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The Malliavin-Stein method for Hawkes functionals

Caroline Hillairet∗ Lorick Huang† Mahmoud Khabou‡ Anthony Réveillac§

April 4, 2021

Abstract

In this paper, following Nourdin-Peccati’s methodology, we combine the Malliavin calculus
and Stein’s method to provide general bounds on the Wasserstein distance between func-
tionals of a compound Hawkes process and a given Gaussian density. To achieve this, we
rely on the Poisson embedding representation of an Hawkes process to provide a Malliavin
calculus for the Hawkes processes, and more generally for compound Hawkes processes.
As an application, we close a gap in the literature by providing the first Berry-Esséen
bounds associated to Central Limit Theorems for the compound Hawkes process.

Keywords: Hawkes process; Malliavin’s calculus; Stein’s method; Limit Theorems; Berry-
Esséen bounds

1 Introduction

Hawkes processes are an efficient generalisation of the Poisson processes to model a sequence
of arrivals over time of some type of events, that present self-exciting feature, in the sense that
each arrival increases the rate of future arrivals for some period of time. This class of counting
processes allows one to capture in a more accurate way, compared to inhomogeneous Poisson
processes or Cox processes, self-exciting phenomena. Introduced by Hawkes in [12], there was
historically a first boom in their application in seismology. Since then they have been widely
used in many different fields, among which neurosciences, social network models, biology and
population dynamics, finance or insurance. In finance, they are accurate to model for example
credit risk contagion [10], order book or the microstructure noise’s feature of financial markets
[2]. In insurance also, some risks exhibit self-exciting features, as it is the case for cyber risk
[4].
Naturally in all these applications, long term behaviour of the Hawkes process H := (Ht)t≥0

(or of functionals of H) are of interest. Although we will focus only on (central) limit theorems
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for Hawkes functionals, we mention that large deviation principles have also been intensively
studied in the literature (see [5] for the first work in that direction for linear Hawkes processes
with many extensions in the non-linear case).

The first main analysis of (central) limit theorems for Hawkes processes has been derived
in [1]. For the sake of the presentation, we recall that a Hawkes process is a counting process
H := (Ht)t≥0 with stochastic intensity λ := (λt)t≥0 given by

λt = µ+

∫
(0,t)

Φ(t− s)dHs,

where µ ≥ 0 and Φ : R+ → R+ are two given parameters. Under an integrability assumption
(which reads as Assumption 3.2 below), according to1 [1, Theorem 2],(

HTv −
∫ Tv

0 E[λs]ds√
T

)
v∈[0,1]

L−S−→
T→+∞

(σ̃Wv)v∈[0,1], (1.1)

where L − S stands for the convergence in law as a process in the Skorokhod topology with
σ̃ > 0 an explicit constant depending only on µ and Φ and W a Brownian motion. This result
is a consequence of the martingale limit theorem that can be found as [1, Lemma 7] (once
again we present a particular case of this result)(

HTv −
∫ Tv

0 λsds√
T

)
v∈[0,1]

L−S−→
T→+∞

(σWv)v∈[0,1], (1.2)

with σ > 0 an explicit constant depending only on µ and Φ (but still different from σ̃ in (1.1)).
Naturally, limit theorems (1.1) and (1.2) come as a second step after a law of large numbers
for Hawkes processes has been derived; program which has been performed in [1].

Generalisations of limit theorems (1.1) and (1.2) have been obtained in [11], [30], [29], [16],
[15], [14] for different functionals of the Hawkes process (to mention a few references) in dif-
ferent contexts.

In spite of this large variety of (functional) limit theorems, it appears that a quantification of
this convergence in a form of a Berry-Esséen bound 2 is not available in the literature. To be
more specific, we are not aware of a Berry-Esséen bound for the 1-marginal convergence in
law (by taking v = 1 in (1.2)):

HT −
∫ T

0 λsds√
T

L−→
T→+∞

N (0, σ2). (1.3)

Several authors (see [25], [3] or [28]) have used the Nourdin-Peccati methodology to provide
Berry-Esséen-type bounds for the normal approximation of counting processes but no result

1Note that we consider a particular case of the results in [1] which hold for multidimensional Hawkes
processes.

2Actually, Berry-Esséen bounds measure the CLT’s rate of convergence by bounding the distance between
cumulative distribution functions (Kolmogorov-Smirnov metric). Here we keep referring to the term Berry-
Esséen for the quantification of the convergence in the Wasserstein distance.
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in the literature allows one to quantify convergence (1.3). The closest result is the one of [28];
we refer to Remark 3.8 for a discussion on this matter. In this paper, we consider a compound
Hawkes process X := (Xt)t≥0, of the form

Xt =

Ht∑
i=1

Yi, t ≥ 0,

with (Yi)i≥1 a sequence of iid random variables with distribution ν (and independent of H)
and we provide quantitative limit theorems for X in the spirit of (1.2)-(1.3). To this end, we
adapt the (by now classical) Malliavin-Stein approach (initiated in [18] that we will refer to
Nourdin-Peccati’s approach) to derive general bounds in the Wasserstein distance between a
class of functionals of the compound Hawkes process and a given Gaussian density (see Theo-
rem 3.4 and especially Relation (3.3)). More precisely, we make use of the Poisson embedding
representation of the Hawkes process (initially introduced in [6]) which allows one to write
the Hawkes process H together with its intensity process λ and the compound process X as
the unique solution of an SDE driven by a Poisson measure N on R2

+ ×R (see Theorem 2.12
below) to derive a Malliavin calculus with respect to the Hawkes process. This completes the
analysis initiated for a general Hawkes process in [13], where already a Mecke formula has
been obtained. With this material at hand, we can then consider a large class of Hawkes
functionals F (taking the form of a divergence operator with respect to the baseline Poisson
measure N) for which we adapt the Malliavin-Stein method of [18] (or more precisely in this
Poisson context of [22]) to derive bounds between the Wasserstein distance of any functional
F as above and any distribution N (0, σ2) with σ2 > 0.

Our approach includes as a particular case of these functionals, the compound Hawkes pro-
cess itself (centered) and counterpart of Convergence (1.3) for the Hawkes process H can be
quantified in the Wasserstein distance denoted by dW (see Theorem 3.10 and Theorem 3.12).
For instance, in the famous cases of exponential and Erlang’s kernels3

dW

(
XT −m

∫ T
0 λsds√
T

,G

)
≤
CΦ,ν√
T
, ∀T > 0, G ∼ N (0, σ2 ϑ2),

where CΦ,ν and σ2, ϑ2 are explicit constants and m :=
∫
R xν(dx) (see Theorem 3.12 for a

precise statement). As Theorem 3.10 suggests, we were not able to prove the general T−1/2

rate for any kernel Φ. Indeed, the term in the bound requires some specific estimates on some
cross-correlations of the intensity process of the given Hawkes process that we were not able
to perform in a general framework. These correlation estimates are for sure of interest outside
the scope of this paper. We refer to Section 3.2.1 for a review of our results on quantitative
counterparts of limit theorems (1.2)-(1.3) regarding the (compound) Hawkes process.

The paper is organised as follows. First we derive in Section 2 elements of stochastic anal-
ysis for the Hawkes process including the Poisson embedding SDE and the definition of a
Malliavin calculus for the Hawkes process (following our companion paper [13]). The main
element of the Malliavin-Stein method is also presented in this section. General bounds for
Hawkes functionals are presented in Section 3.1 and the Berry-Esséen bounds associated to

3The exponential kernel refers to Φ(t) := αe−βt, whereas Erlang’s kernel refers to Φ(t) := αte−βt where in
both cases α, β are well-chosen positive constants.
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generalisation for the Central Limit Theorem 1.2 are presented in Section 3.2, starting with a
review of our quantitative limit theorems for the compound Hawkes process in Section 3.2.1.
Technical lemmata including some results on exponential and Erlang kernels are contained in
the Appendix (Section 4).

2 Notations and preliminaries

In this section we list all the mathematical framework we will use in our analysis. More pre-
cisely, we first recall some general elements of stochastic analysis in Section 2.1. Then with
this material at hand, we make precise in Section 2.2 the representation of the compound
Hawkes process as a solution to an SDE with respect to a Poisson random measure. The
former representation will turn to be fundamental in our analysis and we provide in Section
2.3 the Malliavin derivative of the compound Hawkes process and give an integration by parts
formula in Theorem 2.20 which completes the Mecke formula obtained in [13]. Finally, we
recall the main elements of Stein’s method in Section 2.4.

For E a topological space, we set B(E) the σ-algebra of Borelian sets.

2.1 Elements of stochastic analysis on the Poisson space

Let ν be a Borelian measure on R with ν(R) = 1 and ν({0}) = 0.

In this section we model a Hawkes process and a compound Hawkes process using the Poisson
embedding representation (or thinning procedure) in the spirit of [13]. To this end, we need
three variables for the Poisson measure : t for the jump times, x will stand for the size the
jump (whose distribution ν) and θ will play the role of an auxiliary variable required for the
representation itself (according to the thinning algorithm).

Let the space of configurations

ΩN :=

{
ωN =

n∑
i=1

δ(ti,θi,xi), 0 = t0 < t1 < · · · < tn, (θi, xi) ∈ R+ × R, n ∈ N ∪ {+∞}

}
.

Each path of a counting process is represented as an element ωN in ΩN which is a N-valued
measure on R2

+ × R. Let FN be the σ-field associated to the vague topology on ΩN , and PN
the Poisson measure under which the counting process N defined as :

N([0, t]× [0, b]× (−∞, y])(ω) := ω([0, t]× [0, b]× (−∞, y]), t ≥ 0, (b, y) ∈ R+ × R,

is an homogeneous Poisson process with intensity measure dt ⊗ dθ ⊗ ν, that is, for any
(t, b, y) ∈ [0, T ] × R+ × R, N([0, t] × [0, b] × (−∞, y]) is a Poisson random variable with
intensity b t ν((−∞, y]).

We set FN := (FNt )t≥0 the natural history ofN , that is FNt := σ(N(T ×B), T ⊂ B([0, t]), B ∈
B(R+ × R)). Let also, FN∞ := limt→+∞FNt . The expectation with respect to PN is denoted
by E[·]. For t ≥ 0, we denote by Et[·] the conditional expectation E[·|FNt ].
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We describe some elements of stochastic analysis on the Poisson space, especially the shift
operator, the Malliavin derivative and its dual operator : the divergence.

Definition 2.1 (Shift operator). We define for (t, θ, x) in R+×R+×R the measurable maps

ε+
(t,θ,x) : ΩN → ΩN

ω 7→ ε+
(t,θ,x)(ω),

where for any A in B(R+ × R+ × R)

(ε+
(t,θ,x)(ω))(A) := ω(A \ (t, θ, x)) + 1A(t, θ, x),

with

1A(t, θ, x) :=

{
1, if (t, θ, x) ∈ A,
0, else.

Lemma 2.2. Let t ≥ 0 and F be an FNt -measurable random variable. Let v > t and (θ, x) ∈
R+ × R. It holds that

F ◦ ε+
(v,θ,x) = F, P− a.s..

Definition 2.3 (Malliavin derivative). For F in L2(Ω,FN∞,P), we define DF the Malliavin
derivative of F as

D(t,θ,x)F := F ◦ ε+
(t,θ,x) − F, (t, θ, x) ∈ R2

+ × R.

Remark 2.4. Our approach follows [23, 24]. In our setting, the measure ν induces a Malli-
avin calculus for the compound Poisson process as a Lévy process. In that realm, the previous
Malliavin calculus was extended to general Lévy processes in [26]. There the Malliavin deriva-

tive takes the form of : D(t,θ,x)F :=
F◦ε+

(t,θ,x)
−F

x but the intensity measure is not exactly the
one we consider here. Hence, here we decided to follow the classical approach (without the 1/x
normalisation) with compensator ν (we refer to [17] or [24, Section 6.7] for more details) as
our baseline process is the Poisson process N and not the compound process

∫
xN(dt, dθ, dx).

The following definition is a by-product of [23, Théorème 1] (see also [20]).

Definition 2.5. Let I be the sub-sigma field of B(R2
+ × R) ⊗ FN of stochastic processes

Z := (Z(t,θ,x))(t,θ,x)∈R+×R+×R in L1(Ω× R2
+ × R),P⊗ dt⊗ dθ ⊗ ν) such that

D(t,θ,x)Z(t,θ,x) = 0, for a.a. (t, θ, x) ∈ R2
+ × R.

Remark 2.6. Let (t0, θ0, x0) in R2
+×R, (s, t) in R2

+ with t0 < s < t. For T ∈ {(s, t), (s, t], [s, t), [s, t]}
and B in B(R2

+ × R), we have that :

N ◦ ε+
(t0,θ0,x0)(T ×B) = N(T ×B).

Definition 2.7. We set S the set of stochastic processes Z := (Z(t,θ,x))(t,θ,x)∈R2
+×R in I such

that :

E

[∫
R2
+×R

∣∣Z(t,θ,x)

∣∣2 dtdθν(dx)

]
+ E

(∫
R2
+×R

Z(t,θ,x)N(dt, dθ, dx)

)2
 < +∞,
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where
∫
R2
+×R

Z(t,θ,x)N(dt, dθ, dx) is understood in the sense of the Stieltjes integral.

For Z in S, we set the divergence operator with respect to N as

δN (Z) :=

∫
R2
+×R

Z(t,θ,x)N(dt, dθ, dx)−
∫
R2
+×R

Z(t,θ,x)dtdθν(dx). (2.1)

We conclude this section with the integration by parts formula on the Poisson space (see [23,
Remarque 1])

Proposition 2.8 (See e.g. [23]). Let F be in L2(Ω,FN∞,P) and Z be in S. We have that

E
[
FδN (Z)

]
= E

[∫
R2
+×R

Z(t,θ,x)D(t,θ,x)Fdtdθν(dx)

]
. (2.2)

2.2 Representation of the compound Hawkes process

We first recall the definition of a Hawkes process.

Definition 2.9 (Standard Hawkes process, [12]). Let µ > 0 and Φ : R+ → R+ be a bounded
non-negative map with ‖Φ‖1 :=

∫ +∞
0 Φ(u)du < 1. A standard Hawkes process H := (Ht)t≥0

with parameters µ and Φ is a counting process such that

(i) H0 = 0, P− a.s.,

(ii) its (FN -predictable) intensity process is given by

λt := µ+

∫
(0,t)

Φ(t− s)dHs, t ≥ 0,

that is for any 0 ≤ s ≤ t and A ∈ FNs ,

E [1A(Ht −Hs)] = E

[∫
(s,t]

1Aλrdr

]
.

This definition can be generalized as follows.

Definition 2.10 (Generalized Hawkes process). Let v ≥ 0, hv be a FNv -measurable random
variable with valued in N, µv := (µv(t))t≥v a positive map such that µv(t) is FNv -measurable
for any t ≥ v, and Φ : R+ → R+ be a bounded non-negative map with ‖Φ‖1 < 1. A Hawkes
process on [v,+∞) with parameters µv, hv and Φ : R+ → R+ is a (FN -adapted) counting
process H := (Ht)t≥v such that

(i) Hv = hv, P− a.s.,

(ii) its (FN -predictable) intensity process is given by

λt := µv(t) +

∫
(v,t)

Φ(t− s)dHs, t ≥ v,

that is for any v ≤ s ≤ t and A ∈ FNs ,

E [1A(Ht −Hs)|Fv] = E

[∫
(s,t]

1Aλrdr
∣∣∣Fv] .
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Definition 2.11 (Compound Hawkes process). Let µ > 0, Φ : R+ → R+ be a bounded non-
negative map with ‖Φ‖1 < 1 and (Yi)i≥1 be iid random variables, with common distribution
ν, and independent of the Hawkes process H with parameters µ and Φ. We name compound
Hawkes process X := (Xt)t≥0 a stochastic process with representation :

Xt =

Ht∑
i=1

Yi, t ≥ 0. (2.3)

We now represent a Hawkes process (and a compound Hawkes process) as the unique solution
to an SDE driven by N . This representation relies on the "Poisson embedding" (or "Thinning
Algorithm" (see e.g. [6, 7, 8, 21] and references therein). The next result is an extension of
[13, Theorem 3.3].

Theorem 2.12 (See [13]). Let µ > 0 and Φ : R+ → R+ such that ‖Φ‖1 < 1. The SDE below
admits a unique4 solution (X,H, λ) with H (resp. λ) FN -adapted (resp. FN -predictable)

Xt =

∫
(0,t]×R+×R

x1{θ≤λs}N(ds, dθ, dx), t ≥ 0,

Ht =

∫
(0,t]×R+×R

1{θ≤λs}N(ds, dθ, dx), t ≥ 0,

λt = µ+
∫

(0,t) Φ(t− u)dHu, t ≥ 0.

(2.4)

In addition, (H,λ) is a Hawkes process in the sense of Definition 2.9. We set FH := (FHt )t≥0

(respectively FX := (FXt )t≥0) the natural filtration of H (respectively of X) and FH∞ :=
limt→+∞FHt (respectively FX∞ := limt→+∞FXt ). Obviously FHt ⊂ FXt ⊂ FNt as H is com-
pletely determined by the jump times of H which are exactly those of X.
Finally, X is a compound Hawkes process in the sense of Definition 2.11.

Remark 2.13. The definition above is based on the following notation. Indeed, the rigorous
definition of H is given as :

H(T ) :=

∫
R+×R+×R

1{s∈T }1{θ≤λs}N(ds, dθ, dx), T ∈ B(R+),

X(T ) :=

∫
R+×R+×R

x1{s∈T }1{θ≤λs}N(ds, dθ, dx), T ∈ B(R+).

Then by convention we set Ht := H([0, t]), Xt := X([0, t]) and Ht− := H([0, t)), Xt− :=
X([0, t)) for any t > 0, with H0 := X0 := 0.

Remark 2.14. We have decided to include in our analysis the case of compound Hawkes
processes and not simply the one of Hawkes processes. By choosing ν(dx) = δ1(dx) (the Dirac
measure concentrated at x = 1) one obviously recover the construction of the Hawkes process
as in [13] and in that case one can just consider N to be a Poisson measure on R2

+.
4we refer to [13, Theorem 3.3] for a precise statement about uniqueness
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2.3 Malliavin analysis of the compound Hawkes process

We now wish to describe the impact of the Malliavin derivative on the Hawkes process. Once
again this material relies on the one provided in [13]. The objective of this section is to derive
an integration by parts formula for the Hawkes functionals as Theorem 2.20.

Lemma 2.15. Let t and v in R+, (θ, x) and (θ0, x0) in R+ × R, it holds that :

1{θ≤λt}(Xv ◦ ε+
(t,θ,x), Hv ◦ ε+

(t,θ,x), λv ◦ ε
+
(t,θ,x))v≥0

= 1{θ0≤λt}(Xv ◦ ε+
(t,θ0,x), Hv ◦ ε+

(t,θ0,x0), λv ◦ ε
+
(t,θ0,x0))v≥0.

Proof. The proof relies on the very definition of the shift operator ε+
(t,θ,x) and on the structure

of the Hawkes process. Indeed, the intensity is impacted (on (t,+∞)) by the addition of a
jump to H at time t, but the value of this jump for H is equal to 1, and this for any θ such
that θ ≤ λt. In other words : for v ≥ t on {θ ≤ λt}

Hv ◦ ε+
(t,θ0,x0) = Ht− +

(∫
[t,v]×R+×R

1{θ≤λu}N(dθ, du, dy)

)
◦ ε+

(t,θ0,x0)

= Ht− +

(∫
(t,v]×R+×R

1{θ≤λu}N(dθ, du, dy)

)
◦ ε+

(t,θ0,x0)

= Ht− + 1{θ0≤λt} +

∫
(t,v]××R

∫
R+

1{θ≤λu◦ε+(t,θ0,x0)}
N(dθ, du, dy),

and Hv ◦ε+
(t,θ0,x0) = Hv for any v < t. Note that it is part of the definition of the shift operator

(see Definition 2.1) to remove the possible natural jump at time t, which explain why we move
from the integral

∫
[t,v] to

∫
(t,v] in the computations above. Similarly, for v ≥ t

Xv ◦ ε+
(t,θ0,x0) = Xt− +

(∫
(t,v]×R+×R

y1{θ≤λu}N(dθ, du, dy)

)
◦ ε+

(t,θ0,x0)

= Xt− + x01{θ0≤λt} +

∫
(t,v]×R

∫
R+

y1{θ≤λu◦ε+(t,θ0,x0)}
N(dθ, du, dy),

and Xv ◦ ε+
(t,θ0,x0) = Xv for any v < t. In a similar fashion, λv ◦ ε+

(t,θ0,x0) = λv for any v ≤ t
and for v > t,

λv ◦ ε+
(t,θ0,x0) =

(
µ+

∫
(0,t)

Φ(v − u)dHu +

∫
[t,v)

Φ(v − u)dHu

)
◦ ε+

(t,θ0,x0)

= µ+

∫
(0,t)

Φ(v − u)dHu + Φ(v − t) +

∫
(t,v)

Φ(v − u)d(Hu ◦ ε+
(t,θ0,x0)).

In other words, (X ◦ ε+
(v,θ0,x0), H ◦ ε

+
(v,θ0,x0), λ ◦ ε

+
(v,θ0,x0)) solves the same (pathwise and in the

SDE sense) equation for any θ0 such that θ0 ≤ λt.

Proposition 2.16. Let F be a FX∞-measurable random variable. Then for any t ≥ 0, and
∀θ, θ0 ≥ 0, ∀x ∈ R,

1{θ≤λt}D(t,θ,x)F = 1{θ0≤λt}D(t,θ0,x)F, P− a.s..
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Proof. This follows from Lemma 2.15 and the fact that any FXT -measurable random variable
F is a limit of a random variable of the form ϕ((Xt1 , Ht1 , λt1), · · · , (Xtn , Htn , λtn)), with :
0 ≤ t1 < . . . < tn, n ≥ 1 and ϕ a Borelian map from R3n to R. More precisely, H is itself
a functional of X as it is a counting process whose jumps coincide with those of X. But the
fact of distinguishing X and H allows one to note for instance that the Malliavin derivative
of a functional of H does not depend on the x variable for instance.

This motivates the introduction of the following notation.

Definition 2.17. Let t ≥ 0. For a FX∞-measurable random variable F , we set

D(t,λt,x)F := 1{θ≤λt}D(t,θ,x)F, ∀(θ, x) ∈ R+ × R.

As a consequence, if (Fs)s≥0 is a FX -measurable (resp. predictable) process, then D(t,λt,x)Fs =

0 for s < t (resp. for s ≤ t) since D(t,λt,x)Fs = Fs ◦ ε+
(t,λt,x) − Fs and using Lemma 2.2.

Remark 2.18. Let F be a functional of (H,λ). Then for any t ≥ 0, and ∀θ, θ0 ≥ 0, ∀x, y ∈ R,

1{θ≤λt}D(t,θ,x)F = 1{θ0≤λt}D(t,θ0,y)F, P− a.s..

In other words, in that case, the Malliavin derivative does not depend on the variable x.

With this notation at hand, we determine the Malliavin derivative of the compound Hawkes
process.

Proposition 2.19. Let t ≥ 0 and x ∈ R. We have

(D(t,λt,x)Xs, D(t,λt,x)Hs, D(t,λt,x)λs) =

 (x+ X̂t
s, 1 + Ĥt

s, λ̂
t
s), s ≥ t,

(0, 0, 0), s < t

where the equality is understood pathwise and in the SDE sense and where (X̂t
s, Ĥ

t
s, λ̂

t
s)s≥t is

the unique solution to the SDE

Ĥt
s =

∫
(t,s]×R+×R

1{λu≤θ≤λu+λ̂tu}
N(du, dθ, dy), s ≥ t,

X̂t
s =

∫
(t,s]×R+×R

y1{λu≤θ≤λu+λ̂tu}
N(du, dθ, dy), s ≥ t,

λ̂ts = Φ(s− t) +

∫
(t,s)

Φ(s− u)dĤt
u, s > t, λ̂tt = 0.

(2.5)

In addition, (Ĥt
s, λ̂

t
s)s∈[t,+∞) is a generalized Hawkes process, with initial intensity that is not

bounded away from 0.

Proof. Fix t ≥ 0 and x ∈ R. According to Definition 2.17, (D(t,λt,x)X,D(t,λt,x)H,D(t,λt,x)λ)

is given as D(t,λt,x)Xs = Xs ◦ ε+
(t,λt,x) − Xs, D(t,λt,x)Hs = Hs ◦ ε+

(t,λt,x) − Hs, D(t,λt,x)λs =

λs ◦ ε+
(t,λt,x)−λs. Besides, D(t,λt,x)Xs = D(t,λt,x)Hs = 0 for s < t and D(t,λt,x)λs = 0 for s ≤ t.

Let s ≥ t, according to Lemma 2.15 we have that

D(t,λt,x)Hs
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= Ht− + 1 +

∫
(t,s]×R+×R

1{θ≤λu◦ε+(t,λt,x)}
N(dθ, du, dy)−

(
Ht +

∫
(t,s]×R+×R

1{θ≤λu}N(dθ, du, dy)

)

= −(Ht −Ht−) + 1 +

∫
(t,s]×R+×R

1{λu≤θ≤λu◦ε+(t,λt,x)}
N(dθ, du, dy)

= 1 +

∫
(t,s]×R+×R

1{λu≤θ≤λu◦ε+(t,λt,x)}
N(dθ, du, dy), P− a.s..

D(t,λt,x)Xs

= Xt− + x+

∫
(t,s]×R+×R

1{θ≤λu◦ε+(t,λt,x)}
yN(dθ, du, dy)−

(
Xt +

∫
(t,s]×R+×R

1{θ≤λu}yN(dθ, du, dy)

)

= −(Xt −Xt−) + x+

∫
(t,s]×R+×R

1{λu≤θ≤λu◦ε+(t,λt,x)}
yN(dθ, du, dy)

= x+

∫
(t,s]×R+×R

1{λu≤θ≤λu◦ε+(t,λt,x)}
yN(dθ, du, dy), P− a.s..

Note that we ignore the possible jump at time t of H, as it is equal to 0 P-a.s.. This does not
lead to an issue when integrating in t as P [{u, ∆uH 6= 0} < +∞] = 1 (the same comment
apply to X). More generally, the Malliavin derivative DF coincides P⊗ (dt⊗dθ⊗ν)-a.e. with
the operator F ◦ ε+

(t,θ,x)−F where it is understood that we exclude the possible jump of N at
time t which is supported by a set of probability 0. Similarly, for s > t, we have that

D(t,λt,x)λs = Φ(s− t) +

∫
(t,s)

Φ(s− u)d(Hu ◦ ε+
(t,λt,x) − dHu)

= Φ(s− t) +

∫
(t,s)

Φ(s− u)d(D(t,λt,x)Hu).

For s = t, D(t,λt,x)λs = 0 as λ is FH -predictable. Writing λu ◦ε+
(t,λt,x) = λu+D(t,λt,x)λu proves

that (D(t,λt,x)X,D(t,λt,x)H,D(t,λt,x)λ) is solution to SDE (2.5) which admits a unique solution
following [13, Theorem 3.3].
The last claim follows by proving that (Ĥt, λ̂t) is a Hawkes process on [t,+∞). Indeed, for
t ≤ s1 ≤ s2, we have that :

E
[
Ĥt
s2 − Ĥ

t
s1 |F

H
s1

]
= E

[
E
[
Ĥt
s2 − Ĥ

t
s1 |F

N
s1

]
|FHs1

]
= E

[∫ s2

s1

E
[∫

R+

1{λu≤θ≤λu+λ̂tu}
dθ|FNs1

]
dt|FHs1

]
=

∫ s2

s1

E
[
λ̂tu|FHs1

]
dt.

Note that the intensity (λ̂ts)s∈[t,+∞) can reach zero.

We conclude this section by re-writing the integration by parts formula (2.2) for the Hawkes
process.

Theorem 2.20. Set Z := (Z(t,θ))(t,θ)∈R2
+
the stochastic process defined as

Z(t,θ) := 1{θ≤λt}, (t, θ) ∈ R2
+.
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Let Z := (Z(t,x))(t,x)∈R+×R be a FX-predictable process satisfying

E

[∫
R+×R

|Z(t,x)|2λtdtν(dx) +

(∫
R+×R

Z(t,x)λtdtν(dx)

)2
]
<∞.

It holds that

(i) ZZ = (Z(t,x)1{θ≤λt})(t,θ,x)∈R2
+×R belongs to S.

(ii) For any FX∞-measurable random variable F with E[|F |2] < +∞,

E
[
FδN (Z1{θ≤λt})

]
= E

[∫
R+×R

λtZ(t,x)D(t,λt,x)Fdtν(dx)

]
, (2.6)

where D(t,λt,x)F = D(t,θ,x)F1{θ≤λt} for any θ ≥ 0, x ∈ R.

Proof. By construction, λ is FH -predictable. Hence, for any (t, θ, x) in R2
+×R,D(t,θ,x)1{θ≤λt} =

0. So, Z belongs to I. In addition, as Z and λ are predictable, our assumptions imply that

E

(∫
R2
+×R

Z(t,x)Z(t,θ)N(dt, dθ, dx)

)2


≤ 2

E

(∫
R2
+×R

Z(t,x)Z(t,θ)(N(dt, dθ, dx)− dtdθν(dx))

)2


+ E

(∫
(R2

+×R
Z(t,x)Z(t,θ)dtdθν(dx)

)2


= 2

E

[∫
R2
+×R
|Z(t,x)Z(t,θ)|2dtdθν(dx)

]
+ E

(∫
R2
+×R

Z(t,x)λtdtν(dx)

)2


= 2

(
E
[∫

R+×R
|Z(t,x)|2λtdtν(dx)

]
+ E

[(∫
R+×R

Z(t,x)λtdtν(dx)

)2
])

< +∞

and

E
[∫ +∞

0

∫
R+×R

∣∣Z(t,x)Z(t,θ)

∣∣2 dθdtν(dx)

]
= E

[∫ +∞

0

∫
R
|Z(t,x)|2λtdtν(dx)

]
< +∞.

This proves (i). In particular, δN (ZZ) is well-defined and the IBP formula (2.2) is in force.
It gives that

E
[
FδN (ZZ)

]
= E

[∫
R2
+×R

Z(t,x)1{θ≤λt}D(t,θ,x)Fdθdtν(dx)

]

= E
[∫ +∞

0

∫
R
Z(t,x)

∫
R+

1{θ≤λt}D(t,θ,x)Fdθν(dx)dt

]
= E

[∫ +∞

0

∫
R
Z(t,x)

∫ λt

0
D(t,λt,x)Fdθν(dx)dt

]
= E

[∫ +∞

0
λt

∫
R
Z(t,x)D(t,λt,x)Fν(dx)dt

]
.
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2.4 Elements on Stein’s method

Whereas Stein’s method has been introduced by C. M. Stein in [27], the combination of the
Malliavin calculus with Stein’s method (and known as the Nourdin-Peccati’s approach) has
been initiated in [18] for the approximation of Gaussian functionals, extended in [22] for
Poisson functionals (which is closer to our paper). We introduce in this section the original
Stein’s approach which allows one to derive Inequality (2.7) below. Then in the proof of
Theorem 3.4 we will adapt [22] to transform the right-hand side of (2.7) into the right-hand
side of (3.3) using the Malliavin calculus. We refer to [19] for a complete exposition of the
original Stein method and of the Nourdin-Peccati approach.

Definition 2.21. Let F and G two random variables defined on some (Ω,FN∞,P). We recall
that the Wasserstein distance between LF and LG (or simply between F and G) as :

dW (F,G) := sup
h∈Lip

|E[h(F )]− E[h(G)]| ,

with Lip := {h : R→ R differentiable a.e. with ‖h′‖∞ ≤ 1}.

We assume that F is centered. Let G ∼ N (0, σ2). We set

F0
W :=

{
f : R→ R, twice differentiable with ‖f ′‖∞ ≤ 1, ‖f ′′‖∞ ≤ 2, f(0) = 0

}
.

Consider h in Lip. C. M. Stein proved in [27], that there exists a function fh in F0
W solution

to the functional equation (named Stein’s equation) :

h(x)− E[h(G)] = σ2f ′h(x)− xfh(x), ∀x ∈ R.

Plugging F in this equation and taking the expectation, we get that :

|E[h(F )]− E[h(G)]| =
∣∣E[σ2f ′h(F )− Ffh(F )]

∣∣ .
Hence,

dW (F,G) ≤ sup
f∈F0

W

∣∣E[σ2f ′(F )− Ff(F )]
∣∣ . (2.7)

In addition, the right hand side is equal to 0 if and only if F ∼ N (0, σ2).

Remark 2.22. The original result proven by C. M. Stein in [27] was the existence of a function
fh in

FW :=
{
f : R→ R, twice differentiable with ‖f ′‖∞ ≤ 1, ‖f ′′‖∞ ≤ 2

}
.

The sup on F0
W in 2.7 coincides with a sup on FW if F is centered. To see that, it is enough

to replace f ∈ FW by f − f(0) and use the fact that E[f(0)F ] = 0.

3 Main results

We present in Section 3.1 a general bound on the Wasserstein distance between a given Hawkes
functional and a centered Gaussian distribution. This bound is then applied in Section 3.2 to
provide Berry-Esséen bounds for CLTs for compound Hawkes processes. We refer to Section
3.2.1 for a review of our results on quantitative counterparts of limit theorems (1.2)-(1.3)
regarding the compound Hawkes process.
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3.1 The general result

Recall that we consider the compound Hawkes process given as the unique solution to SDE
(2.4) 

Xt =
∫

(0,t]×R+×R x1{θ≤λs}N(ds, dθ, dx), t ≥ 0

Ht =
∫

(0,t]×R+×R 1{θ≤λs}N(ds, dθ, dx), t ≥ 0

λt = µ+
∫

(0,t) Φ(t− u)dHu, t ≥ 0.

Assumption 3.1. Throughout this paper we recall that ν is a probability measure on (R,B(R))
with ν({0}) = 0. In addition, we assume that :

m :=

∫
R
xν(dx) < +∞, ϑ2 :=

∫
R
x2ν(dx) < +∞. (3.1)

Assumption 3.2. The mapping Φ is such that

‖Φ‖1 =

∫ +∞

0
Φ(u)du < 1.

This assumption is fundamental for our analysis as it allows us to set

ψ :=
∑
n≥1

φ(∗n), (3.2)

with φ(∗n) the n-th convolution of φ with itself. We have that∫ +∞

0
ψ(t)dt =

∫ +∞

0

∑
n≥1

φ(∗n)(t)dt =
∑
n≥1

∫ +∞

0
φ(∗n)(t)dt =

∑
n≥1

‖φ‖n1 =
‖φ‖1

1− ‖φ‖1
.

Assumption 3.3. The mapping Φ is such that∫ +∞

0
uΦ(u)du < +∞.

Theorem 3.4. Consider

(i) Z := (Z(t,x))(t,x)∈R+×R a FX-predictable stochastic process such that

E
[∫

R+×R |Z(t,x)|2λtdtν(dx) +
(∫

R+×R Z(t,x)λtdtν(dx)
)2
]
<∞.

(ii) Z := (Z(t,θ))(t,θ)∈R2
+
the stochastic process defined as

Z(t,θ) = 1{θ≤λt}, (t, θ) ∈ R2
+.

(iii) F := δN (ZZ) =
∫
R2
+×R

Z(t,x)Z(t,θ)N(dt, dθ, dx)−
∫
R+×R Z(t,x)λtdtν(dx).

Let γ > 0. Then, letting G ∼ N (0, γ2),

dW (F,G) ≤ E
[∣∣∣∣γ2 −

∫
R+×R

Z(t,x)λtD(t,λt,x)Fdtν(dx)

∣∣∣∣]+E
[∫

R+×R
|Z(t,x)|λt

∣∣D(t,λt,x)F
∣∣2 dtν(dx)

]
.

(3.3)
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Proof. Note first of all that by Theorem 2.20, F is well-defined. Then, let f in F0
W (see

Definition 2.21). As F = δN (ZZ), the integration by parts formula (2.6) leads to

E [f(F )F ] = E
[
f(F )δN (ZZ)

]
= E

[∫
R+×R

Z(t,x)λtD(t,λt,x)f(F )dtν(dx)

]
= E

[∫
R+×R

Z(t,x)λt

(
f(F ◦ ε+

(t,λt,x))− f(F )
)
dtν(dx)

]
.

Using a Taylor expansion, (with F̄ be a random element between FT ◦ ε+
(t,λt,x) and F ) we have

f(F ◦ ε+
(t,λt,x))− f(F ) = f ′(F )D(t,λt,x)F +

1

2
f ′′(F̄ )

∣∣D(t,λt,x)F
∣∣2 .

Hence,∣∣E [γ2f ′(F )− f(F )F
]∣∣

=

∣∣∣∣E [f ′(F )

(
γ2 −

∫
R+×R

Z(t,x)λtD(t,λt,x)Fdtν(dx)

)]
− 1

2
E
[∫

R+×R
Z(t,x)λtf

′′(F̄ )
∣∣D(t,λt,x)F

∣∣2 dtν(dx)

]∣∣∣∣
≤ ‖f ′‖∞E

[∣∣∣∣γ2 −
∫
R+×R

Z(t,x)λtD(t,λt,x)Fdtν(dx)

∣∣∣∣]+
‖f ′′‖∞

2
E
[∫

R+×R
|Z(t,x)|λt

∣∣D(t,λt,x)F
∣∣2 dtν(dx)

]
≤ E

[∣∣∣∣γ2 −
∫
R+×R

Z(t,x)λtD(t,λt,x)Fdt

∣∣∣∣]+ E
[∫

R+×R
|Z(t,x)|λt

∣∣D(t,λt,x)F
∣∣2 dtν(dx)

]
,

as f belongs to F0
W .

In particular, we obtain the following corollary.

Corollary 3.5. For each T > 0, consider ZT := (ZT(t,x))(t,x)∈R+×R defined as :

ZT(t,x) := xαt1t∈[0,T ], t ≥ 0, x ∈ R,

where (αt)t∈[0,T ] is a (FXt )t∈[0,T ]-predictable process. Let also :

FT := δN (ZTZ) =

∫
(0,T ]×R+×R

αsx1{θ≤λs}(N(ds, dθ, dx)− dsdθν(dx))

=

∫
(0,T ]

αtdXt −m
∫ T

0
αtλtdt, m :=

∫
R
xν(dx);

and G ∼ N (0, γ2) for any γ. Then

dW (FT , G) ≤ E
[∣∣∣∣γ2 −

∫ T

0
αtλt

∫
R
xD(t,λt,x)FT ν(dx)dt

∣∣∣∣]+E
[∫ T

0
|αt|λt

∫
R
|x|
∣∣D(t,λt,x)FT

∣∣2 ν(dx)dt

]
.

(3.4)

Before going further we make the following remark showing that somehow the decomposition
above is sharp.
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Remark 3.6. Assume Φ ≡ 0 so that H is an homogeneous Poisson process with intensity µ.
Let m =

∫
R yν(dy) and X is a compound Poisson process which can thus be represented as :

Xt =

HT∑
i=1

Yi,

with (Yi)i≥1 iid random variables independent of H with distribution ν. Assume in addition

that
∫
R
|x|3ν(dx) < +∞. We have that

FT =
XT − µmT√

T
,

λt = µ and

D(t,λt,x)FT =
XT + x−XT√

T
=

x√
T
.

In addition,

γ2 = µϑ2 = µ

∫
R
y2ν(dy).

As a consequence, for ZT(t,x) = x√
T

for all t ∈ [0, T ] in the previous corollary, we get

E
[∣∣∣∣γ2 − 1√

T

∫ T

0

∫
R
λtxD(t,λt,x)FTdtν(dx)

∣∣∣∣] =
∣∣γ2 − µϑ2

∣∣ = 0.

Hence, the speed of convergence is completely contained in that case by the term

1√
T
E
[∫ T

0

∫
R
λt|x|

∣∣D(t,λt,x)FT
∣∣2 dtν(dx)

]
=
µ
∫
R |x|

3ν(dx)
√
T

and thus we recover a Berry-Esséen bound with central speed T−1/2.

Remark 3.7. Before concluding this section we would like to make a comment regarding
the Nourdin-Peccati methodology we applied with a slight modification. Indeed, one realises
that the key ingredient is to consider a random variable F of the form F = δ(u) where u is
a given process (belonging to an appropriate class). In the Nourdin-Peccati’s approach (in
both Gaussian and Poisson frameworks), one consider a centered random variable F that then
naturally belongs to the domain of the Ornstein-Uhlenbeck’s operator L, which can be defined
as LF = −δ(DF ), where once again in both Gaussian and Poisson frameworks D is the Malli-
avin derivative and δ the divergence operator. Hence, writing F = LL−1F = −δ(DL−1F )
one gets back to the previous divergence form.

Coming back to the notations of Theorem 3.4 (and choosing ν(dx) = δ1(dx) for simplicity of
notations), for a Hawkes functional F of the form F = δN (ZZ), by adapting the Nourdin-
Peccati methodology to our framework (so by adapting [22]), one would obtain the inequality
(once again using the notations of Theorem 3.4):

dW (F,G) ≤ E
[∣∣∣∣γ2 −

∫ +∞

0
λt
(
−D(t,λt)L

−1F
)
D(t,λt)Fdt

∣∣∣∣]+E
[∫ +∞

0
|D(t,λt)L

−1F |λt
∣∣D(t,λt)F

∣∣2 dt] .
(3.5)
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However, as F is of the form F = δN (ZZ), bounds (3.3) and (3.5) coincide as :

−D(t,λt)L
−1F = Zt, P⊗ λtdt− a.e.,

or equivalently
−D(t,θ)L

−1F = ZtZ(t,θ), P⊗ dt⊗ dθ − a.e..

Indeed, letting ρ(t,θ) := −D(t,θ)L
−1F , it holds that

δN (ρ) = −δN (−ρ) = −δN (DL−1F ) = LL−1F = F = δN (ZZ).

Finally note that the fact that the bound rewrites in a simpler form for divergence form
functionals has already been observed and exploited (see for instance [25], [3] or [28]).

Remark 3.8. We would like to discuss here the work [28] which is the closest to ours. In
[28], the author makes use of the Poisson embedding representation to apply the Nourdin-
Peccati methodology. So on that regard our work follows the same point of view. However,
the remark (initially pointed out in [13] and fully exploited in this paper) that for a Hawkes
process the impact of the operator D(t,θ,x) on a Hawkes functional is the same regarding the
value of θ (provided that θ ≤ λt) was not found. This remark is made clear in Proposition
2.16 and leads to a simplification of the integration by parts formula (see Relation (2.6)) for
Hawkes functional and thus of the bound in Theorem 3.10 below. In [28], the general case
of a stochastic intensity point process is considered (including non-linear Hawkes processes),
but then calls for some estimates that turn out to fail to be sharp enough in the particular
case of a linear Hawkes process. For instance, when dealing with the particular case of a
Hawkes process, plugging u(t) := 1√

T
1[0,T (t) in [28, Theorem 4.1] leads to an upper bound

which does not converges to 0 as T goes to +∞ (we chose the linear case with Φ(x) := µ+ x
with the notations of [28, Theorem 4.1]). This might have been a motivation to consider
an approximation of the Hawkes process by a counting process (δa in [28, p. 2120]) which is
interesting but which does not cover strictly speaking Convergence (1.3).

3.2 Application to the Hawkes process

3.2.1 Overview of our results

We aim to provide the speed of convergence for the convergence of the renormalized Hawkes
process when T tends to +∞.

We recall that in the case of a (non-compound) Hawkes process (that is Xt = Ht, ν(dx) =
δ1(dx) or equivalently Yi ≡ 1 in (2.3)), it has been proved as [1, Lemma 7] that(

HTv −
∫ Tv

0 λsds√
T

)
v∈[0,1]

L−S−→
T→+∞

(σWv)v∈[0,1],

(with W a Brownian motion and σ2 := µ
1−‖Φ‖1 ) which in particular implies

HT −
∫ T

0 λsds√
T

L−→
T→+∞

N (0, σ2). (3.6)
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In what follows, we provide for a compound Hawkes process X := (Xt)t∈[0,T ],

Xt =

Ht∑
i=1

Yi,

((Yi)i≥1 iid with common distribution ν and independent of H) the counterpart of the normal
convergence (3.6). Let

FT :=
XT −m

∫ T
0 λtdt√

T
, σ2 :=

µ

1− ‖Φ‖1
; ϑ2 =

∫
R
y2ν(dy).

More precisely

1. We give, as Theorem 3.10, a general bound for the speed of convergence (with respect
to T ) of the convergence (3.6) in the generalized case of a compound Hawkes process.

2. We prove, as Theorem 3.12 (see this result for a precise statement), for a compound
Hawkes process, and in case of an exponential kernel Φ(u) = αe−βu, u ≥ 0 (with
0 < α < β) or an Erlang kernel Φ(u) = αue−βu, u ≥ 0 (with 0 < α < β2) the speed of
convergence O

(
1√
T

)
for the counterpart of convergence (3.6) :

dW
(
FT ,N

(
0, σ2 ϑ2

))
≤
Cα,β,ν√

T
;

3. We provide, as Theorem 3.13, for the Hawkes process and in case of an exponential
kernel or of an Erlang kernel, a speed of convergence (with respect to the Wasserstein
distance) of the modified CLT in the spirit of [1, Theorem 2] as follows :

dW
(
YT ,N (0, σ̃2)

)
≤
C̃α,β√
T
,

where YT :=
HT−

∫ T
0 E[λt]dt√
T

and σ̃2 = µ
(1−‖Φ‖1)3

.

3.2.2 Quantitative Limit Theorems for compound Hawkes processes

In order to make precise some of the statements below we recall that the Malliavin derivative
of X, H and λ involves the following parametrized system (see Proposition 2.19).

Notation 3.9. For fixed t ≥ 0, we denote by (X̂t
s, Ĥ

t
s, λ̂

t
s)s≥t the unique solution to the SDE

Ĥt
s =

∫
(t,s]×R+×R

1{λu≤θ≤λu+λ̂tu}
N(du, dθ, dy), s ≥ t,

X̂t
s =

∫
(t,s]×R+×R

y1{λu≤θ≤λu+λ̂tu}
N(du, dθ, dy), s ≥ t,

λ̂ts = Φ(s− t) +

∫
(t,s)

Φ(s− u)dĤt
u, s > t, λ̂tt = 0.
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In addition we introduce different compensated martingale processes for the (shifted) Hawkes
process and the (shifted) compound Hawkes process

Ms := Xs −m
∫ s

0
λudu, s ∈ [0, T ], M̂ t

s := X̂t
s −m

∫ s

t
λ̂tudu, s ∈ [t, T ].

Ms := Hs −
∫ s

0
λudu, s ∈ [0, T ], M̂t

s := Ĥt
s −

∫ s

t
λ̂tudu, s ∈ [t, T ].

Theorem 3.10. Assume Assumptions 3.1, 3.2 and 3.3 are in force. For T > 0, let ZT(t,x) :=
x√
T
, t ∈ [0, T ] and recall

FT = δN (ZTZT ) =
XT −m

∫ T
0 λtdt√

T
.

Let also G ∼ N (0, σ2 ϑ2) with σ2 := µ
1−‖Φ‖1 (recall ϑ2 =

∫
R y

2ν(dy)). There exists a constant
CΦ,ν > 0 depending on Φ and ν only such that for any T > 0

dW (FT , G) ≤
CΦ,ν√
T

+
|m|
T

E
[∣∣∣∣∫ T

0
λtM̂

t
Tdt

∣∣∣∣] ,
where M̂ t is defined in Notation 3.9.

Proof. To ease the presentation, we chose to provide here the main steps of the proof and to
postpone in Section 4 the proof of general results concerning the convergence of moments of
order 2. By Theorem 3.4 we have that

dW (FT , G) ≤ A1 +A2

where

A1 := E
[∣∣∣∣σ2 ϑ2 − 1√

T

∫ T

0

∫
R
xλtD(t,λt,x)FTdtν(dx)

∣∣∣∣] , A2 :=
1√
T
E
[∫ T

0

∫
R
λt|x|

∣∣D(t,λt,x)FT
∣∣2 dtν(dx)

]
.

Note that

σ2 ϑ2 = lim
T→+∞

E[|FT |2] = lim
T→+∞

1

T
E[|MT |2] = d lim

T→+∞

1

T
E[HT ] = d lim

T→+∞

1

T

∫ T

0
E[λt]dt,

and we will quantify the speed of convergence. Before going further, recall that according to
Proposition 2.19,

D(t,λt,x)FT =
1√
T
D(t,λt,x)MT =

1√
T

(
x+ M̂ t

T

)
(3.7)

where (M̂ t
s := X̂t

s−m
∫ s
t λ̂

t
udu)s∈[t,T ], and (Ĥt, λ̂t) is defined by (2.5) and recalled in Notation

3.9. We treat both terms A1 and A2 separately.

Term A1

We have

A1 = E
[∣∣∣∣σ2 ϑ2 − 1√

T

∫ T

0

∫
R
xλtD(t,λt,x)FTdtν(dx)

∣∣∣∣]
18



= E
[∣∣∣∣σ2 ϑ2 − ϑ2

T

∫ T

0
λtdt−

1

T

∫ T

0

∫
R
xλtM̂

t
Tdtν(dx)

∣∣∣∣]
≤
∣∣∣∣σ2 ϑ2 − ϑ2

T

∫ T

0
E[λt]dt

∣∣∣∣+
ϑ2

T
E
[∣∣∣∣∫ T

0
(λt − E[λt])dt

∣∣∣∣]+
|m|
T

E
[∣∣∣∣∫ T

0
λtM̂

t
Tdt

∣∣∣∣]
=: A1,1 + ϑ2A1,2 + |m|A1,3.

By Lemma 4.1 (in Section 4),

A1,1 = O

(
1

T

)
. (3.8)

We turn to term A1,2. According to the second line of [1, Lemma 4] one has

HT − E[HT ] =MT +

∫ T

0
ψ(T − s)Msds,

whereMt = Ht −
∫ t

0 λsds. By subtracting HT from the equation one gets

−E[HT ] = −
∫ T

0
λsds+

∫ T

0
ψ(T − s)Msds,

thus since E[HT ] =
∫ T

0 E[λs]ds∫ T

0
λs − E[λs]ds =

∫ T

0
ψ(T − s)Msds.

This means that

A1,2 ≤
1

T

∫ T

0
ψ(T−s)E[|Ms|]ds ≤

1

T

∫ T

0
ψ(T−s)E[|Ms|2]1/2ds ≤ 1

T

∫ T

0
ψ(T−s)E[Hs]

1/2ds.

According to the proof of [1, Lemma 5], with Assumption 3.3 that
∫ +∞

0 sφ(s)ds < +∞, then
C :=

∫ +∞
0 sψ(s)ds < +∞ and a fortiori ∀p ∈ [0, 1],

∫ +∞
0 spψ(s)ds < +∞. Following once

again [1, Lemma 4],

E[Ht] = µt+

∫ t

0
ψ(t− s)sds = µt+

∫ t

0
ψ(s)(t− s)ds ≤ (µ+ ‖ψ‖1)t+ C.

Hence, using
√
a+ b ≤

√
a+
√
b we have the following inequality

E[Ht]
1/2 ≤ A

√
t+B.

Now the term A1,2 becomes bounded by

A1,2 ≤
A

T

∫ T

0
ψ(T − s)

√
sds+

B

T

∫ T

0
ψ(T − s)ds,

≤ A

T

∫ T

0
ψ(s)
√
T − sds+

B

T
‖ψ‖1,

≤ A√
T

∫ T

0
ψ(s)

√
T − s
T

ds+
B

T
‖ψ‖1,
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≤ A√
T

∫ T

0
ψ(s)ds+

B

T
‖ψ‖1,

≤ (
A√
T

+
B

T
)‖ψ‖1,

leading to

A1,2 = O

(
1√
T

)
. (3.9)

Combining (3.8) and (3.9) we get that

A1 = O

(
1√
T

)
+
|m|
T

E
[∣∣∣∣∫ T

0
λtM̂

t
Tdt

∣∣∣∣].
Term A2

Recall that

A2 =
1√
T
E
[∫ T

0

∫
R
λt|x|

∣∣D(t,λt,x)FT
∣∣2 ν(dx)dt

]
≤

2
∫
R |x|

3ν(dx)

T 3/2
E
[∫ T

0
λtdt

]
+

2

T 3/2
E
[∫ T

0

∫
R
|x|λt

∣∣∣M̂ t
T

∣∣∣2 ν(dx)dt

]
=

2
∫
R |x|

3ν(dx)

T 3/2
E
[∫ T

0
λtdt

]
+

2
∫
R |x|ν(dx)

T 3/2
E
[∫ T

0
λt

∣∣∣M̂ t
T

∣∣∣2 dt]
=: 2

(∫
R
|x|3ν(dx)A2,1 +

∫
R
|x|ν(dx)A2,2

)
.

By Lemma 4.1, we immediately get that

A2,1 = O

(
1√
T

)
. (3.10)

Finally, for Term A2,2, it holds that

A2,2 =
1

T 3/2
E
[∫ T

0
λt

∣∣∣M̂ t
T

∣∣∣2 dt]
=

1

T 3/2

∫ T

0
E
[
λtE

[∣∣∣M̂ t
T

∣∣∣2 |Ft]] dt
=

1

T 3/2

∫ T

0
E
[
λtE

[∫ T

t

∫
R

∫
R+

x21{θ≤λ̂tu}N(du, dθ, dx)|Ft
]]
dt

=
ϑ2

T 3/2

∫ T

0
E
[
λt

∫ T

t
E
[
λ̂ts|Ft

]
ds

]
dt

where we used for the last equality the identity Ĥt
t = 0. Using Lemma 4.2,

|A2,2| ≤ ϑ2 ‖φ‖1(1 + ‖ψ‖1)

T 3/2

∫ T

0
E[λt]dt,

and since
∫ T

0 E[λt]dt = E[HT ] ≤ AT + B where A and B are positive constants (see compu-
tations for Term A1,1 above), we have

A2,1 = O

(
1√
T

)
. (3.11)
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Combining (3.10) and (3.11), we get that

A2 = O

(
1√
T

)
.

Remark 3.11. For simplicity let RT := 1
T E
[∣∣∣∫ T0 λtM̂

t
Tdt
∣∣∣]. According to Theorem 3.10,

determining the speed of convergence for a general Hawkes process requires the speed of
convergence for RT . It is somehow embarrassing to admit that we were not able to deal with
it for a general kernel Φ as it calls for a precise statement of the correlation between the original
intensity λ and somehow the one of the shifted (more precisely of the Malliavin derivative)
Hawkes martingale M̂ (defined in Notation 3.9). It is worth noticing that getting estimates
on the correlation of the Hawkes process itself is already quite challenging for a general kernel
and constitutes an active research area (see e.g. [14]). However, in particular cases we can
provide estimates on this quantity RT as we will see in Theorem 3.12. It is also interesting to
point out that this term is specific to the self-exciting feature of the intensity as in the Poisson
case, that is when Φ ≡ 0, we have that RT = 0 for any T (see Remark 3.6).

Theorem 3.12. Assume an exponential kernel Φ(u) = αe−βu, u ≥ 0 (with 0 < α < β) or an
Erlang kernel Φ(u) = αue−βu, u ≥ 0 (with 0 < α < β2).

Then, using the notations of Theorem 3.10 (FT =
HT−

∫ T
0 λtdt√
T

; G ∼ N (0, σ2 ϑ2)), there exists
in both cases a constant Cα,β,ν > 0 depending only on α, β and ν such that for any T > 0

dW (FT , G) ≤
Cα,β,ν√

T
.

Proof. Obviously, Assumptions (3.2)-(3.3) are in force. By Theorem 3.10, we need to estimate
the quantity

RT =
1

T
E
[∣∣∣∣∫ T

0
λtM̂

t
Tdt

∣∣∣∣] =
1

T
E
[∣∣∣∣∫ T

0
λt
(
D(t,λt)MT − 1

)
dt

∣∣∣∣] ,
where M̂ t is defined in Notation 3.9. In Lemma 4.7 we prove that RT = O( 1√

T
).

3.2.3 Alternative quantitative Limit Theorem for the exponential and Erlang
Hawkes processes

In this section we consider the Hawkes process H (alternatively one can set ν(dx) = δ1(dx)
or Yi ≡ 1 in Representation (2.3)). It has been proven in [1] that as T goes to infinity

YT
L−→

T→+∞
N (0, σ̃2),

where YT =
HT−

∫ T
0 E[λt]dt√
T

is a centered and normalized Hawkes process and σ̃2 = µ
(1−‖Φ‖1)3

.

The goal of this section is to provide the speed of convergence of YT using Wasserstein metric
between FT and its Gaussian limit that we have established in the last paragraph.
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Theorem 3.13. Set YT =
HT−

∫ T
0 E[λt]dt√
T

and σ̃2 = µ
(1−‖Φ‖1)3

.
Assume an exponential kernel Φ(u) = αe−βu, u ≥ 0 (with 0 < α < β) or an Erlang kernel
Φ(u) = αue−βu, u ≥ 0 (with 0 < α < β2).
Then, if G ∼ N (0, σ̃2) there exists in both cases a constant Cα,β > 0 depending only on α, β
such that for any T > 0

dW (YT , G) ≤
Cα,β√
T
.

Proof. As we have shown in Lemma 4.8, it is possible to link YT to FT via the relation

YT
γ

= FT + RT

where γ = 1
1−‖Φ‖1 is a positive constant and RT is a "small remainder" whose expressions

depend on the kernel. According to (2.7)

dW

(
YT
γ
,
G

γ

)
≤ sup

f∈F0
W

∣∣∣∣E [ σ̃2

γ2
f ′
(
YT
γ

)
− YT

γ
f

(
YT
γ

)]∣∣∣∣ ,
where G is a Gaussian of variance σ̃2 = µ

(1−‖φ‖1)3
.

By applying a Taylor expansion on f and f ′:

f

(
YT
γ

)
= f(FT + RT ) = f(FT ) + RT f

′(X∗),

f ′
(
YT
γ

)
= f ′(FT + RT ) = f ′(FT ) + RT f

′′(X̄),

with X∗, X̄ in [FT ∧ (FT + RT ), FT ∨ (FT + RT )] two random variables. Thus:

dW

(
YT
γ
,
G

γ

)
≤ sup
f∈F0

W

∣∣∣∣E [ σ̃2

γ2
f ′(FT + RT )− (FT + RT )f(FT + RT )

]∣∣∣∣ ,
= sup
f∈F0

W

∣∣∣∣E [ σ̃2

γ2
(f ′(FT ) + RT f

′′(X̄))− (FT + RT )(f(FT ) + RT f
′(X∗))

]∣∣∣∣ ,
= sup
f∈F0

W

∣∣∣∣E [ σ̃2

γ2
f ′(FT )− FT f(FT ) +

σ̃2

γ2
RT f

′′(X̄)−RT f(FT )− FTRT f
′(X∗)−R2

T f
′(X∗))

]∣∣∣∣ ,
≤ sup
f∈F0

W

∣∣∣∣E [ σ̃2

γ2
f ′(FT )− FT f(FT )

]∣∣∣∣
+ sup
f∈F0

W

E
[∣∣∣∣ σ̃2

γ2
RT f

′′(X̄)

∣∣∣∣+ |RT f(FT )|+
∣∣FTRT f

′(X∗)
∣∣+
∣∣R2

T f
′(X∗)

∣∣] .
The choice of the variance yields σ̃2

γ2
µ

(1−‖Φ‖1)3
· (1 − ‖Φ‖1)2 = σ2. In Theorem 3.12 we have

proven that

sup
f∈F0

W

∣∣E [σ2f ′(FT )− FT f(FT )
]∣∣ ≤ O( 1√

T

)
.
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And since f is in F0
W , the first and second derivatives are bounded and the Wasserstein

distance is thus bounded by

dW

(
YT
γ
,
G

γ

)
≤ C

(
1√
T

+ E[|RT |] + sup
f∈F0

W

E[|RT f(FT )|] + E[|RTFT |] + E[|R2
T |]

)
for a positive constant C that does not depend on T . In the computations below C will denote
a constant independent of T which may change from line to line.
We now try to simplify the upper bound. An application of Cauchy-Schwarz inequality yields

E[|RT |] ≤
√
E[R2

T ], E[|RTFT |] ≤
√
E[R2

T ]E[F 2
T ],

and

E[RT f(FT )]2 ≤ E[R2
T ]E[|f(FT )|2],

≤ E[R2
T ]E[‖f ′‖2∞|FT |2], using mean value equality and the fact that f ∈ F0

W

≤ E[R2
T ]E[|FT |2].

In order to have an upper bound on E[|FT |2], we recall that FT = MT√
T

where MT = HT −∫ T
0 λtdt is a martingale. This means that E[|MT |2] = E[HT ] = O(T ) (the laste estimate can
be found in [10]), which yields E[|FT |2] ≤ C and

E[R2
T ]E[|FT |2] ≤ CE[R2

T ]

and the Wasserstein distance is now bounded by

dW

(
YT
γ
,
G

γ

)
≤ C

(
1√
T

+
√
E[R2

T ]

)
.

To perform an estimate on E[R2
T ] we need to distinguish the case of Exponential and Erlang

kernel.

Case 1 : the kernel is an exponential function
In this case the remainder term writes down as RT = E[λT ]−λT

β
√
T

. Hence

E[R2
T ] = E

[(
E[λT ]− λT

β
√
T

)2
]
,

=
E[(λT − E[λT ])2]

β2T
,

=
Var(λT )

β2T
, since the second moment of λ is bounded (according to Lemma 4.6),

= O

(
1

T

)
.

Case 2 : the kernel is an Erlang function
In this case the squared remainder becomes bounded by:

E[R2
T ] = E

[(
E[λT ]− λT

β
√
T

+
E[ξT ]− ξT
β2
√
T

)2
]
,
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≤ 2E

[(
E[λT ]− λT

β
√
T

)2

+

(
E[ξT ]− ξT
β2
√
T

)2
]
, since 2ab ≤ a2 + b2,

≤ 2Var(λT )

β2T
+

2Var(ξT )

β2T
,

≤ O
(

1

T

)
since the second moment of ξ is bounded (according to the proof of Lemma 4.6).

Hence, in both cases one has

dW

(
YT
γ
,
G

γ

)
≤ C√

T
.

And since dW (YTγ ,
G
γ ) = 1

γdW (YT , G) (replace f(x) with fγ(x) = f(γx)
γ in the Wasserstein

distance definition) we conclude that there is a positive constant Cα,β that does not depend
on T such that

dW (YT , G) ≤
Cα,β√
T
.

Conclusion : In this paper we have computed Berry-Esséen bounds associated to Central
Limit Theorems for the compound Hawkes process, using a Mallavin-Stein approach, also
known as Nourdin-Peccati’s approach. Since a compound Hawkes process is a natural model
for the cumulative loss process of an insurance portfolio exhibiting self-exciting features, such
bounds are of particular interest for the ruin theory. This is a work in progress.

4 Appendix

Most of the estimates presented in this section are focused on the Hawkes process and its
intensity. As the reader will figure out, the x-variable (representing the role of the random
variables (Yi)i≥1) will be factored out of the computations. Hence, the technology is focused
on the Hawkes process together with its intensity as if ν(dx) = δ1(dx).
We recall the original system (X,H, λ) as (2.4) and (X̂t, Ĥt, λ̂t) describing the Malliavin
derivative recalled in Notation 3.9.

4.1 General estimates

Throughout this section, we assume that Assumptions 3.1, 3.2 and 3.3 are in force.

Lemma 4.1. For any T > 0, and recalling that σ2 = µ
1−‖φ‖1 ,∣∣∣∣σ2

ϑ2
− 1

T

∫ T

0
E[λt]dt

∣∣∣∣ = O

(
1

T

)
.

Proof. According to [1, Theorem 2], under Assumptions 3.2 and 3.3,

E[Ht] =

∫ t

0
E[λs]ds = µt+ µ

∫ t

0
ψ(t− s)sds,
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where ψ is defined by (3.2). Recall that∫ +∞

0
ψ(t)dt =

‖φ‖1
1− ‖φ‖1

.

As σ2 = limT→+∞
E[HT ]
T = limT→+∞

∫ T
0 E[λt]dt

T , the following computation gives that σ2 =
µ

1−‖φ‖1 . Indeed,

1

T

∫ T

0
E[λt]dt− σ2 = µ+

µ

T

∫ T

0
ψ(T − s)sds− σ2,

= µ+
µ

T

∫ T

0
ψ(s)(T − s)ds− σ2,

= µ+ µ

∫ T

0
ψ(s)ds− µ

T

∫ T

0
sψ(s)ds− σ2,

= µ+ µ

∫ +∞

0
ψ(s)ds− µ

∫ +∞

T
ψ(s)ds− µ

T

∫ T

0
sψ(s)ds− σ2,

=

(
µ

1− ‖φ‖1
− σ2

)
− µ

∫ +∞

T
ψ(s)ds− µ

T

∫ T

0
sψ(s)ds.

Following [1, Lemma 5],
∫ +∞

0 sψ(s)ds < +∞ which entails that µ
T

∫ T
0 sψ(s)ds = O

(
1
T

)
.

Concerning the other term, one can note that∫ +∞

T
ψ(s)ds ≤

∫ +∞

T
ψ(s)

s

T
ds ≤ 1

T

∫ +∞

0
sψ(s)ds.

These estimates conclude the proof.

Lemma 4.2. We make use of the notation of Proposition 2.19. Let T > 0 and 0 ≤ s ≤ t ≤ T .
The following estimate holds ∫ T

t
Et[λ̂ts]ds ≤ ‖φ‖1(1 + ‖ψ‖1).

Proof. Recall that for t ≥ 0, Et[·] stands for the conditional expectation E[·|FNt ]. Taking the
conditional expectation in Equation (2.5) for 0 ≤ t ≤ s leads to

Et[λ̂ts] = φ(s− t) +

∫
(t,s)

φ(s− u)Et[λ̂tu]du.

For t ≥ 0 set ft(s) := 1s≥tEt[λ̂ts] and φt(s) := 1s≥tφ(s− t), the last equation becomes

ft(s) = φt(s) +

∫ s

0
φ(s− u)ft(u)du.

A straightforward application of [1, Lemma 3] yields

ft(s) = φt(s) +

∫ s

0
ψ(s− u)φt(u)du,
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and by integrating between t and T one obtains∫ T

t
Et[λ̂ts]ds =

∫ T

t
ft(s)ds,

=

∫ T

t
φt(s)ds+

∫ T

t

∫ s

0
ψ(s− u)φt(u)duds,

=

∫ T

t
φt(s)ds+

∫ T

t

∫ s

t
ψ(s− u)φt(u)duds,

=

∫ T

t
φt(s)ds+

∫ T

t

∫ T

t
1s≥uψ(s− u)φt(u)duds.

Since all the involved functions are positive, we use Fubini’s theorem and exchange the integrals
to get ∫ T

t
Et[λ̂ts]ds =

∫ T

t
φt(s)ds+

∫ T

t

∫ T

u
ψ(s− u)dsφt(u)du

≤ ‖φ‖1 +

∫ T

t
‖ψ‖1φt(u)du

≤ ‖φ‖1(1 + ‖ψ‖1).

4.2 Specific estimates for the exponential and the Erlang’s kernels

4.2.1 Definition and some properties of the exponential and the Erlang Hawkes
processes

Definition 4.3 (Exponential Hawkes process). A counting process H as in Definition 2.9 is
referred to

(i) an exponential Hawkes process if there exist (α, β) ∈ R2
+ such that

α < β and Φ(u) := αe−βu, u ∈ R+. (4.1)

(ii) an Erlang Hawkes process if there exist (α, β) ∈ R2
+ such that

α < β2 and Φ(u) := αue−βu, u ∈ R+. (4.2)

Remark 4.4. Obviously, the two kernels above ((4.1)-(4.2)) satisfy Assumptions 3.2 and
(3.3).

Proposition 4.5. Let H be a Hawkes process and let λ be its intensity.

(i) If H is an exponential Hawkes process, then (λt)t∈R+ is a Markov process that satisfies
the following Dynkin formula for each function g ∈ C1 and for each t ≤ T :

E[g(λT )|Ft] = g(λt) + E
[ ∫ T

t
(Dg)(λs)ds|Ft

]
,

where D is the infinitesimal generator:

Dg(λ) := β(µ− λ)g′(λ) + λ
(
g(λ+ α)− g(λ)

)
,

whenever these expectations are finite.
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(ii) If H is an Erlang Hawkes process, then (λt, ξt)t∈R+ is a Markov process, where ξt =∫ t
0 αe

−β(t−s)dHs is an auxiliary process. In this case, (λt, ξt)t∈R+ satisfies this Dynkin
formula for each function g ∈ C1 and for each t ≤ T

E[g(λT , ξT )|Ft] = g(λt, ξt) + E
[ ∫ T

t
(Dg)(λs, ξs)ds|Ft

]
,

where D is the infinitesimal generator

Dg(λ, ξ) :=
(
ξ + β(µ− λ)

)
∂λg(λ, ξ)− βξ∂ξg(λ, ξ) + λ

(
g(λ, ξ + α)− g(λ, ξ)

)
,

whenever these expectations are finite.

Proof. The exponential case comes from Proposition 2.1 in [10] and the Erlang case can be
found in Proposition 1 in [9].

Lemma 4.6. Assume that H is an exponential or an Erlang Hawkes process (that is Condition
(4.1) or (4.2) is in force for some parameters α, β). Then there is a positive constant C
(depending only on the parameters α and β) such that for any t ≥ 0

E[λ2
t ] ≤ C.

Proof. We treat the two cases (4.1) or (4.2) separately.

• If Φ(u) = αe−βu, α < β
According to [10], the intensity is a Markov process that satisfies the following Dynkin
formula:

d

dt
E[g(λt)] = E[β(µ− λt)g′(λt) + λt

(
g(λt + α)− g(λt)

)
].

This formula can be used to have the variance of the intensity λt and an upper bound
explicitly.

• If Φ(u) = αue−βu

Even though the intensity is no longer Markov it is possible to see it as a part of a
’Markov cascade’ (cf [9]) with an auxiliary process (ξt)t≥0. The Dynkin formula for the
vector process (λt, ξt)t≥0 is

d

dt
E[g(λt, ξt)] = E

[(
ξt+β(µ−λt)

)
∂λg(λt, ξt)−βξt∂ξg(λt, ξt)+λt

(
g(λt, ξt+α)−g(λt, ξt)

)]
.

After taking g(λ, ξ) = λ2, g(λ, ξ) = ξ2 and g(λ, ξ) = λξ, we obtain the following system
∂tE[λ2

t ] = −2βE[λ2
t ] + 2E[λtξt] + 2βµE[λt]

∂tE[ξ2
t ] = −2βE[ξ2

t ] + 2αE[λtξt] + α2E[λt]

∂tE[λtξt] = αE[λ2
t ] + E[ξ2

t ]− 2βE[λtξt] + βµE[ξt]

. (4.3)

This is a linear system that can be put under the following matrix form:

d

dt

 E[λ2
t ]

E[ξ2
t ]

E[λtξt]

 =

−2β 0 2
0 −2β 2α
α 1 −2β

 E[λ2
t ]

E[ξ2
t ]

E[λtξt]

+

2βµE[λt]
α2E[λt]
βµE[ξt]

 .
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The matrix has three distinct negative eigenvalues: v = −2β and v± = −2β ± 2
√
α.

Since E[λt] and E[ξt] are both bounded by a constant, we conclude that there is C > 0
such that

E[λ2
t ] ≤ C.

Lemma 4.7. Assume that Φ(u) = αe−βu (with α < β) or Φ(u) = αue−βu (with α < β2).
We remind that A1,3 = 1

T E
[∣∣∣∫ T0 λtM̂

t
Tdt
∣∣∣] and that M̂ t

· is defined in Notation 3.9. For any
T>0, we have

A1,3 = O

(
1√
T

)
.

Proof. We proceed in three steps. First we provide a general estimate for term A1,3 for a
general kernel Φ. Then we make use of this estimate in the two particular cases of exponential
and Erlang kernels (4.1)-(4.2).

Step 1 : a general estimate
In the following lines we provide an estimate for term A1,3 for a general kernel Φ enjoying
Assumptions 3.2 and 3.3. The idea is to bound the term A1,3 as tightly as possible. To do so,
we start with a Cauchy-Schwarz inequality to get

A1,3 ≤
1

T
E

[∣∣∣∣∫ T

0
λtM̂

t
Tdt

∣∣∣∣2
] 1

2

.

From now on we are interested in the term E
[∣∣∣∫ T0 λtM̂

t
Tdt
∣∣∣2] . By expanding the square one

obtains

E

[∣∣∣∣∫ T

0
λtM̂

t
Tdt

∣∣∣∣2
]

= 2E
[∫ T

0

∫ t

0
λtλsM̂

t
T M̂

s
T

]
dsdt

= 2

∫ T

0

∫ t

0
E[λtλsEt[M̂ t

T M̂
s
T ]]dsdt

= 2

∫ T

0

∫ t

0
E[λtλsEt[M̂ t

T (M̂ s
T − M̂ s

t )]]dsdt

= 2

∫ T

0

∫ t

0
E[λtλsEt

[
[M̂ t, (M̂ s − M̂ s

t )]T ]
]
dsdt,

where we have used the fact that for any t, M̂ t
· is a martingale with M̂ t

t = 0. Hence

Et[[M̂ t, (M̂ s − M̂ s
t )]T ]

= Et

 ∑
t<u≤T

∆uM̂
t∆uM̂

s


= Et

[∫
(t,T ]×E

x1{θ≤λ̂tu}N(du, dθ, dx)

∫
(t,T ]×E

x1{θ≤λ̂su}N(du, dθ, dx)

]
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= Et

[∫
(t,T ]×E

x21{θ≤λ̂tu}1{θ≤λ̂su}dudθν(dx)

]

= ϑ2 Et
[∫ T

t
min(λ̂tu, λ̂

s
u)du

]
.

The last entity can be bounded as follows

Et[[M̂ t, (M̂ s − M̂ s
t )]T ] ≤ ϑ2

∫ T

t
min(Et[λ̂tu],Et[λ̂su])du.

Since the intensity λ of a Hawkes process is positive, multiplying by it preserves the inequality,
leading to

A1,3 ≤
1

T
E

[∣∣∣∣∫ T

0
λtM̂

t
Tdt

∣∣∣∣2
] 1

2

≤ ϑ2

√
2√
T

(
1

T

∫ T

0

∫ t

0
E
[
λtλs

∫ T

t
min(Et[λ̂tu],Et[λ̂su])du

]
dsdt

)1/2

(4.4)

=: ϑ2

√
2√
T

(
1

T
IT

)1/2

, (4.5)

with obvious notation. The rest of the proof consists in specifying estimates of Quantity IT
for the two particular Hawkes processes under interest.

Step 2 : the exponential case
We assume an exponential kernel (4.1) Φ(u) = αe−βu with 0 < α < β.
The main advantage of the Markov framework of the exponential kernel is the fact that many
formulae for λ and λ̂ are known explicitly. In fact, given a starting time t, λ̂t is defined for
u ≥ t and it satisfies the following SDE (using once again Notation 3.9)

dλ̂tu = (α− β)λ̂tudu+ αdMt
u,

withMt
u = Ĥt

u −
∫ u
t λ̂

t
sds, which yields after taking the initial conditions into account

Et[λ̂tu] = αe(α−β)(u−t) and Et[λ̂su] = λ̂ste
(α−β)(u−t).

The bound on IT becomes (from now on everything is written up to a positive multiplicative
constant C depending on α, β that may differ from line to line)

IT ≤ C
∫ T

0

∫ t

0
E[λtλs

∫ T

t
min(α, λ̂st )e

(α−β)(u−t)du]dsdt,

= C

∫ T

0

∫ t

0
E[λtλs min(α, λ̂st )]

∫ T

t
e(α−β)(u−t)dudsdt,

= C

∫ T

0

∫ t

0
E[λtλs min(α, λ̂st )]ds(1− e(α−β)(T−t))dt,

= C

∫ T

0

∫ t

0
E[λsEs[λt min(α, λ̂st )]]ds(1− e(α−β)(T−t))dt,
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≤ C
∫ T

0

∫ t

0
E[λsEs[λtλ̂st ]]ds(1− e(α−β)(T−t))dt.

Since λ̂st starts at s, it is independent from FNs thus Es[λtλ̂st ] = Es[λt]E[λ̂st ] = Es[λt]αe(α−β)(t−s).
Hence the Cauchy-Schwarz inequality together with Lemma 4.6 entail :

IT ≤ C
∫ T

0

∫ t

0
E[λsEs[λt]]e(α−β)(t−s)ds(1− e(α−β)(T−t))dt,

= C

∫ T

0

∫ t

0
E[λsλt]e

(α−β)(t−s)ds(1− e(α−β)(T−t))dt,

≤ C
∫ T

0

∫ t

0
E[λ2

s]
1
2E[λ2

t ]
1
2 e(α−β)(t−s)ds(1− e(α−β)(T−t))dt, Cauchy-Schwarz

≤ C
∫ T

0

∫ t

0
e(α−β)(t−s)ds(1− e(α−β)(T−t))dt, using Lemma 4.6

= C

∫ T

0
(1− e(α−β)t)(1− e(α−β)(T−t))dt,

= C

∫ T

0
1− e(α−β)(T−t) − e(α−β)t + e(α−β)Tdt,

≤ C(T + e(α−β)T − 1 + Te(α−β)T ) since α− β < 0,

≤ C · T.

Finally using (4.4) we conclude that A1,3 = O
(

1√
T

)
.

Step 3 : the Erlang case
We assume an Erlang kernel (4.2) Φ(u) = αue−βu with 0 < α < β2.
Even though the intensity λ is no longer a Markov process, it is possible to "Markovize" it by
taking an auxiliary process ξ into account.
In the case of the shifted vanishing process λ̂s, ξ̂su = αe−β(u−s) + α

∫ u
s e
−β(u−v)dĤs

v , and the
process (λ̂s, ξ̂s) follows the SDE: {

dλ̂su = −βλ̂sudu+ ξ̂sudu

dξ̂su = −βξ̂sudu+ αdĤs
u.

This yields after solving the system(
λ̂su
ξ̂su

)
=

√
α

2

(
(

∫ u

s
e(
√
α−β)(s−v)dM̂s

v + 1)e(
√
α−β)(u−s)

(
1√
α

)
− (

∫ u

s
e−(
√
α+β)(s−v)dM̂s

v + 1)e−(
√
α+β)(u−s)

(
1
−
√
α

))
.

And finally(
Et[λ̂su]

Et[ξ̂su]

)
=

1

2
(λ̂st +

ξ̂st√
α

)e(
√
α−β)(u−t)

(
1√
α

)
+

1

2
(λ̂st −

ξ̂st√
α

)e−(
√
α+β)(u−t)

(
1
−
√
α

)
. (4.6)

Once again we make use of the general estimate (4.4) and estimate the quantity

IT =

∫ T

0

∫ t

0
E[λtλs

∫ T

t
min(Et[λ̂tu],Et[λ̂su])du]dsdt,
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We have

IT ≤
∫ T

0

∫ t

0
E[λtλs

∫ T

t
Et[λ̂su]du]dsdt.

We chose Et[λ̂su] on purpose, because since the process starts earlier it has more chances of
vanishing at time t.

IT ≤C
∫ T

0

∫ t

0
E[λtλs

∫ T

t

1

2
(λ̂st +

ξ̂st√
α

)e(
√
α−β)(u−t) +

1

2
(λ̂st −

ξ̂st√
α

)e−(
√
α+β)(u−t)dudsdt,

=C

∫ T

0

∫ t

0
E[λtλs(λ̂

s
t +

ξ̂st√
α

)]

∫ T

t
e(
√
α−β)(u−t)dudsdt

+ C

∫ T

0

∫ t

0
E[λtλs(λ̂

s
t −

ξ̂st√
α

)]

∫ T

t
e−(
√
α+β)(u−t)dudsdt,

≤C
∫ T

0
(1− e(

√
α−β)(T−t))

∫ t

0
E[λtλs(λ̂

s
t +

ξ̂st√
α

)]dsdt

+ C

∫ T

0
(1− e−(

√
α+β)(T−t))

∫ t

0
E[λtλs(λ̂

s
t −

ξ̂st√
α

)]dsdt,

:=C(I+
T + I−T ).

Like in the Markov case, λ̂s and ξ̂s both start at time s, thus Es[λtλ̂st ] = Es[λt]E[λ̂st ] and the
same holds for ξ̂s as well. In addition, since Es[λ̂st ] = E[λ̂st ] and since λ̂ss = 0, Equation 4.6
yields

E[λ̂st ] =

√
α

2
(e(
√
α−β)(t−s) − e−(

√
α+β)(t−s)),

and
E[ξ̂st ]√
α

=

√
α

2
(e(
√
α−β)(t−s) + e−(

√
α+β)(t−s)).

Hence

I+
T =

∫ T

0
(1− e(

√
α−β)(T−t))

∫ t

0
E[λsEs[λt(λ̂st +

ξ̂st√
α

)]]dsdt,

=

∫ T

0
(1− e(

√
α−β)(T−t))

∫ t

0
E[λsEs[λt]E[λ̂st +

ξ̂st√
α

]]dsdt,

=

∫ T

0
(1− e(

√
α−β)(T−t))

∫ t

0
E[λtλs]

√
αe(
√
α−β)(t−s)dsdt.

As for the exponential kernel, it is possible to have bounds on the intensity’s second moment
using Lemma 4.6, which yields by the Cauchy-Schwarz inequality

E[λtλs] ≤ E[λ2
s]

1
2E[λ2

t ]
1
2 ≤ C.

Finally

I+
T ≤

∫ T

0
(1− e(

√
α−β)(T−t))

∫ t

0
e(
√
α−β)(t−s)dsdt,

≤
∫ T

0
(1− e(

√
α−β)(T−t))(1− e(

√
α−β)t)dt,
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≤
∫ T

0
1− e(

√
α−β)t − e(

√
α−β)(T−t) + e(

√
α−β)Tdt,

= O(T ).

Following the same lines we get for |I−T | :

I−T =

∫ T

0
(1− e−(

√
α+β)(T−t))

∫ t

0
E[λsEs[λt(λ̂st −

ξ̂st√
α

)]]dsdt,

=

∫ T

0
(1− e−(

√
α+β)(T−t))

∫ t

0
E[λsEs[λt]E[λ̂st −

ξ̂st√
α

]]dsdt,

= −
∫ T

0
(1− e−(

√
α+β)(T−t))

∫ t

0
E[λtλs]

√
αe−(

√
α+β)(t−s)dsdt.

So |I−T | = O(T ), and since IT ≤ I+
T + |I−T |, we conclude using once again (4.4) that

A1,3 = O

(
1√
T

)
.

Lemma 4.8. Set YT =
HT−

∫ T
0 E[λt]dt√
T

and FT =
HT−

∫ T
0 λtdt√
T

.
Assume that Φ(u) = αe−βu (with α < β) or Φ(u) = αue−βu (with α < β2).
Then YT and FT satisfy the relation:

YT
γ

= FT + RT ,

where

γ =
1

1− ‖Φ‖1
=

{
1

1−α/β , if Φ(u) = αe−βu

1
1−α/β2 , if Φ(u) = αue−βu

and

RT =


E[λT ]−λT
β
√
T

, if Φ(u) = αe−βu

E[λT ]−λT
β
√
T

+ E[ξT ]−ξT
β2
√
T
, if Φ(u) = αue−βu

Proof. We remind that the advantage of the exponential and Erlang kernels is the SDE. This
SDE will be used to eliminate the integral in YT and FT in order to obtain alternative expres-
sions.

Case 1 : the kernel is an exponential function
We recall that ‖Φ‖1 = α

β and that the intensity is a solution to the following SDE:

dλt = β(µ− λt)dt+ αdHt.

We start by integrating the SDE between 0 and T :∫ T

0
dλt =

∫ T

0
β(µ− λt)dt+ αdHt,
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λT − µ = βµT − β
∫ T

0
λtdt+ αHT .

After rearranging the terms, FT can be put under the form:

FT =
λT − µ+ (β − α)HT − βµT

β
√
T

.

When it comes to YT , we start by taking the expected value of the SDE:

dE[λt] = β(µ− E[λt])dt+ αdE[Ht],

= β(µ− E[λt])dt+ αE[λt]dt,

and after integrating with respect to time:

E[λT ]− µ = βµT + (α− β)

∫ T

0
E[λt]dt,

= βµT + (α− β)(

∫ T

0
E[λt]dt−HT ) + (α− β)HT .

And finally:

YT =
E[λT ]− µ+ (β − α)HT − βµT

(β − α)
√
T

.

These alternative expressions allow us to deduce a simple relation between FT and YT :

β
√
TFT − (β − α)

√
TYT = λT − E[λT ],

which is equivalent to:
YT
γ

= FT + RT ,

where γ = 1
1−‖φ‖1 = 1

1−α/β and RT = E[λT ]−λT
β
√
T

.

Case 2 : the kernel is an Erlang function
In this case ‖Φ‖1 = α

β2 and the vector (λt, ξt) where ξt =
∫

[0,t) αe
−β(t−s)dHs follows satisfies

the following SDE: 
dλt = ξtdt+ β(µ− λt)dt,

dξt = −βξtdt+ αdHT .

We integrate the system: 
λT − µ =

∫ T
0 ξtdt+ βµT − β

∫ T
0 λtdt,

ξT = −β
∫ T

0 ξtdt+ αHT .

We eliminate
∫ T

0 ξtdt in the system to obtain:

λT − µ =
α

β
HT −

1

β
ξT + µβT − β

∫ T

0
λtdt,
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=
α

β
HT −

1

β
ξT + µβT + β

√
TFT − βHT ,

and after re-arranging the terms:

β
√
TFT = λT − µ+

β2 − α
β

HT +
1

β
ξT − µβT.

When it comes to YT we take the expected value of the SDE:
dE[λt] =

(
E[ξt] + β(µ− E[λt])

)
dt,

dE[ξt] = −βE[ξt]dt+ αE[λt]dt.

After taking the integral and eliminating
∫ T

0 E[ξt]dt in the system:

E[λT ]− µ = − 1

β
E[ξT ] +

α

β

∫ T

0
E[λt]dt+ βµT − β

∫ T

0
E[λt]dt,

= − 1

β
E[ξT ] + βµT + (

α

β
− β)

∫ T

0
E[λt]dt,

= − 1

β
E[ξT ] + βµT +

β2 − α
β

√
TYT +

α− β2

β
HT ,

which yields after re-arranging the terms:

β2 − α
β

√
TYT = E[λT ]− µ+

β2 − α
β

HT +
1

β
E[ξT ]− µβT.

Combining these expressions on FT and YT yields the following relation:

β
√
TFT −

β2 − α
β

√
TYT = λT − E[λT ] +

1

β
(ξT − E[ξT ]),

which is equivalent to:
YT
γ

= FT + RT

with γ = 1
1−‖φ‖1 = 1

1−α/β2 and RT = E[λT ]−λT
β
√
T

+ E[ξT ]−ξT
β2
√
T
.
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