P. Alizadeh and D. J. Klionsky, Purification and biochemical characterization of the ATH1 gene product, vacuolar acid trehalase, from Saccharomyces cerevisiae, FEBS Lett, vol.391, pp.273-278, 1996.

P. V. Attfield, Stress tolerance: the key to effective strains of industrial baker's yeast, Nat. Biotechnol, vol.15, pp.1351-1357, 1997.

J. A. Barnett, Sugar utilization by Saccharomyces cerevisiae, Yeast sugar metabolism, pp.35-43, 1997.

G. Berben, J. Dumont, V. Gilliquet, P. A. Bolle, and F. Hilger, The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae, Yeast, vol.7, pp.475-477, 1991.

N. Biswas and A. K. Ghosh, Regulation of acid trehalase activity by association-dissociation in Saccharomyces cerevisiae, Biochim. Biophys. Acta, vol.1379, pp.245-256, 1998.

W. Boos, U. Ehmann, E. Bremer, A. Middendorf, and P. Postma, Trehalase of Escherichia coli: mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions, J. Biol. Chem, vol.262, pp.13212-13218, 1987.

C. B. Brachmann, A. Davies, G. J. Cost, E. Caputo, J. Li et al., Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications, Yeast, vol.14, pp.115-132, 1998.

N. Dallies, J. Francois, and V. Paquet, A new method for quantitative determination of polysaccharides in the yeast cell wall: application to the cell wall defective mutants of Saccharomyces cerevisiae, Yeast, vol.14, pp.1297-1306, 1998.

F. M. De-almeida, A. K. Lucio, M. L. Polizeli, J. A. Jorge, and H. F. Terenzi, Function and regulation of the acid and neutral trehalases of Mucor rouxii, FEMS Microbiol. Lett, vol.155, pp.73-77, 1997.

C. Enfert and T. Fontaine, Molecular characterization of the Aspergillus nidulans treA gene encoding an acid trehalase required for growth on trehalose, Mol. Microbiol, vol.24, pp.203-216, 1997.

M. Destruelle, H. Holzer, and D. J. Klionsky, Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation, Mol. Cell. Biol, vol.14, pp.2740-2754, 1994.

M. Destruelle, H. Holzer, and D. J. Klionsky, Isolation and characterization of a novel yeast gene, ATH1, that is required for vacuolar acid trehalase activity, Yeast, vol.11, pp.1015-1025, 1995.

A. D. Elbein, The metabolism of ?,?-trehalose, Adv. Carbohydr. Chem. Biochem, vol.30, pp.227-256, 1974.

A. D. Elbein, Y. T. Pan, I. Pastuszak, and D. Carroll, New insights on trehalose: a multifunctional molecule, Glycobiology, vol.13, pp.17-27, 2003.

J. François and J. L. Parrou, Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev, vol.25, pp.125-145, 2001.

H. Fukuhara, The Kluyver effect revisited, FEMS Yeast Res, vol.3, pp.327-331, 2003.

P. Goffrini, I. Ferrero, and C. Donnini, Respiration-dependent utilization of sugars in yeasts: a determinant role for sugar transporters, J. Bacteriol, vol.184, pp.427-432, 2002.

U. Guldener, S. Heck, T. Fielder, J. Beinhauer, and J. H. Hegemann, A new efficient gene disruption cassette for repeated use in budding yeast, Nucleic Acids Res, vol.24, pp.2519-2524, 1996.

E. K. Han, F. Cotty, C. Sottas, H. Jiang, and C. A. Michels, Characterization of AGT1 encoding a general ?-glucoside transporter from Saccharomyces, Mol. Microbiol, vol.17, pp.1093-1107, 1995.

L. I. Hecker and A. S. Sussman, Localization of trehalase in the ascospores of Neurospora: relation to ascospore dormancy and germination, J. Bacteriol, vol.115, pp.592-599, 1973.

H. Jiang, I. Medintz, and C. A. Michels, Two glucose sensing/signaling pathways stimulate glucose-induced inactivation of maltose permease in Saccharomyces, Mol. Biol. Cell, vol.8, pp.1293-1304, 1997.

H. Jiang, I. Medintz, B. Zhang, and C. A. Michels, Metabolic signals trigger glucose-induced inactivation of maltose permease in Saccharomyces, J. Bacteriol, vol.182, pp.647-654, 2000.

H. Jiang, K. Tatchell, S. Liu, and C. A. Michels, Protein phosphatase type-1 regulatory subunits Reg1p and Reg2p act as signal transducers in the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae, Mol. Gen. Genet, vol.263, pp.411-422, 2000.

J. A. Jorge, M. L. Polizeli, J. M. Thevelein, and H. F. Terenzi, Trehalases and trehalose hydrolysis in fungi, FEMS Microbiol. Lett, vol.154, pp.165-171, 1997.

F. Keller, M. Schellenberg, and A. Wiemken, Localization of trehalase in vacuoles and of trehalose in the cytosol of yeast (Saccharomyces cerevisiae), Arch. Microbiol, vol.131, pp.298-301, 1982.

M. Kopp, H. Muller, and H. Holzer, Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae, J. Biol. Chem, vol.268, pp.4766-4774, 1993.

S. H. Lillie and J. R. Pringle, Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation, J. Bacteriol, vol.143, pp.1384-1394, 1980.

J. Londesborough and K. Varimo, Characterization of two trehalases in baker's yeast, Biochem. J, vol.219, pp.511-518, 1984.

A. K. Lucio, M. L. Polizeli, J. A. Jorge, and H. F. Terenzi, Stimulation of hyphal growth in anaerobic cultures of Mucor rouxii by extracellular trehalose. Relevance of cell wall-bound activity of acid trehalase for trehalose utilization, FEMS Microbiol Lett, vol.182, pp.9-13, 2000.

E. F. Malluta, P. Decker, and B. U. Stambuk, The Kluyver effect for trehalose in Saccharomyces cerevisiae, J. Basic Microbiol, vol.40, pp.199-205, 2000.

I. Medintz, H. Jiang, E. K. Han, W. Cui, and C. A. Michels, Characterization of the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae, J. Bacteriol, vol.178, pp.2245-2254, 1996.

I. Medintz, H. Jiang, and C. A. Michels, The role of ubiquitin conjugation in glucose-induced proteolysis of Saccharomyces maltose permease, J. Biol. Chem, vol.273, pp.34454-34462, 1998.

I. Medintz, X. Wang, T. Hradek, and C. A. Michels, A PEST-like sequence in the N-terminal cytoplasmic domain of Saccharomyces maltose permease is required for glucose-induced proteolysis and rapid inactivation of transport activity, Biochemistry, vol.39, pp.4518-4526, 2000.

K. Mittenbuhler and H. Holzer, Purification and characterization of acid trehalase from the yeast suc2 mutant, J. Biol. Chem, vol.263, pp.8537-8543, 1988.

M. J. Neves and J. François, On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae, Biochem. J, vol.288, pp.859-864, 1992.

S. Nwaka and H. Holzer, Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae, Prog. Nucleic Acid Res. Mol. Biol, vol.58, pp.197-237, 1998.

S. Nwaka, M. Kopp, and H. Holzer, Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae, J. Biol. Chem, vol.270, pp.10193-10198, 1995.

S. Nwaka, B. Mechler, M. Destruelle, and H. Holzer, Phenotypic features of trehalase mutants in Saccharomyces cerevisiae, FEBS Lett, vol.360, pp.286-290, 1995.

S. Nwaka, B. Mechler, and H. Holzer, Deletion of the ATH1 gene in Saccharomyces cerevisiae prevents growth on trehalose, FEBS Lett, vol.386, pp.235-238, 1996.

J. L. Parrou, B. Enjalbert, L. Plourde, A. Bauche, B. Gonzalez et al., Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae, Yeast, vol.15, pp.191-203, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02146834

J. L. Parrou, M. A. Teste, and J. François, Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose, Microbiology, vol.143, pp.1891-1900, 1997.
URL : https://hal.archives-ouvertes.fr/hal-01883034

L. Plourde-owobi, S. Durner, J. L. Parrou, R. Wieczorke, G. Goma et al., AGT1, encoding an alpha-glucoside transporter involved in uptake and intracellular accumulation of trehalose in Saccharomyces cerevisiae, J. Bacteriol, vol.181, pp.3830-3832, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02522265

S. P. Ram, L. K. Romana, M. G. Shepherd, and P. A. Sullivan, Exo-(1-3)-?-glucanase, autolysin and trehalase activities during yeast growth and germ-tube formation in Candida albicans, J. Gen. Microbiol, vol.130, pp.1227-1236, 1984.

C. J. Roberts, S. F. Nothwehr, and T. H. Stevens, Membrane protein sorting in the yeast secretory pathway: evidence that the vacuole may be the default compartment, J. Cell Biol, vol.119, pp.69-83, 1992.

J. H. Rothman, C. P. Hunter, L. A. Valls, and T. H. Stevens, Overproduction-induced mislocalization of a yeast vacuolar protein allows isolation of its structural gene, Proc. Natl. Acad. Sci. USA, vol.83, pp.3248-3252, 1986.

M. Schena, D. Picard, and K. R. Yamamoto, Vectors for constitutive and inducible gene expression in yeast, Methods Enzymol, vol.194, pp.389-398, 1991.

R. S. Sikorski and P. Hieter, A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae, Genetics, vol.122, pp.19-27, 1989.

M. C. Silveira, E. Carvajal, and E. P. Bon, Assay for in vivo yeast invertase activity using NaF, Anal. Biochem, vol.238, pp.26-28, 1996.

M. A. Singer and S. Lindquist, Multiple effects of trehalose on protein folding in vitro and in vivo, Mol. Cell, vol.1, pp.639-648, 1998.

M. A. Singer and S. Lindquist, Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose, Trends Biotechnol, vol.16, pp.460-468, 1998.

B. U. Stambuk, M. A. Silva, A. D. Panek, and P. S. De-araujo, Active ?-glucoside transport in Saccharomyces cerevisiae, FEMS Microbiol. Lett, vol.170, pp.105-110, 1999.

B. U. Stambuk and P. S. De-araujo, Kinetics of active ?-glucoside transport in Saccharomyces cerevisiae, FEMS Yeast Res, vol.1, pp.73-78, 2001.

B. U. Stambuk, P. S. De-araujo, A. D. Panek, and R. Serrano, Kinetics and energetics of trehalose transport in Saccharomyces cerevisiae, Eur. J. Biochem, vol.237, pp.876-881, 1996.

B. U. Stambuk, A. D. Panek, J. H. Crowe, L. M. Crowe, and P. S. De-araujo, Expression of high-affinity trehalose-H ? symport in Saccharomyces cerevisiae, Biochim. Biophys. Acta, vol.1379, pp.118-128, 1998.

T. H. Stevens, J. H. Rothman, G. S. Payne, and R. Schekman, Gene dosage-dependent secretion of yeast vacuolar carboxypeptidase Y, J. Cell Biol, vol.102, pp.1551-1557, 1986.

J. P. Van-dijken, J. Bauer, L. Brambilla, P. Duboc, J. M. Francois et al., An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains, Enzyme Microb. Technol, vol.26, pp.706-714, 2000.

D. Visser, G. A. Van-zuylen, J. C. Van-dam, A. Oudshoorn, M. R. Eman et al., Rapid sampling for analysis of in vivo kinetics using the BioScope: a system for continuous-pulse experiments, Biotechnol. Bioeng, vol.79, pp.674-681, 2002.

A. Wach, A. Brachat, R. Pohlmann, and P. Philippsen, New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae, Yeast, vol.10, pp.1793-1808, 1994.

X. Wang, M. Bali, I. Medintz, and C. A. Michels, Intracellular maltose is sufficient to induce MAL gene expression in Saccharomyces cerevisiae, Eukaryot. Cell, vol.1, pp.696-703, 2002.

Z. Wang, W. A. Wilson, M. A. Fujino, and P. J. Roach, Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p, Mol. Cell. Biol, vol.21, pp.5742-5752, 2001.

W. A. Wilson, Z. Wang, and P. J. Roach, Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level, Mol. Cell. Proteomics, vol.1, pp.232-242, 2002.