657

a simulation by using only the low resolution speckle-free images. Consider, for example, the658

FE model introduced in section 3.1. The constitutive parameters adopted to describe the659

elasto-plastic behaviour of the struts are those presented in Table 1. Simple boundary condi-660

tions such as those presented in Fig. 7 are adopted. The imposed displacement u0 is fixed at661

the value of the measured grips displacement u0 = −Ū . The longitudinal and transverse dis-662

placement fields computed with Abaqus are respectively compared to the measurements in663

Fig. 27 and Fig. 28. The observed differences between the simulated and measured fields are664

much greater than the difference between the measurement fields. The simulated resultant665

F̄ is also very different from the load measured at this stage (Fig. 24). This means that there666

is clearly room for an improvement of the simulation (ie. discretization, model, constitutive667

parameters). Considering that the mesh is sufficiently fine, and that the selected model is668

relevant, we could consider identifying the constitutive parameters. A classical FEMU ap-669

proach, such as that proposed by [15], but again based on measurements carried out with670

speckle-free images, could be adopted. Other identification strategies, entirely in line with671
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the approach initiated here with ADDICT, could also be adopted [25, 26]. Although fas-672

cinating, this topic is beyond the scope of this presentation and would require a separate673

study.674

5. Discussion675

As stated in the introduction and reported in many papers of the literature, in the absence676

of texture at a scale smaller than the cell struts, the grey-scale conservation functional alone677

is unable to estimate local strains even roughly. Nor can it alone identify a strut that localises678

more strain than others. On the other hand, this functional makes it possible to estimate679

the macroscopic component of the displacements provided that any sufficient strong (subset680

or element size) or weak (Tikhonov like) regularization is used.681

In this study, we showed that it is possible to complement this macroscopic estimate682

obtained by the grey-level functional with an estimate at the microscopic scale by relying683

weakly on an a priori assumption of the underlying physics. Although not limiting, the684

assumption used here was linear elasticity, even if the observed behaviour was non-linear.685

In data assimilation, it is classic to complete a partial measurement with a model. For686

example, in [43], a stereo measurement is made on the upper (visible) side of a specimen, and687

the displacements of the lower (non-visible) side are estimated using a model. In a sense, this688

approach is similar to the one proposed here. More interestingly, the regularization weighting689

parameter lK acts as a flexible way to separate the scales: the parts of the displacement of690

wavelength greater than lK are handled by the grey-scale metric (if sufficient image gradients)691

while the ones smaller than lK by the model.692

We provided the numerical evidence that (a) the L-curve technique allows to choose this693

parameter objectively, (b) the optimal length coincides with the minimum of the true error694

and (c) the optimal length predicted with this technique is fully consistent with the lengths695

involved in the architecture of the material studied. It is thus not totally indispensable to go696

through the L-curve study to find a suitable parameter, since observations of the architecture697

of the material (with possible computation of the auto-correlation) may be sufficient as a698

first approach.699
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By studying numerous synthetic and real test cases, both linear and non-linear, and with700

the aim of producing, each time, a reliable reference to compare with, we have been able701

to show that this method provides reliable local information on the distribution of strains.702

Indeed, even if the reconstructed geometry does not perfectly match the actual specimen703

geometry, even if the behaviour is not exactly the good one (elastic vs. nonlinear), we have704

shown that the method allows to estimate complex local kinematic fields (displacements and705

strains) in a robust way in very poorly defined images and in the absence of texture. More706

than that, the method allows to identify the distribution of strains in the various struts and707

the zones within each strut where the strain localises, despite the poorly adapted input data.708

An immediate prospect, since ADDICT was built for this purpose, is the extension of709

this work to DVC to handle real in-situ experiments performed in a µCT scanner [12, 16,710

17, 18, 19, 20, 15]. This work is in progress. Such a tool should be undoubtedly valuable for711

studying the behaviour of a large number of cellular materials (metallic/polymeric foams,712

bones, wood, additively manufactured lattice structures...). However, the computational713

cost issue may become a concern in 3D. Domain decomposition techniques or model reduc-714

tion techniques particularly adapted to the tensor structure of B-splines could then be used715

advantageously [59, 18, 33]. The DIB model could also be enhanced by other instrumenta-716

tion modalities (photogrammetry [72], stereo DIC...) A slightly further perspective is the717

extension of ADDICT to multi-phase materials. Among other perspectives, a very inter-718

esting avenue concerns the regularization operator. It is indeed possible, with exactly the719

same formalism, to consider more advanced models (in particular non-linear ones) [26]. In720

particular, it would be interesting to update the constitutive parameters of the regularization721

model, which is possible within the very same framework [25, 26].722

Acknowledgements723

The authors would like to gratefully thank Laurent Crouzeix for his help during the724

experiments, Abdallah Bouzid for the fabrication of the samples and Vivien Murat for the725

speckle deposit.726

43



Funding acknowledgements727

This work was supported by Région Occitanie and Université Fédérale Toulouse-Midi-728
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