F. P. Laboratory, Wood Handbook Wood as an Engineering Material. United States Department of 473

, Agriculture Forest Service, 2010.

R. Bergman, M. Puettmann, A. Taylor, and K. E. Skog, The Carbon Impacts of Wood Products, Forest Products 476 Journal, vol.64, pp.220-231, 2014.

V. Bucci, P. Corigliano, V. Crupi, G. Epasto, E. Guglielmino et al., Experimental investigation on Iroko 479 wood used in shipbuilding, Proceedings of the Institution of Mechanical Engineers, p.480

, Mechanical Engineering Science, vol.231, pp.128-167, 2017.

D. Zenkerts, The handbook of sandwich construction. Engineering Materials Advisory Services Ltd, vol.483, 1997.

J. Susainathan, F. Eyma, D. Luycker, E. Cantarel, A. Castanie et al., Manufacturing and quasi-static bending 486 behavior of wood-based sandwich structures, Composite Structures, vol.182, pp.487-504, 2017.

,

N. Butler, Computer modelling of wood-filled impact limiters, Nuclear Engineering and Design, vol.490, pp.417-424, 1994.

, CANPLY. Eléments de calcul du contreplaqué, 1997.

W. Johnson, Historical and Present-Day References Concerning Impact on Wood, International Journal 495 on impact Engineering, vol.4, issue.86, pp.90003-90008, 1986.

S. R. Reid and C. Peng, Dynamic uniaxial crushing of wood, International Journal on impact Engineering, vol.498, pp.531-570, 1997.

J. Wouts, G. Haugou, M. Oudjene, H. Morvan, and D. Coutellier, Strain rate effects on the compressive 501 response of wood and energy absorption capabillities -Part B: Experimental investigation under rigid 502 lateral confinement, Composite Structures, 2018.

J. Wouts, G. Haugou, M. Oudjene, D. Coutellier, and H. Morvan, Strain rate effects on the compressive 505 response of wood and energy absorption capabilities -Part A: Experimental investigations, Composite 506 Structures, vol.149, pp.315-328, 2016.

S. Pang, Y. Liang, W. Tao, Y. Liu, S. Huan et al., Effect of the Strain Rate and Fiber Direction on the 509

, Dynamic Mechanical Properties of Beech Wood. Forests, vol.10, p.881, 2019.

,

C. Adalian and P. Morlier, WOOD MODEL" for the dynamic behaviour of wood in multiaxial compression

R. Holz-als and . Werkstoff, , vol.60, pp.433-442, 2002.

T. K. Demircio?lu, F. Bal?ko?lu, O. Inal, N. Arslan, and A. Ata?, Experimental investigation on low-velocity 516 impact response of woodskinned sandwich composites with different core configurations, Materials Today 517 Communications, vol.17, pp.31-39, 2018.

J. Smardzewski, Wooden sandwich panels with prismatic core -Energy absorbing capabilities

, Composite Structures, vol.230, p.111535, 2019.

J. Susainathan, F. Eyma, E. De-luycker, A. Cantarel, and B. Castanie, Experimental investigation of 523 impact behavior of wood-based sandwich structures, Composites Part A: Applied Science and 524 Manufacturing, vol.109, pp.10-19, 2018.

J. Susainathan, F. Eyma, E. De-luycker, A. Cantarel, and B. Castanie, Numerical modeling of impact 527 on wood-based sandwich structures. Mechanics of Advanced Materials and Structures

J. Susainathan, F. Eyma, D. Luycker, E. Cantarel, A. Bouvet et al., Experimental investigation 531 of compression and compression after impact of wood-based sandwich structures, Composite Structures, vol.532, pp.236-285, 2019.

X. T. Nguyen, S. Hou, T. Liu, and X. Han, A potential natural energy absorption material -Coconut mesocarp: Part A: 535 Experimental investigations on mechanical properties, International journal of mechanical sciences, pp.536-564, 2016.

T. Liu, S. Hou, X. Nguyen, and X. Han, Energy absorption characteristics of sandwich structures with composite 539 sheets and bio coconut core, Composites Part B: Engineering, vol.114, pp.328-338, 2017.

,

C. Lu, S. Hou, Z. Zhang, J. Chen, Q. Li et al., The mystery of coconut overturns the crashworthiness design of 543 composite materials International journal of mechanical sciences, vol.168, p.105244, 2020.

F. Neveu, B. Castanié, and P. Olivier, The GAP methodology: A new way to design composite structures 547

, Materials & Design, vol.172, p.107755, 2019.

D. Guillon, Etude des mécanismes d'absorption d'énergie lors de l'écrasement progressif de 550 structures composites à base de fibre de carbone, 2008.

J. Kim, H. Yoon, and K. Shin, A study on crushing behaviors of composite circular tubes with different 554 reinforcing fibers, International Journal of Impact Engineering, vol.38, pp.198-207, 2011.

,

P. B. Ataabadi, D. Karagiozova, and M. Alves, Crushing and energy absorption mechanisms of carbon fiber-558 epoxy tubes under axial impact, International Journal of Impact Engineering, vol.131, pp.74-189, 2019.

,

Y. Wang, J. Feng, J. Wu, and D. Hu, Effects of fiber orientation and wall thickness on energy absorption 562 characteristics of carbon-reinforced composite tubes under different loading conditions, Composite 563 Structures, vol.153, pp.356-368, 2016.

H. Hamada, J. C. Coppola, D. Hull, Z. Maekawa, and H. Sato, Comparison of energy absorption of 566 carbon/epoxy and carbon/PEEK composite tubes, Composites, vol.23, pp.245-252, 1992.

,

H. Song, X. Du, and G. Zhao, Energy Absorption Behavior of Double-Chamfer Triggered Glass/Epoxy 570 Circular Tubes, J Compos Mater, vol.36, pp.2183-98, 2002.

D. Hu, C. Zhang, X. Ma, and B. Song, Effect of fiber orientation on energy absorption characteristics of glass 573 cloth/epoxy composite tubes under axial quasi-static and impact crushing condition, Composites Part A: 574 Applied Science and Manufacturing, vol.90, pp.489-501, 2016.

,

L. Yan and N. Chouw, Crashworthiness characteristics of flax fibre reinforced epoxy tubes for energy 578 absorption application, Materials & Design, vol.51, pp.629-640, 2013.

,

G. L. Farley and M. R. Jones, Energy absorption capability of composite tubes and beams

. Nasa-tm-10634, , 1989.

D. Hull, A unified approach to progressive crushing of fibre-reinforced composite tubes, Composites 585 Science and Technology, vol.40, pp.377-421, 1991.

C. M. Kindervater, Energy absorption of composites as an aspect of aircraft structural crash-resistance

, Science and Technology of Composite Materials, pp.589-643, 1990.

P. H. Thornton and P. J. Edwards, Energy absorption in composite tubes, Journal of Composite Materials, vol.592, pp.521-545, 1982.

, Garnica, 2020.

N. Baldassino, P. Zanon, and R. Zanuttini, Determining mechanical properties and main characteristic 597 values of Poplar plywood by medium-sized test pieces, Materials and Structures, vol.31, issue.1, pp.64-67, 1998.

,

C. H. Fang, N. Mariotti, A. Cloutier, A. Koubaa, and P. Blanchet, Densification of Wood Veneers by 601

, Compression Combined with Heat and Steam, European Journal of Wood and Wood Products, vol.70, issue.1-3, pp.155-63, 2012.

D. Siromani, G. Henderson, D. Mikita, K. Mirarchi, R. Park et al., An experimental study on 606 the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial 607 compression, Composites Part A: Applied Science and Manufacturing, vol.64, pp.25-35, 2014.

,

J. Blazy, Comportement mécanique des mousses d'aluminium : caractérisations experimentales, p.611

, sous sollicitations complexes et simulations numériques dans le cadre de l'élasto-plasticité compressible

K. Andrews, G. L. England, and E. Ghani, Classification of the axial collapse of cylindrical tubes under 615 quasi-static loading, International Journal of Mechanical Sciences, vol.25, pp.687-696, 1983.

,

A. Galib, D. Limam, and A. , Experimental and numerical investigation of static and dynamic axial crushing 619 of circular aluminum tubes, Thin-Walled Structures, vol.42, pp.1103-1140, 2004.

,

D. D. Dubey and A. J. Vizzini, Testing Methods for Energy Absorption of Kevlar/Epoxy, J Am Helicopter Soc, vol.623, pp.179-87, 1999.

A. Baroutaji, M. Sajjia, and A. Olabi, On the recent crashworthiness performance of thin walled energy 626 absorbers: recent advances and future developments, Thin-Walled Strucutres, vol.118, pp.137-163

A. G. Mamalis, D. E. Manolakos, M. B. Ioannidis, and D. P. Papapostolou, On the response of thin-walled CFRP 629 composite tubular components subjected to static and dynamic axial compressive loading: experimental

, Composite Structures, vol.69, pp.407-420, 2005.

C. Mcgregor, R. Vaziri, A. Poursartip, and X. Xiao, Axial crushing of triaxially braided composite tubes at 633 quasi-static and dynamic rates, Composite Structures, vol.157, pp.197-206, 2016.

,

M. David, A. F. Johnson, and H. Voggenreiter, Analysis of Crushing Response of Composite Crashworthy 637

, Structures. Appl Compos Mater, vol.20, pp.773-87, 2013.

A. Brighton, M. Forrest, M. Starbuck, D. Erdman, and B. Fox, Strain Rate Effects on the Energy Absorption 640 of Rapidly Manufactured Composite Tubes, Journal of Composite Materials, vol.43, pp.2183-200, 2009.

,

M. R. Schultz, Energy absorption capacity of graphite-epoxy composite tubes, 1998.

J. Chambe, C. Bouvet, O. Dorival, and J. Ferrero, Energy absorption capacity of composite thin-wall circular 647 tubes under axial crushing with different trigger initiations, Journal of Composite Materials, vol.648, p.002199831987722, 2019.

H. Hamada and S. Ramakrishna, Scaling effects in the energy absorption of carbon-fiber/PEEK composite 651 tubes, Composites Science and Technology, vol.55, pp.211-232, 1995.

A. Esnaola, I. Ulacia, L. Aretxabaleta, J. Aurrekoetxea, and I. Gallego, Quasi-static crush energy absorption 655 capability of E-glass/polyester and hybrid E-glass-basalt/polyester composite structures, Materials & 656 Design, vol.76, pp.18-25, 2015.

S. Ochelski and P. Gotowicki, Experimental assessment of energy absorption capability of carbon-epoxy 659 and glass-epoxy composites, Composite Structures, vol.87, pp.215-239, 2009.

,

H. Hamada and S. Ramakrishna, Effect of Fiber Material on the Energy Absorption Behavior of 663 Thermoplastic Composite Tubes, Journal of Thermoplastic Composite Materials, vol.9, pp.259-79, 1996.

,

G. L. Farley, Energy absorption of composite materials, Journal of Composite Materials, vol.17, pp.267-667, 1983.

H. Saito, E. C. Chirwa, R. Inai, and H. Hamada, Energy absorption of braiding pultrusion process composite 670 rods, Composite Structures, vol.55, pp.407-417, 2002.

A. A. Singace, Collapse behaviour of plastic tubes filled with wood sawdust, Thin-Walled Structures, vol.673, pp.163-187, 2000.

R. Kiran, N. Khandelwal, and P. Tripathi, Collapse behaviour and energy absorption of aluminium tubes 676 filled with wood sawdust, International Journal of Engineering Research and Reviews, 2014.

A. Lindstrom and S. Hallstrom, Energy absorption of SMC/balsa sandwich panels with geometrical 679 triggering features, Composite Structures, vol.92, pp.2676-2684, 2010.

,