, Trajectoires d'évolution du mix électrique, ADEME, 2018.

R. Arvidsson and M. Svanström, A framework for energy use indicators and their reporting in life cycle assessment, Integr Environ Assess Manag, vol.12, pp.429-436, 2016.

M. Bailera, P. Lisbona, L. M. Romeo, and S. Espatolero, Power to gas projects review: lab, pilot and demo plants for storing renewable energy and CO 2, Renew Sust Energ Rev, vol.69, p.312, 2017.

J. C. Bare, P. Hofstetter, D. W. Pennington, and H. De-haes, Midpoints versus endpoints: the sacrifices and benefits, Int J Life Cycle Assess, vol.5, pp.319-326, 2000.

A. Bordet, L. M. Lacroix, and P. F. Fazzini, Magnetically induced continuous CO2 hydrogenation using composite iron carbide nano particles of exceptionally high heating power, Angew Chemie Int Ed, vol.55, 2016.

M. Bui, C. S. Adjiman, and A. Bardow, Carbon capture and storage (CCS): the way forward, Energy Environ Sci, vol.11, pp.1062-1176, 2018.

A. Buttler and H. Spliethoff, Current status of water electrolysis for energy storage, grid balancing and sector coupling via power to gas and power to liquids: a review, Renew Sust Energ Rev, vol.82, 2018.

B. Chevalier, T. Reyes-carrillo, and B. Laratte, Methodology for choos ing life cycle impact assessment sector specific indicators Collet P, Flottes E, Favre A et al (2017) Techno economic and life cycle assessment of methane production via biogas upgrading and power to gas technology, Appl Energy, vol.192, p.181, 2011.

C. Franca, R. M. Azapagic, and A. , Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts, J CO2 Util, vol.9, p.102, 2015.

M. Fasihi, O. Efimova, and C. Breyer, Techno economic assessment of CO2 direct air capture plants, J Clean Prod, 2019.

J. Gale, B. Metz, O. Davidson, H. De-coninck, M. Loos et al., Carbon dioxide capture and storage. Intergovernmental Panel on Climate Change, p.104, 2005.

M. Götz, J. Lefebvre, and F. Mörs, Renewable power to gas: a technological and economic review, Renew Energy, vol.85, 2016.

M. Gruber, P. Weinbrecht, and L. Biffar, Power to gas through thermal integration of high temperature steam electrolysis and car bon dioxide methanation experimental results, Fuel Process Technol, vol.181, pp.61-74, 2018.

J. B. Hansen, Solid oxide electrolysis a key enabling technology for sustainable energy scenarios, Faraday Discuss, vol.182, 2015.

R. Hergt, S. Dutz, R. Müller, and M. Zeisberger, Magnetic particle hy perthermia: nanoparticle magnetism and materials development for cancer therapy, S2919 S2934, vol.18, 2006.

A. Hervault and N. Thanh, Magnetic nanoparticle based therapeutic agents for thermo chemotherapy treatment of cancer, Nanoscale, vol.6, 2014.

O. Jolliet, M. Margni, and R. Charles, IMPACT 2002+: a new life cycle impact assessment methodology, Int J Life Cycle Assess, vol.8, p.330, 2003.

D. Leung, G. Caramanna, M. Valer, and M. M. , An overview of current status of carbon dioxide capture and storage technologies, Renew Sust Energ Rev, vol.39, p.443, 2014.

J. Marbaix, W. Kuckshinrichs, and W. Leitner, Etude multi échelle de l'activation de réactions catalytiques par chauffage magnétique pour le stockage des énergies renouvelables PhD dissertation, Energy Environ Sci, vol.5, p.7281, 2012.

A. Meffre, B. Mehdaoui, V. Connord, J. Carrey, P. F. Fazzini et al., Complex nano objects displaying both magnetic and catalytic properties: a proof of concept for mag netically induced heterogeneous catalysis, Nano Lett, vol.15, p.3248, 2015.

F. D. Meylan, V. Moreau, and S. Erkman, Material constraints related to storage of future European renewable electricity surpluses with CO2 methanation, Energy Policy, vol.94, pp.366-376, 2016.

P. M. Mortensen, J. S. Engbaek, and S. B. Vendelbo, Direct hysteresis heating of catalytically active Ni Co nanoparticles as steam reforming catalyst, Ind Eng Chem Res, vol.56, 2017.

L. Final, M. N. Camacho, A. Dahrieh, J. Rooney, D. Sun et al., Biogas reforming using renewable wind energy and induction heating, Helmeth, Deliverable 5, vol.2, pp.129-138, 2015.

D. Peterson and E. Miller, Hydrogen and fuel cells program record hydrogen production cost from solid oxide electrolysis, p.11, 2016.

G. Reiter and J. Lindorfer, Global warming potential of hydrogen and methane production from renewable electricity via power to gas technology, Int J Life Cycle Assess, vol.20, p.489, 2015.

G. T. Rochelle, Amine scrubbing for CO2 capture, Science, vol.325, pp.1652-1654, 2009.

G. T. Rochelle, Conventional amine scrubbing for CO2 capture. In: Absorption based post combustion capture of carbon dioxide, p.67, 2016.

A. B. Salunkhe, V. M. Khot, and S. H. Pawar, Magnetic hyperthermia with magnetic nanoparticles: a status review, Curr Top Med Chem, vol.14, pp.572-594, 2014.

R. Socolow, M. Desmond, R. Aines, J. Blackstock, M. Bellusci et al., Dry reforming of methane powered by magnetic induction, Direct air capture of co2 with chemicals. APS Physics Varsano F, 2011.

L. F. Vilches-arenas, A. Fariñas, B. Navarrete, and B. , Carbon capture and utilization technologies: a literature review and recent advances, Energy Sour Part A, vol.41, 2018.

M. G. Vinum, M. R. Almind, and J. S. Engbaek, Dual function cobalt nickel nanoparticles tailored for high temperature induction heated steam methane reforming, Angew Chemie Int Ed, vol.57, 2018.

W. Wang, D. Viet, C. Xu, and Z. , CO2 methanation under dynamic operational mode using nickel nanoparticles decorated car bon felt (Ni/OCF) combined with inductive heating, Catal Today, 2019.

, Publisher's note Springer Nature remains neutral with regard to jurisdic tional claims in published maps and institutional affiliations