K. Anderson, J. M. Cooper, S. J. Haswell, D. Marshall, H. Yin et al., , p.597

, Microfluidic-based measurements of cytochrome P450 enzyme activity of 598 primary mammalian hepatocytes, Analyst, vol.135, pp.1282-1287, 2010.

,

H. Golnabi and M. Razani, Oxygen sensing based on the oxidation process in 601 resorufin dye, Sensors and Actuators B: Chemical, vol.122, pp.109-117, 2007.

,

M. Jimenez, N. Dietrich, and G. Hébrard, Mass transfer in the wake of non-spherical 604 air bubbles quantified by quenching of fluorescence, Chemical Engineering, p.605

, Science, vol.100, pp.160-171, 2013.

P. Kováts, D. Thévenin, and K. Zähringer, Investigation of Mass Transfer and 607 Hydrodynamics in a Model Bubble Column, vol.608

, Technology, vol.40, pp.1434-1444, 2017.

J. Huang and T. Saito, Influence of Bubble-Surface Contamination on Instantaneous 610 Mass Transfer, vol.38, pp.1947-1954, 2015.

,

T. Lacassagne, M. E. Hajem, F. Morge, S. Simoens, and J. Champagne, Study of, p.613
URL : https://hal.archives-ouvertes.fr/hal-01695216

, Gas Liquid Mass Transfer in a Grid Stirred Tank, Oil Gas Sci. Technol. -Rev

, IFP Energies Nouvelles, vol.72, 2017.

T. Lacassagne, S. Simoëns, M. E. Hajem, and J. Champagne, Ratiometric, 616 single-dye, pH-sensitive inhibited laser-induced fluorescence for the 617 characterization of mixing and mass transfer, Exp Fluids, vol.59, 2018.

S. Someya, S. Bando, Y. Song, B. Chen, and M. Nishio, DeLIF measurement of pH 620 distribution around dissolving CO2 droplet in high pressure vessel, International 621 Journal of Heat and Mass Transfer, vol.48, pp.2508-2515, 2005.

,

M. R. Eftink, Fluorescence Quenching Reactions, p.624

, Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, pp.1-41, 1991.

W. M. Vaughn and G. Weber, Oxygen quenching of pyrenebutyric acid fluorescence 627 in water. Dynamic probe of the microenvironment, Biochemistry, vol.9, pp.464-473, 1970.

L. M. Wolff, Z. Liu, and T. J. Hanratty, A Fluorescence Technique to Measure 630 Concentration Gradients near an Interface, pp.210-218, 1991.

J. François, N. Dietrich, P. Guiraud, and A. Cockx, Direct measurement of mass 633 transfer around a single bubble by micro-PLIFI, Chem. Eng. Sci, vol.66, pp.3328-3338, 2011.

V. Kapoustina, J. Ross-jones, M. Hitschler, M. Raedle, and J. Repke, Direct 636 spatiotemporally resolved fluorescence investigations of gas absorption and 637 desorption in liquid film flows, Chem. Eng. Res. Des, vol.99, pp.248-255, 2015.

W. E. Asher and T. M. Litchendorf, Visualizing near-surface concentration 640 fluctuations using laser-induced fluorescence, Experiments in Fluids, vol.46, pp.243-253, 2009.

P. M. Piccione, A. A. Rasheed, A. Quarmby, and D. Dionisi, , p.643

. Scale-up, Effects on the Mass Transfer Coefficient through the "Blue Bottle" 644 Reaction, J. Chem. Educ, vol.94, pp.726-729, 2017.

,

N. Dietrich, K. Loubière, M. Jimenez, G. Hébrard, and C. Gourdon, A new direct 647 technique for visualizing and measuring gas-liquid mass transfer around bubbles 648 moving in a straight millimetric square channel, Chemical Engineering Science, vol.649, pp.172-182, 2013.

W. Krieger, J. Lamsfuß, W. Zhang, and N. Kockmann, Local Mass Transfer 651 Phenomena and Chemical Selectivity of Gas-Liquid Reactions in Capillaries, Chemical Engineering & Technology, vol.40, pp.2134-2143, 2017.

,

D. Colombet, D. Legendre, A. Cockx, P. Guiraud, F. Risso et al., 655 Experimental study of mass transfer in a dense bubble swarm, Chemical 656 Engineering Science, vol.66, pp.3432-3440, 2011.

,

E. Bouche, S. Cazin, V. Roig, and F. Risso, Mixing in a swarm of bubbles rising in a 659 confined cell measured by mean of PLIF with two different dyes, Exp Fluids, vol.54, p.1552, 2013.

M. Fedrizzi and J. Soria, Planar laser fluorescence imaging of bubble detachment, pp.1-4, 2014.

J. Moghaddas, C. Trägårdh, T. Kovacs, and K. Östergren, A new method for 664 measuring concentration of a fluorescent tracer in bubbly gas-liquid flows, Experiments in Fluids, vol.32, pp.728-729, 2002.

U. D. Kück, M. Schlüter, and N. Räbiger, Investigation on Reactive Mass Transfer at 667 Freely Rising Gas Bubbles, pp.1-5, 2010.

M. Stöhr, J. Schanze, and A. Khalili, Visualization of gas-liquid mass transfer and 670 wake structure of rising bubbles using pH-sensitive PLIF, Exp Fluids, vol.47, pp.135-143, 2009.

M. Yamamoto, M. Yamada, K. Morikawa, T. Sanada, and T. Saito, Coupling 673 mechanism between liquid phase motion and mass transfer around single rising 674 bubbles by using PIV/LIF, 2008.

O. Bork, M. Schlueter, and N. Raebiger, The Impact of Local Phenomena on Mass 676 Transfer in Gas-Liquid Systems, Can. J. Chem. Eng, vol.83, pp.658-666, 2005.

,

U. D. Kück, M. Schlüter, and N. Räbiger, Local Measurement of Mass Transfer Rate 679 of a Single Bubble with and without a Chemical Reaction, Journal of Chemical 680 Engineering of Japan, vol.45, pp.708-712, 2012.

N. Dietrich, J. Francois, M. Jimenez, A. Cockx, P. Guiraud et al., Fast 682 measurements of the gas-liquid diffusion coefficient in the gaussian wake of a 683 spherical bubble, Chem. Eng. Technol, vol.38, pp.941-946, 2015.

,

T. Saito and M. Toriu, Effects of a bubble and the surrounding liquid motions on the 686 instantaneous mass transfer across the gas-liquid interface, Chemical 687 Engineering Journal, vol.265, pp.164-175, 2015.

J. Huang and T. Saito, Discussion about the differences in mass transfer, bubble 690 motion and surrounding liquid motion between a contaminated system and a 691 clean system based on consideration of three-dimensional wake structure 692 obtained from LIF visualization, Chemical Engineering Science, vol.170, pp.105-115, 2017.

J. Huang and T. Saito, Influences of gas-liquid interface contamination on bubble 695 motions, bubble wakes, and instantaneous mass transfer, Chemical Engineering, p.696

, Science, vol.157, pp.182-199, 2017.

J. Timmermann, M. Hoffmann, and M. Schlüter, Influence of Bubble Bouncing on, vol.698

, Chemical Engineering & Technology, vol.39, pp.1955-1962, 2016.

M. W. Hlawitschka, P. Kováts, K. Zähringer, and H. Bart, Simulation and 701 experimental validation of reactive bubble column reactors, Chemical 702 Engineering Science, vol.170, pp.306-319, 2017.

,

G. Kong, K. A. Buist, E. A. Peters, and J. A. Kuipers, Dual emission LIF 705 technique for pH and concentration field measurement around a rising bubble, 706 Experimental Thermal and Fluid Science, vol.93, pp.186-194, 2018.

,

N. Dietrich and G. Hébrard, Visualisation of gas-liquid mass transfer around a rising 709 bubble in a quiescent liquid using an oxygen sensitive dye, vol.710, pp.1-9, 2018.

F. Xu, A. Cockx, G. Hébrard, and N. Dietrich, Mass Transfer and Diffusion of a 712

, Single Bubble Rising in Polymer Solutions, Industrial & Engineering Chemistry 713 Research, vol.57, pp.15181-15194, 2018.

F. Xu, N. Midoux, H. Li, G. Hébrard, and N. Dietrich, Characterization of bubble 715 shapes in non-newtonian fluids by parametric equations, 2019.

L. Yang, N. Dietrich, G. Hébrard, K. Loubière, and C. Gourdon, Optical methods to 718 investigate the enhancement factor of an oxygen-sensitive colorimetric reaction 719 using microreactors, AIChE Journal, vol.63, pp.2272-2284, 2017.

,

L. Yang, N. Dietrich, K. Loubière, C. Gourdon, and G. Hébrard, Visualization and 722 characterization of gas-liquid mass transfer around a Taylor bubble right after 723 the formation stage in microreactors, Chemical Engineering Science, vol.143, pp.364-368, 2016.

A. Kherbeche, J. Milnes, M. Jimenez, N. Dietrich, G. Hébrard et al., , p.726

, Multi-scale analysis of the influence of physicochemical parameters on the 727 hydrodynamic and gas-liquid mass transfer in gas/liquid/solid reactors, Chemical Engineering Science, vol.100, pp.515-528, 2013.

,

A. Kherbeche, M. Mei, M. Thoraval, G. Hébrard, and N. Dietrich, Hydrodynamics 731 and gas-liquid mass transfer around a confined sliding bubble, Chemical 732 Engineering Journal, 2019.

L. Yang, K. Loubière, N. Dietrich, C. Le-men, C. Gourdon et al., Local 734 investigations on the gas-liquid mass transfer around Taylor bubbles flowing in a 735 meandering millimetric square channel, Chemical Engineering Science, vol.165, pp.192-203, 2017.

P. Kováts, D. Pohl, D. Thévenin, and K. Zähringer, Optical determination of oxygen 738 mass transfer in a helically-coiled pipe compared to a straight horizontal tube, Chemical Engineering Science, vol.190, pp.273-285, 2018.

,

S. Kastens, J. Timmermann, F. Strassl, R. F. Rampmaier, A. Hoffmann et al.,

M. Herres-pawlis and . Schlüter, Test System for the Investigation of Reactive Taylor 743 Bubbles, vol.40, pp.1494-1501, 2017.

,

C. Butler, E. Cid, and A. Billet, Modelling of mass transfer in Taylor flow: 746 Investigation with the PLIF-I technique, Chemical Engineering Research, p.747

, Design, vol.115, pp.292-302, 2016.

C. Butler, B. Lalanne, K. Sandmann, E. Cid, and A. Billet, Mass transfer in 749 Taylor flow: Transfer rate modelling from measurements at the slug and film 750 scale, International Journal of Multiphase Flow, vol.105, pp.185-201, 2018.

,

E. Alméras, S. Cazin, V. Roig, F. Risso, F. Augier et al., Time-resolved 753 measurement of concentration fluctuations in a confined bubbly flow by LIF, 754, International Journal of Multiphase Flow, vol.83, pp.153-161, 2016.

,

M. Roudet, A. Billet, S. Cazin, F. Risso, and V. Roig, Experimental investigation 757 of interfacial mass transfer mechanisms for a confined high-reynolds-number 758 bubble rising in a thin gap, AIChE J, vol.63, pp.2394-2408, 2017.

,

F. Felis, N. Dietrich, A. Billet, F. Strassl, S. Herres-pawlis et al., , p.761

. Loubière, Experiments on reactive mass transfer around an oxygen bubble rising 762 freely in a confined cell using colourimetric methods, pp.763-121, 2018.

F. Felis, F. Strassl, L. Laurini, N. Dietrich, A. Billet et al.,

K. Herres-pawlis and . Loubière, Using a bio-inspired copper complex to investigate 766 reactive mass transfer around an oxygen bubble rising freely in a thin-gap cell, Chemical Engineering Science, p.767, 2019.

,

S. Rüttinger, C. Spille, M. Hoffmann, and M. Schlüter, Laser-Induced Fluorescence 770 in Multiphase Systems, ChemBioEng Reviews, vol.5, pp.253-269, 2018.

,

M. Jimenez, Etude du transfert de matière gaz/liquide en milieux complexes: 773 quantification du transfert d'oxygène par techniques optiques, INSA, p.774, 2013.

R. E. Erb and M. H. Ehlers, Resazurin Reducing Time as an Indicator of Bovine 775 Semen Fertilizing Capacity, Journal of Dairy Science, vol.33, pp.91981-91984, 1950.

L. Anderson, S. M. Wittkopp, C. J. Painter, J. J. Liegel, R. Schreiner et al., 778 B.Z. Shakhashiri, What Is Happening When the Blue Bottle Bleaches: An 779 Investigation of the Methylene Blue-Catalyzed Air Oxidation of Glucose

, Chem. Educ, vol.89, pp.1425-1431, 2012.

J. Francois, N. Dietrich, and A. Cockx, A Novel Methodology to Measure Mass 782 Transfer Around a Bubble, Mod. Phys. Lett. B, vol.25, pp.1993-2000, 2011.

,

F. Xu, M. Jimenez, N. Dietrich, and G. Hébrard, Fast determination of gas-liquid 785 diffusion coefficient by an innovative double approach, Chemical Engineering 786 Science, 2017.

M. Roustan, Transferts gaz-liquide dans les procédés de traitement des eaux et 788 des effluents gazeux, Tec & Doc Lavoisier, 2003.