S. H. Lillie and J. R. Pringle, Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation, J. Bacteriol, vol.143, pp.1384-1394, 1980.

J. L. Parrou, B. Enjalbert, L. Plourde, A. Bauche, B. Gonzalez et al., Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae, Yeast, vol.15, pp.191-203, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02146834

B. Enjalbert, J. L. Parrou, O. Vincent, and J. Franc-ßois, Mitochondrial respiratory mutants of Saccharomyces cerevisiae accumulate glycogen, and readily mobilize it in a glucose-depleted medium, Microbiology, vol.146, pp.2685-2694, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02146821

J. Franc-ßois and J. L. Parrou, Reserve carbohydrates in the yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev, vol.25, pp.125-145, 2001.

A. Wiemken, Trehalose in yeast, stress protectant rather than reserve carbohydrate, Antonie van Leeuwenhoek, vol.58, pp.209-217, 1990.

P. V. Attfield, Stress tolerance: the key to effective strains of industrial baker's yeast, Nature Biotechnol, vol.15, pp.1351-1357, 1997.

J. H. Crowe, F. A. Hoekstra, and L. M. Crowe, Anhydrobiosis, Annu. Rev. Physiol, vol.54, pp.579-599, 1992.

M. A. Singer and S. Lindquist, Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose, Trends Biotechnol, vol.16, pp.460-468, 1998.

M. Simola, A. L. Hanninen, S. M. Stranius, and M. Makarow, Trehalose is required for conformational repair of heat denaturated proteins in the yeast endoplasmic reticulum but not for maintenance of membrane traffic function after severe heat stress, Mol. Microbiol, vol.37, pp.42-53, 2000.

B. Teusink, M. C. Walsh, K. Van-dam, and H. V. Westerhoff, The danger of metabolic pathways with turbo design, Trends Biochem, vol.23, pp.162-169, 1998.

C. Gancedo and C. L. Flores, The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi, FEMS Yeast Res, vol.4, pp.351-369, 2004.

M. T. Kuenzi and A. Fiechter, Regulation of carbohydrate composition of Saccharomyces cerevisiae under growth limitation, Arch. Microbiol, vol.84, pp.254-265, 1972.

D. Porro, E. Martegani, B. M. Ranzi, and L. Alberghina, Oscillations in continuous cultures of budding yeast: a segregated parameter analysis, Biotechnol. Bioeng, vol.32, pp.411-417, 1988.

E. Martegani, D. Porro, B. M. Ranzi, and L. Alberghina, Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast, Biotechnol. Bioeng, vol.36, pp.453-459, 1990.

P. Duboc, I. Marison, and U. Von-stockar, Physiology of Saccharomyces cerevisiae during cell cycle oscillations, J. Biotechnol, vol.51, pp.57-72, 1996.

D. M?-uller, S. Exler, L. Aguilera-vazquez, E. Guerrero-martin, and M. Reuss, Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccharomyces cerevisiae, Yeast, vol.20, pp.351-367, 2003.

H. H. Sillje, E. G. Ter-schure, A. J. Rommens, P. G. Huls, C. L. Woldringh et al., Effects of different carbon fluxes on G1 phase duration, cyclin expression, and reserve carbohydrate metabolism in Saccharomyces cerevisiae, J. Bacteriol, vol.179, pp.6560-6565, 1997.

H. H. Sillje, J. W. Paalman, E. G. Ter-schure, S. Q. Olsthoorn, A. J. Verkleij et al., Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae, J. Bacteriol, vol.181, pp.396-400, 1999.

J. W. Paalman, R. Verwaal, S. H. Slofstra, A. J. Verkleij, J. Boonstra et al., Trehalose and glycogen accumulation is related to the duration of the G1 phase of Saccharomyces cerevisiae, FEMS Yeast Res, vol.3, pp.261-268, 2003.

J. P. Van-dijken, J. Bauer, L. Brambilla, P. Duboc, J. Franc-ßois et al., An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains, Enzyme Microb. Technol, vol.26, pp.706-714, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02559361

L. Plourde-owobi, S. Durner, J. L. Parrou, R. Wieczorke, G. Goma et al., AGT1, encoding an alphaglucoside transporter involved in uptake and intracellular accumulation of trehalose in Saccharomyces cerevisiae, J. Bacteriol, vol.181, pp.3830-3832, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02522265

O. E. Vuorio, N. Kalkkinen, and J. Londesborough, Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae, Eur. J. Biochem, vol.216, pp.849-861, 1993.

E. Alani, L. Cao, and N. Kleckner, A method for gene disruption that allows repeated URA3 selection in the construction of multiply disrupted yeast strains, Genetics, vol.116, pp.541-545, 1987.

U. G?-uldener, S. Heck, T. Fiedler, J. Beinhauer, and J. H. Hegemann, A new efficient gene disruption cassette for repeated use in budding yeast, Nucl. Acid Res, vol.13, pp.2519-2524, 1996.

A. Wach, A. Brachat, R. P?-ohlmann, and P. Philippsen, New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae, Yeast, vol.10, pp.1793-1808, 1994.

C. Verduyn, E. Postma, W. A. Scheffers, and J. P. Van-dijken, Effect of benzoic acid on metabolic fluxes in yeast: a continuous-culture study on the regulation of respiration and alcoholic fermentation, Yeast, vol.8, pp.501-517, 1992.

P. Duboc and U. Von-stockar, Energetic investigation of Saccharomyces cerevisiae during transitions. Part 1: Mass balances, Thermochim. Acta, vol.251, pp.119-130, 1995.

E. Poilpre, D. Tronquit, G. Goma, and V. Guillou, Online estimation of biomass concentration during transient growth of yeast chemostat culture using light reflectance, Biotech. Lett, vol.24, pp.2075-2081, 2002.

H. C. Lange and J. J. Heijnen, Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae, Biotechnol. Bioeng, vol.75, pp.334-344, 2000.

J. Franc-ßois, M. E. Villanueva, and H. G. Hers, The control of glycogen metabolism in yeast. I. In vivo interconversion of glycogen synthase and glycogen phosphorylase induced by glucose, a nitrogen source, and uncouplers, Eur. J. Biochem, vol.174, pp.551-559, 1988.

A. Vandercammen, J. Franc-ßois, and H. G. Hers, Characterisation of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase of Saccharomyces cerevisiae, Eur. J. Biochem, vol.182, pp.613-620, 1989.

M. J. Neves and J. Franc-ßois, On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae, Biochem. J, vol.288, pp.859-864, 1992.

J. L. Parrou and J. Franc-ßois, A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells, Anal. Biochem, vol.248, pp.186-188, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02522231

E. Groussac, M. Ortiz, and J. Franc-ßois, Improved protocols for quantitative determination of metabolites from biological samples using high performance ionic-exchange chromatography with conductimetric and pulsed amperometric detection, Enzyme Microb. Technol, vol.26, pp.715-723, 2000.

W. Bell, P. Klaassen, M. Ohnacker, T. Boller, M. Herweijer et al., Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation, Eur. J. Biochem, vol.209, pp.951-959, 1992.

C. Cheng, J. Mu, I. Farkas, D. Huang, M. G. Goebl et al., Requirement of the self-glucosylating initiator proteins Glg1p and Glg2p for glycogen accumulation in Saccharomyces cerevisiae, Mol. Cell. Biol, vol.15, pp.6632-6640, 1995.

I. Farkas, T. A. Hardy, M. G. Goebl, and P. J. Roach, Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled, J. Biol. Chem, vol.266, pp.15602-15607, 1991.

C. Strassle, B. Sonnleitner, and A. Fiechter, A predictive model for spontaneous synchronisation of Saccharomyces cerevisiae grown in continuous culture. I. Concept, J. Biotechnol, vol.7, pp.299-318, 1989.

T. Munch, B. Sonnleitner, and A. Fiechter, The decisive role of the Saccharomyces cerevisiae cell cycle behaviour for dynamic growth characterization, J. Biotechnol, vol.22, pp.329-351, 1992.

J. T. Pronk, H. Y. Steensma, and J. P. Van-dijken, Pyruvate metabolism in Saccharomyces cerevisiae, Yeast, vol.12, pp.1607-1633, 1996.

J. Larner, Y. Takeda, and S. Hizukuri, The influence of chain size and molecular weight on the kinetic constants for glucose to polysaccharide for rabbit muscle glycogen synthase, Mol. Cell. Biochem, vol.12, pp.131-136, 1976.

J. Franc-ßois and H. G. Hers, The control of glycogen metabolism in yeast. 2. A kinetic study of the two forms of glycogen synthase and of glycogen phosphorylase and an investigation of their interconversion in a cell-free extract, Eur. J. Biochem, vol.174, pp.561-570, 1988.

D. Huang, W. A. Wilson, and P. J. Roach, Glucose-6-P control of glycogen synthase phosphorylation in yeast, J. Biol. Chem, vol.272, pp.22495-22501, 1997.

B. A. Pederson, W. A. Wilson, and P. J. Roach, Glycogen synthase sensitivity to glucose-6-P is important for controlling glycogen accumulation in Saccharomyces cerevisiae, J. Biol. Chem, 2004.

J. Londesborough and O. Vuorio, Trehalose-6-phosphate synthase/phosphatase complex from bakers' yeast: purification of a proteolytically activated form, J. Gen. Microbiol, pp.323-330, 1991.