

Influence of the initial water content in flash calcined metakaolin-based geopolymer

Raphaëlle Pouhet, Martin Cyr, Raphaël Bucher

► To cite this version:

Raphaëlle Pouhet, Martin Cyr, Raphaël Bucher. Influence of the initial water content in flash calcined metakaolin-based geopolymer. Construction and Building Materials, 2019, 201, pp.421-429. 10.1016/j.conbuildmat.2018.12.201. hal-02395947

HAL Id: hal-02395947 https://hal.insa-toulouse.fr/hal-02395947

Submitted on 12 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Influence of the initial water content in flash calcined 1 metakaolin-based geopolymer 2 3 POUHET Raphaëlle, CYR Martin, BUCHER Raphaël 4 ^{1,2}, Université de Toulouse, LMDC, INSA/UPS Génie Civil, 135 Avenue de Rangueil, 31077 5 Toulouse cedex 04 France. 6 7 pouhet@insa-toulouse.fr, martin.cyr@insa-toulouse.fr, bucher@insa-toulouse.fr 8 **Keywords:** Geopolymer, Metakaolin, water content, compressive strength, porous network, 9 transfer properties. 10 11 Abstract. 12 13 This study assesses the influence of the initial amount of water in metakaolin-based 14 geopolymer on some of its properties in the hardened state. Results suggest a linearly 15 decreasing influence of the amount of water on the mechanical performance of the 16 geopolymer and showed that the majority of this water was not bonded to the structure. 17 Moreover, it was found that whatever the amount of water initially introduced, all the samples 18 contained the same amount of water after a drying period. The study of the porous network 19 showed a large pore volume of 50% of the total volume which corresponds to the volume of 20 water initially introduced. Finally, the observation of numerous macropore helped to explain 21 the high transfer coefficients measured on the geopolymer.

22 **1. Introduction**

23 The evolution of knowledge on alkali activated materials (AAM) and, more specifically, on 24 geopolymers (GP), tends to show that they could provide an efficient alternative to ordinary 25 Portland cement (OPC) (Shi et al., 2006; Provis et al., 2009a; Bligh et al., 2013; Pacheco-26 Torgal et al., 2014; Palomo et al., 2014). Geopolymers are aluminosilicate materials formed 27 by the activation of an aluminosilicate source, such as metakaolin, by a strongly basic alkaline 28 solution. This results in the formation of amorphous materials at room temperature (Duxson et 29 al., 2007a), showing compressive strength comparable to that of a traditional hydraulic binder 30 (Pouhet and Cyr, 2016a). For the geopolymer the Water/Cement mass ratio is not much used 31 in the literature, as it could be for OPC. However, without necessarily anticipating the 32 consequences that it can have on the hardened state of the material, it is easy to see that the 33 amount of water introduced can be very important. The purpose of this study is to anticipate 34 the performance of a metakaolin-based geopolymer by studying the influence of the 35 proportion of water initially introduced into the mixture.

36 The silica, aluminium, alkali and water brought to the geopolymer mixture by the raw 37 materials are mentioned in the literature in the form of three molar ratios, which fix the total 38 formulation of a geopolymer: SiO_2/Al_2O_3 , Na_2O/Al_2O_3 and H_2O/Na_2O . The main issue with 39 the use of these ratios is that the variation of any one of them induces a variation of the total 40 quantity of water in the mixture. Thus it is often difficult to distinguish the influence of just 41 the initial amount of water on the parameters studied. Some authors use special molar ratios to 42 define the total amount of water in the formulation: $H_2O/(SiO_2+Al_2O_3)$, H_2O/R (some use 43 H₂O/R₂O, R=Na or K) or H₂O/Al₂O₃ (Lizcano et al., 2012; Perera et al., 2005; and Okada et 44 al., 2009, respectively) but that implies that the other molar ratios have already been set. Other 45 authors use a "Liquid-to-solid" or Water-to-solid" mass ratio (Álvarez-Ayuso et al., 2008; 46 Provis et al., 2009b; Zuhua et al, 2009; Zang et al., 2010; Park and Pour-Ghaz, 2018). 47 However, this is not always defined in the same way due to the fact that the activation solution is liquid but contains sodium and silica. Sometimes the ratio corresponds to the mass 48 of activating solution over the aluminosilicate mass (Álvarez-Ayuso et al., 2008; Provis et al., 49

50 2009a), sometimes it is the total mass of water over the sum of all the solid components 51 introduced into the mix (Pouhet and Cyr, 2016a), and sometimes it is used without being 52 defined (Zang et al., 2010; Zuhua et al., 2009).

53 The impact of the molar ratios on the hardened state of metakaolin-based geopolymer is now 54 widely referenced in the literature regarding their mechanical performances (Kamalloo et al., 55 2010; Rowles et al., 2003; Duxson et al., 2007b), microstructures (Duxson et al., 2005; 56 Barbosa, 2000), and porous networks (Duxson, 2005; Steins et al., 2013) but very few studies 57 discuss the influence of the initial amount of water introduced into the mixture on the 58 hardened state of geopolymer, independently of the other components (Zuhua et al., 2009; 59 Okada et al., 2009; Lizcano et al., 2012). Among these authors, Lizcano et al. assessed the 60 effects of chemistry, and curing and ageing conditions on water loss kinetics, porosity, and the 61 structure of metakaolin-based geopolymers (Lizcano et al.; 2012). Their results showed that 62 the initial amount of water was the dominant factor affecting the density and the open porosity 63 of geopolymers after curing and extended ageing. This study also showed that whatever the amount of water introduced initially, after 21 days in open moulds at 20 °C and around 74 % 64 65 R.H., all specimens had a final water content of around 15% to 20% (for geopolymer 66 activated by sodium). Finally, the authors demonstrated a strong correlation between the 67 initial water content and the open porosity of the geopolymer. Okada et al., (Okada et al., 68 2009) obtained similar results on metakaolin-based geopolymer, showing that the increase in 69 the initial water content increased both the size and the volume of the porous network. Perera 70 et al. (Perera et al, 2005) showed that water was present in the geopolymer in three forms: 1-71 "free water" (or intergranular water), which is removed between room temperature and 150 72 °C; 2- water removed between 150 °C and 300 °C, which would correspond to the "interstitial 73 water"; and 3- water related to OH groups bound into the structure of new-formed products, 74 representing only very small amount of water measured between 300 °C and 700 °C (Perera 75 et al., 2005). White et al. (White et al, 2010) used neutron pair distribution function (PDF) to 76 improve their understanding of the local atomic structural characteristics of geopolymer 77 binders derived from metakaolin, specifically the nature and amount of the water associated

78 with these materials. Their findings were consistent with those of previous studies, showing 79 that only small amounts of water (<5% for geopolymer activated by potassium) may exist in 80 small pores and as terminal hydroxyl groups in the Si–Al framework structure. Most of the 81 water is lost below 200 °C, indicating that it is mainly found in large pores or hydrating the 82 charge-balancing cations associated with the Si–Al framework.

The above mentioned studies provide some important information about the organization of the water in the hardened metakaolin-based geopolymer, but none of them addresses the consequences of this presence of water. This study therefore proposes an investigation into the influence that the initial water content in metakaolin-based geopolymer has on the hardened state, in the aim of being able to anticipate the final behaviour of the material in terms of mechanical performance and transfer properties.

89

90 2. Materials and methods

91 **2.1. Geopolymer raw materials and synthesis**

92 The source of aluminosilicate was a metakaolin obtained by flash calcination, produced in the 93 south west of France by ARGECO Développement. The term "flash calcination" refers to the 94 combustion process where the particles of kaolinite are transformed into metakaolin by 95 passing near a flame for a few tenths of a second (temperature around 700 °C) (San Nicolas, 96 2013). Table 1 presents the mass content of oxides in the flash metakaolin, obtained by ICP-97 OES, using an Optima[™] 7000 DV ICP-OES (PerkinElmer) equipped with a CCD sensor. 98 These results show very large silica content, mainly due to the presence of quartz in the raw 99 kaolin, confirmed by XRD analyses. However, after quantification, only the amorphous part 100 of this silica (around 29% of the metakaolin mass) was taken into account in the formulation 101 of the geopolymer. The specific surface area of the flash metakaolin was 13 m^2/g (BET). The 102 activating solution used was an industrial sodium silicate solution (Bétol 49T, Woellner) 103 containing 8 % Na₂O by mass and having an SiO₂/Na₂O ratio of 3.3 (Table 1). In order to 104 adjust the sodium content, pure-grade NaOH was added to this commercial solution 24 h 105 before the geopolymer preparation. This initial solution had a high water content (65.6 wt%,

Table 1), so a moderate evaporation of a certain amount of water, performed at lowtemperature 24 h before the preparation, was necessary for some geopolymers.

108

Table 1. Mass composition of raw materials.

-		SiO ₂	Al ₂ O ₃	CaO	MgO	Fe ₂ O ₃	K ₂ O	Na ₂ O	TiO ₂	SO ₃	H_2O
-	Flash metakaolin	68.10	24.10	0.91	0.22	3.73	0.35	0.08	1.14	0.03	-
	Waterglass solution	26.5	-	-	-	-	-	8.0	-	-	65.6

110

111 The geopolymer was prepared in two steps. First, pure NaOH and water were added to the 112 industrial waterglass solution to obtain the desired SiO_2/Na_2O and H_2O/Na_2O molar ratios. 113 After total dissolution of the sodium hydroxide, the solution was cooled to 20 °C for 24 h and 114 then mixed with the metakaolin until the mixture was homogeneous.

115 The geopolymer mortars were mixed and made according to French standard EN 196-1 in a 5 L mixer (Automix, Controls[®]), using the activation solution instead of the mixing water. The 116 117 formulations are presented in Table 2. Standard sand (EN 196-1 and ISO 679: 2009 standards) 118 composed of well crystallized quartz and having a controlled particle size between 0 and 2 119 mm was used. The mortar specimens were cast in 4 x 4 x 16 cm moulds using a shock table, 120 and pastes were cast in 7 x 4.3 x 2.2 cm plastic prisms. All specimens were cured at 20 °C in 121 sealed bags for the first 24 hours and then demoulded and stored at 20 °C and 95 % R.H. until 122 testing.

123

Table 2. Mass composition of geopolymer (solid molar composition: 3.6SiO₂•1Al₂O₃•0.9Na₂O)

Samula ID	Mk	Silicoto (g)		ΗΟ(σ)	Sand	Water in	Water/
Sample ID	(g)	Sincate (g)	NaOH (g)	H ₂ O (g)	(g)	GP (wt.%)	solid
GP0.38	450	372	37.8	-12.1*	1350	27%	0.38
GP0.4	450	372	37.8	5	1350	29%	0.40
GP0.5	450	372	37.8	65.1	1350	33%	0.50
GP0.6	450	372	37.8	125.1	1350	37%	0.60
GP0.7	450	372	37.8	185.1	1350	41%	0.70

125 * negative value corresponding to the mass of water evaporated from the alkali silicate solution.

127 **2.2. Test methods**

128 The mechanical tests in flexion and compression were performed on 3 prismatic mortar 129 specimens of dimensions 4 x 4 x 16 cm, according to EN 196-1 (Automatic mortar press, Class A - 3R[®] RP30/200FP). The mineralogical study was carried out by X-ray diffraction 130 131 (XRD) using a Bruker D8 Advance diffractometer, with Bragg-Brentano configuration and 132 copper radiation (Cu K α , $\lambda = 1,5406$ Å). The acquisitions were made on powder having a maximum particle size of 80 μ m, between 5° and 70° 20, with a step size of 0.02° and an 133 134 acquisition time of 1.075 seconds per step. The total pore volume was determined in this 135 study by measuring the porosity accessible to water via the French standard NF P18-459 136 (2010). Tests were carried out on at least three 7 x 4.3 x 2.2 cm prisms of geopolymer paste. 137 The balance accuracy for the mass measurements was 0.001g. Mercury intrusion porosimetry 138 measurements (MIP) were performed with a Pascal 140 porosimeter coupled with a Pascal 139 240 (Fusion Instrument) and the samples analysed were pieces of paste of around 1 g obtained 140 by fresh fracture at 7 days. Gas absorption/desorption analyses were performed using a Tristar 141 3020 apparatus (Micromeritics), with a degassing temperature of 100 °C, on a geopolymer 142 paste piece prepared in the same way as those studied by mercury porosimetry. X-ray microtomography images were obtained with a Nanotom 180 from Phoenix / GE. The 143 144 acquisition parameters used were a voltage of 80 kV and an intensity of 100 μ A. The 145 resolution obtained for this type of sample was a 5.4 micron voxel. The volumes were rebuilt 146 using the Datos X software (Phoenix) and VG Studio Max (Volume Graphic) to obtain an 147 image of the porosity of the material. Finally, cross-sections of 100 day old geopolymer were 148 observed by scanning electron microscopy (SEM) after application of a focused ion beam 149 (FIB) apparatus (FEI Helios NanoLab 600i). FIB uses Ga⁺ ions to remove material with a 150 very high spatial precision. In this way, cross-sections of a representative sampling area were 151 obtained at a specific location after surface observation. For this operation, the sample was positioned in the SEM chamber, tilted at 52° and a 2 micron thick layer of platinum (Pt) was 152 153 laid down for surface protection. FIB milling was then applied to etch the sample.

154

155 **3. Results and discussion**

3.1. Influence of water content on mechanical performance

157 Using three molar ratios (SiO_2/Al_2O_3 , Na_2O/Al_2O_3 and H_2O/Na_2O) to formulate the

158 geopolymer led to a systematic variation of the water content, as illustrated in Figure 1.

159 Increasing the SiO₂/Al₂O₃ ratio decreased the amount of water in the formulation. Conversely

160 increasing the Na_2O/Al_2O_3 or the H_2O/Na_2O ratios increased the total water content.

162

Figure 1. Examples of evolution of the proportions of the geopolymer constituents (MK + sodium silicate (solid
 fraction) + total water) and the Water/Solid mass ratio depending on a) SiO₂/Al₂O₃ and b) Na₂O/Al₂O₃ molar
 ratios, the other two molar ratios being keep constant (including H₂O/Na₂O).

166

In this study, we chose to work around these ratios and clearly dissociate the solid from theliquid. Thus only two parameters had to be fixed:

- The geopolymer molar formulation, corresponding to the solid part initially introduced
 and written in the form xSiO₂• yAl₂O₃• zNa₂O.
- The amount of water introduced, written in the form of the water content (mass
 percentage) or the Water/Solid mass ratio.
- 173

The formulation of the metakaolin-based geopolymer was the subject of an earlier study, which highlighted an optimal proportion regarding the mechanical performances corresponding to the initial composition: $3.6SiO_2 \cdot 1Al_2O_3 \cdot 0.9Na_2O$ (Pouhet, 2015). 177 To assess the influence of the water content on the mechanical performance, five geopolymer 178 mortars with increasing amounts of water were tested in flexural and compressive strength. 179 The corresponding formulations are listed in Table 2. Given that the waterglass solution 180 provided large quantities of water in addition to silica and sodium, one formulation, GP0.38, 181 required an additional step during its preparation. The significant water contribution of the 182 activation solution (65.5%) made it impossible to obtain formulations having a Water/Solid 183 mass ratio lower than 0.4. Excess water was therefore removed from the waterglass solution 184 by evaporation 24 h before the mortar preparation, by heating at 50 °C under agitation until a 185 loss of mass equal to the required amount of water was achieved. No visual modification was 186 observed on the remaining solution. The results of the mechanical tests (performed in 187 compression and in bending) on the five mortars of Table 2 are presented in Figure 2.

188

189 190 191

Figure 2. a) Compressive and b) Flexural strengths of geopolymer mortars at 7 days depending on the water proportion introduced in the initial mixture (Solid formulation: $3.6 \operatorname{SiO}_2 \circ 1 \operatorname{Al}_2 \operatorname{O}_3 \circ 0.9 \operatorname{Na}_2 \operatorname{O}$)

192 Plotting the measured strengths as a function of the proportion of water in the mixture showed 193 the same trends in flexion and compression. It was observed that, between water proportions 194 of 28% and 37%, increasing the amount of water decreased the mechanical performance (only 195 between 29% and 37% in the case of the flexural strength). In view of these figures, it would 196 seem that the mechanical performance of the geopolymers would follow a linear trend with a 197 decrease in mechanical strength proportional to the initial amount of water, at least in the W/S 198 domain studied. This result therefore demonstrates a different behaviour that observed for 199 cement witch shows a non-linear decrease in performance with the addition of water (e.g. Bolomey). Furthermore, this observation is in agreement with the literature, which postulates that the introduced water is not used for the formation of hydrate as in Portland cement (Perera et al., 2005, White et al., 2010), and therefore does not participate in the structuration of the material. Thus the addition of water in a geopolymer formulation systematically entails a weakening of the material, probably by increasing the porosity.

3.2. Investigation on the bound water

206 The literature shows that, in the hardened geopolymer, the water does not appear to be bound 207 in the network in hydrate form as it is in cement matrix (Barbosa et al., 2000; Lizcano et al., 208 2012; White et al., 2010; Perera et al., 2005). Thus, determining the fate of the water in the 209 hardened geopolymer paste is indispensable for a better understanding of its influence. It was 210 therefore decided to study the amount of water that could be removed by drying the 211 specimens at relatively moderate temperature, in order to observe the influence on the 212 mechanical performances. Three water contents were chosen, corresponding to W/S ratios of 213 0.40, 0.47 and 0.56, with three drying temperatures of 50 °C, 80 °C and 105 °C. After 214 stabilization of the mass loss for each drying temperature, the amount of water remaining in 215 the geopolymer was calculated.

216

217 *Figure 3.* Evolution of the total amount of water in GP0.40, GP0.47 and GP0.56 depending on the drying

218

Total water contents of the geopolymers for the three W/S ratios according to the drying temperature are presented in Figure 3. The figure clearly shows that, whatever the initial water content in the geopolymer paste, this content was reduced to about 3% for all the

temperature.

formulations after drying at 105 °C, which corresponds to a relative loss of 90-92% of the initial water mass. The evolution of the water content in geopolymer versus the drying temperature tended to an asymptotic value above 105 °C, suggesting a slower evolution for the loss of the 10% remaining water.

226 In order to visualize the temperature at which the remaining water evaporates, TGA analysis 227 was carried out on the GP0.40, coupled with mass spectroscopy. The results obtained are 228 presented in Figure 4. According to the TGA result, evaporation of the remaining water would 229 be a long process, as traces of water were still measured at 700 °C. This could indicate that a 230 small proportion of the water initially introduced remained in small pores or as terminal 231 hydroxyl groups in the structure and that this quantity of water would be the same regardless 232 of the initial amount of water introduced, as described in the literature (Perera et al., 2005; 233 White et al., 2010). At the end, the total molar formulation calculated by considering the 234 water "fixed" to the structure (therefore not evaporated at 105 $^{\circ}$ C) was nearly the same for the 235 three formulations and corresponded to 3.6 SiO₂ • 1 Al₂O₃ • 0.9 Na₂O • 1.3 H₂O. The 236 presence of carbon dioxide in the mass spectroscopy spectrum means that carbonation took 237 place during the seven days of curing, which is consistent with results obtained in a previous 238 study (Pouhet and Cyr. 2016b).

Figure 4. Thermogravimetric analysis of geopolymer GP0.40 at 7 days performed at 20.0 °C/min up to 950 °C
 with H₂O and CO₂ mass spectroscopy spectrum.

242

In order to confirm that the departure of this "free water" was not detrimental to the geopolymer structure, the same drying protocol was applied to GP0.40, GP0.47 and GP0.56

geopolymer mortars, which were then tested in compression. As previously, the geopolymers were kept without external exchanges for seven days and then placed in a climatic chamber until stabilization of the mass loss. Figure 5 presents the compressive strengths measured according to the drying temperature for the three W/S ratios studied. Two behaviours can be observed:

The formulation having the least water, GP0.40, showed a loss of strength that was
 moderate but increased with increasing drying temperature.

The GP0.47 and GP0.56 formulations showed similar behaviour, with very close
 compressive strength values regardless of the applied temperature.

254 Some hypotheses can be advanced to explain the behaviours observed. It was measured that 255 about 90% of the introduced water was evaporated between 20 °C and 105 °C. The fact that 256 the mechanical performances of the GP0.47 and GP0.56 formulations did not change between 257 these two temperatures could validate the assumption that it was indeed "free water" and 258 therefore not related to the structure and its stiffness. In view of the above results, it is highly 259 probable that this was also the case for the GP0.40 formulation despite the loss of strength. 260 However, for this formulation having the lowest water content, the loss of strength observed 261 could have been due to a difference in the organization of the porous network containing this 262 "free water". In this case, the porosity could have been finer or arranged differently, so that 263 the evaporation of the "free water" would lead to damage in the material and therefore to a 264 decrease in mechanical performance.

265

3.3 Influence of the water content on the volume and organization of the porous network of geopolymers

271

272 In this study the intention was to characterize all of the water in the geopolymer. So it was 273 firstly necessary to evaluate the size and organization of the water present in the air bubbles 274 trapped during preparation. GP0.40 geopolymer paste prepared without any shocks or 275 vibration was analysed by X-ray tomography to visualise the air occlusions, assess their size 276 distributions and quantify their cumulative volume. A 3D section of the sample, having dimensions 2 x 2 x 5 mm was isolated and analysed. Figure 6a presents the 3D section, 277 278 showing the overall sample and the air occlusions, which were easily identified by their dark 279 coloration. Using this strong contrast between the air and the matrix allowed the software to 280 isolate this volume and to represent it separately. Figure 6b, which isolates the entrapped air 281 fraction, shows significant numbers of spheres with diameters ranging from 40 µm up to 282 nearly 300 µm. It was calculated that this cumulative volume represented 2% of the sample. 283 The distribution of the sphere sizes is illustrated by different colours: the blue corresponds to 284 diameters smaller than 200 μ m, with decreasing diameters shown in darker shades of blue, 285 while all other colours correspond to diameters ranging from 200 µm to 300 µm. Figure 6b 286 shows a homogeneous distribution of the bubbles in the sample with no privileged 287 organization. However, the result does not show if there is an interconnectivity of the 288 porosity, which would be too fine for the resolution of the device.

289

Figure 6. X-ray tomography visualization of G0.40 paste showing: a) 3D section of the sample and b) the same
 3D section presenting only the air occlusions.

To define the porosity of the geopolymer and the influence of the initial water content, the total porosity accessible to water was measured (NF P18-459) and mercury intrusion porosimetry (MIP) was performed on geopolymer specimens having three different W/S mass ratios. Figure 7a shows the porosity accessible to water measured using the same three drying temperatures as those used for the study of the bonded water.

298 The information obtained as described in the previous two paragraphs showed that, for the 299 GP0.47 and GP0.56 formulations, the temperature of 105 °C caused no loss of strength and 300 led to final water contents close to 3%. Thus, the total porosity values measured for these formulations with a drying temperature of 105 °C was very probably close to the total 301 302 porosity values of the materials, i.e. 53.0% and 56.4% respectively. Since the drying 303 behaviour of the three formulations was similar (Figure 7a), it seems reasonable to conclude 304 that, despite the loss of mechanical strength, the total porosity of the GP0.40 formulation can 305 be measured by drying at 105 °C and so would be 49%. This value is in agreement with 306 values found in the literature for similar formulations (Boher, 2014).

311

For the three W/S mass ratios, the initial water volume introduced into the mixture was calculated, then compared to the total pore value (obtained at T_{drying} of 105 °C). These results, presented in Figure 7b, show a very good correlation, illustrating a direct proportionality between the volume of water introduced and the final porosity of the geopolymer. So, in

316 addition to confirming that the water in the geopolymer appears to be present mostly as "free 317 water", these results show that the total porosity of a geopolymer can be chosen and fixed 318 before its preparation. Since a linear relationship was also made between the initial amount of 319 water and the mechanical performance (Figure 2 a), it is possible to say that there is a direct 320 correlation between total porosity and mechanical strength. Furthermore, knowing that the 321 porosity has a direct influence on the transfer properties and thus on the durability of the 322 materials, the possibility of choosing its value in advance could be a clear advantage for the 323 development of geopolymer.

324 MIP analysis was performed on GP0.40, GP0.47 and GP 0.56 to evaluate the influence of the 325 water content on the geopolymer porous network microstructure. The relative mercury 326 volume introduced versus the pore access diameter is presented in Figure 8a along with the 327 curve of the relative pore volume versus diameter (Figure 8b). For the geopolymer having a 328 W/S mass ratio of 0.40 it was calculated that 95% of the mercury was introduced for pore 329 diameters of 7 to 20 nm (with 83% between 10 and 20 nm), which shows a homogeneous 330 distribution of the pore access diameter. Thus, when the curve of the relative pore volume 331 versus diameter is observed (Figure 8b), the geopolymer has a single population of pore 332 access centred on a diameter of 13 nm. These results confirm the monomodal nature of the 333 porous network of the geopolymer observed in the literature (Rovnaník 2010, Boher 2014).

These figures also show that all three formulations led to monomodal porous networks, whatever the amount of water initially introduced. The cumulative pore volume representation confirmed the increase in total volume measured with water intrusion when the initial water amount increased and its derivative revealed that the pore access diameter also increased.

338

Figure 8. Relative mercury volume introduced and relative pore volume versus pore access diameter for geopolymer pastes G0.40, GP0.47 and GP0.56.

342

The median pore access diameter therefore increased from 13 nm for GP0.40 to 29 nm for GP0.47 and, finally, 36 nm for GP0.56. When the median diameter increased, the spread of the value also increased, as 90% of the mercury was introduced between 7 and 18 nm for GP0.40, between 11 and 35 nm for GP0.47, and between 16 and 42 nm for GP0.56. The notable difference in pore access diameter between the formulation having the least water and the other two could support the hypothesis made previously on the fact that GP0.40 had such a fine porosity that the evaporation of the "free water" during drying damaged the structure.

350 A study of nitrogen adsorption-desorption isotherms also made on geopolymer GP0.40 351 provided additional information. The adsorption and desorption isotherms of Figure 9a show a 352 distinct hysteresis loop for relative partial pressure (P/P_0) between 0.8 and 1.0. The passage of 353 the desorption curve below the absorption curve (until P/P_0 of 0.75) was associated with 354 degassing problems during the analysis (degassing temperature of 100 °C). Nevertheless, the 355 closeness of the hysteresis loop at $P/P_0 > 0.40$ and a type IV sorption behaviour with a 356 hysteresis loop of type 1 on a loop of type 2, which have already been identified on 357 metakaolin geopolymer samples by Steins et al. (2013), indicate the absence of micropores 358 and the formation of a well-defined mesoporous texture having interconnected pores with 359 narrow necks and wide voids, called 'ink-bottle pores'. The BJH pore-size distribution 360 (Figure 9b) confirms the monomodal nature of the porous network centred on 15 nm.

362

363

364

365

Figure 9. a) Nitrogen adsorption–desorption isotherms and b) BJH pore-size distribution for the GP0.40 geopolymer paste.

Finally, in order to be able to observe the porosity of a hardened geopolymer clearly, SEM observations were made on a 100 day old GP0.40 section obtained by cutting with the focused ion beam technique. With this cutting of nanometric precision, it is possible to see inside the material without degrading the porous network, as can be seen in Figure 10. It should be noted that the black streaks observed on the SEM images are due to the ion beams used to cut the materials, and the lighter layer at the top of the cross-section corresponds to the platinum depot made to protect the cut out.

- 373 Valuable information can be obtained from these images:
- Heterogeneity is clearly observed within the geopolymer in Figure 10a and b as, in
 addition to the quartz grains recognisable by their well-defined shapes and their grey
 colour, many cavities are also observed.
- A larger zoom (Figure 10 b) and c)) reveals that these cavities seem to be formed by
 multiple layers contained within the matrix. The shape, orientation and size of these
 layers and cavities recall the structure of kaolinite or metakaolinite layers (San
 Nicolas, 2011). This shows that some of the introduced metakaolin was not fully
 dissolved by the activating solution during the geopolymerization.
- In addition to this large layered porosity, the largest zoom (Figure 10d) clearly shows
 the monomodal mesoporosity of the geopolymer observed during MIP. The many
 black holes visible in Figure 10d all measure around 10-30 nm and were found in very

large quantities in the section observed. The presence of these two forms of porosity
confirms the presence of the "ink bottle" effect observed by analysis of the results of
absorption/desorption of gas.

- The observation of this monomodal mesoporosity on this scale, resembling that of a
 sponge, also confirms the interconnectivity of geopolymer porosity.
- 390

Figure 10. Electronic scanning microscope images of a cross section of 100 day old geopolymer obtained by
 focused ion bean a) x2000, b) x5000, c) x10000 and d) x35000

394

391

395 **3.4 Consequences regarding the durability**

To go further, it is interesting to discuss the direct consequences of these results for the development of geopolymers as construction materials. In the science of building materials, porosity is sometimes considered as a direct indicator of the durability of materials (Baroghel-Bouny, V; 2004). In fact, the porosity is related to the transfer properties of the material, which are responsible for the more or less rapid intrusion of compounds that are harmful to 401 the structure, such as carbon dioxide or chlorides. In view of the large interconnected porosity 402 of metakaolin-based geopolymers, the transfer properties had to be considered. Intrinsic air 403 permeability measurements were performed on geopolymer mortars using the Cembureau apparatus. A very high permeability of 8456.10⁻¹⁸ m² was measured after drying at 105 °C. 404 405 Tests of chloride ion diffusion by migration were also carried out on three geopolymer 406 concrete samples, according to standard NT Build 492. Generally, for cementitious materials, 407 the depth of penetration of chloride ions corresponds to about half of the sample at the end of 408 the test. On geopolymer samples, the chloride ions had completely passed through the test 409 piece at the end of the test (i.e. after 24 h at 10 V) making it impossible to calculate a chloride 410 diffusion coefficient. Thus it seems that the diffusion of chlorides through metakaolin-based 411 geopolymer is much faster than through known materials based on Portland cement and the 412 transfer properties of this geopolymer appear to be unfavourable compared with those of 413 Portland cement. The SEM images obtained (Figure 10) confirm these data by showing a 414 large volume of void in the structure, allowing the transport of air or water. However, 415 comparison with a cement matrix is difficult in view of the great differences in chemical 416 composition between these two materials. A carbonation study previously performed on the 417 same geopolymer material concluded that, although carbonation of the pore solution was 418 extremely rapid in geopolymer, the risks related to the durability of the structure would be 419 limited (Pouhet and Cyr, 2016b). The amount of water initially introduced into the 420 formulation of geopolymers necessarily has a direct influence on the transfer properties of the 421 material and must be taken into account. However, it would be hasty to draw conclusions 422 regarding the consequences on the durability of the structure without further investigations.

423

424 **4. Conclusion**

This study has proposed an evaluation of the influence that the amount of water initially introduced has on the hardened properties a geopolymer mixture with a fixed formulation. The conclusions drawn and the consequences that can be expected regarding the development and the durability of geopolymer are listed below. 429 Increasing the amount of initial water in the mixture significantly reduces the mechanical 430 performance measured at 7 days. It seems that this decrease follows a linear trend, which 431 implies that the final performance can be anticipated as soon as the water content is known. 432 However, this also implies that great caution must be taken during the fabrication of 433 geopolymer, especially in large quantities, as a small error in the mass of water introduced 434 may result in a significant variation in the final mechanical performance. That being said, a 435 very wide range of applications seem possible for geopolymers, particularly in the field of 436 construction, as they develop significant mechanical performance in just seven days with a 437 range of water content traditionally used in construction materials.

438 The investigation of the bonded water during geopolymerization led to the conclusion that 439 more than 90% of the water introduced would be "free water", which is easily removable, and 440 therefore would not contribute to the stiffness of the material. The water present in the 441 hardened geopolymer porosity would thus have no influence regarding the mechanical 442 performance of the material. This water could be largely withdrawn, which could be useful 443 for certain applications such as refractory materials. However, it should be noted that the 444 departure of this pore water can in some cases be detrimental to the structure and lead to a 445 decrease in strength.

446 The porosity studies reported here show a pore volume for the geopolymer paste that is large 447 but in agreement with the literature. It appears that the total volume of the geopolymer pores 448 is proportional to the volume of water initially introduced in the mixture, which is consistent 449 with the conclusion of the bonded water study presented in this paper. The quantity of water 450 introduced thus makes it possible to fix the final pore volume, and also the mean diameter of 451 the mesoporosity. The transfer properties measured in this study are in agreement with the 452 large porosity observed for the geopolymer, but further investigations on the durability must 453 be carried out before drawing conclusions on the long term behaviour of these materials.

455 Acknowledgments

The authors are very grateful to SEAC Guiraud and the Association Nationale de la Recherche Technique (ANRT) for supporting the present research. Argeco Developpement and Woellner are also acknowledged for their material support. The quality of the assistance provided at the Raimond Castaing microscopy structure and the CIRIMAT are also acknowledged.

461 **References**

- 462 Álvarez-Ayuso, E., Querol, X., Plana, F., Alastuey, A., Moreno, N., Izquierdo, M., ... & Barra, M. (2008).
 463 Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal
 464 (co-) combustion fly ashes. *Journal of Hazardous Materials*, *154*(1), 175-183.
- Barbosa, V.F.F., MacKenzie, K.J.D. and Thaumaturgo, C. (2000) Synthesis and characterisation of materials
 based on inorganic polymers of alumina and silica: sodium polysialate polymers. *International Journal of Inorganic Materials*, 2(4): 309-317.
- Baroghel-Bouny, V. (2004). Conception des bétons pour une durée de vie donnée des ouvrages-Maîtrise de la durabilité vis à vis de la corrosion des armatures et de l'alcali-réaction-Etat de l'art et guide pour la mise
 en oeuvre d'une approche performantielle et prédictive sur la base d'indicateurs de durabilité. *Association Française du Génie Civil.*
- Bligh, R., & Glasby, T. (2013). Development of geopolymer precast floor panels for the Global Change Institute
 at University of Queensland. *In Proceedings Concrete Institute of Australia Biennial Conference*, *Concrete*.
- Boher, C., Martin, I., Lorente, S., Frizon, F. (2014) Experimental investigation of gas diffusion through
 monomodal materials. Application to geopolymers and Vycor[®] glasses, *Microporous and Mesoporous Materials*, 184:28-36.
- 478 Duxson P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Waltraud, M., Kriven, W., Van Deventer, J.S.J. (2005)
 479 Understanding the relationship between geopolymer composition, microstructure and mechanical
 480 properties, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 269(1–3): 47-58 DOI:
 481 10.1016/j.colsurfa.2005.06.060.
- 482 Duxson P., Fernández-Jiménez, A., Provis, J. L., Lukey, G. C., Palomo, A., Deventer, J. S. J., (2007a)
 483 Geopolymer technology: the current state of the art. *Journal of Materials Science*, 42(9): 2917484 2933.
- 485 Duxson P., Mallicoat, S. W., Lukey, J. L., Kriven, W., Van Deventer, J.S.J. (2007b), The effect of alkali and
 486 Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. *Colloids and*487 Surfaces A: Physicochemical and Engineering Aspects. 292(1): 8-20.
- Kamalloo, A., Ganjkhanlou, Y., Aboutalebi, S. H., and Nouranian H. (2010) Modeling of compressive strength
 of metakaolin based geopolymers by the use of artificial neural network. *International Journal of Engineering*, 23(2):145-152.
 - 20

- Lizcano, M., Gonzalez, A., Basu, S., Lozano, K., & Radovic, M. (2012). Effects of Water Content and Chemical
 Composition on Structural Properties of Alkaline Activated Metakaolin-Based Geopolymers. *Journal of the American Ceramic Society*, 95(7), 2169-2177.
- 494 Okada, K., Ooyama, A., Isobe, T., Kameshima, Y., Nakajima, A., & MacKenzie, K. J. (2009). Water retention
 495 properties of porous geopolymers for use in cooling applications. *Journal of the European Ceramic*496 *Society*, 29(10), 1917-1923.
- 497 Pacheco-Torgal, F., Labrincha, J., Leonelli, C., Palomo, A., & Chindaprasit, P. (Eds.). (2014). Handbook of
 498 alkali-activated cements, mortars and concretes. Elsevier.
- Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., & Fernández-Jiménez, A. (2014). A
 review on alkaline activation: new analytical perspectives. *Materiales de Construcción*, 64(315), e022.
- 501 Park, S., & Pour-Ghaz, M. (2018). What is the role of water in the geopolymerization of metakaolin?.
 502 Construction and Building Materials, 182, 360-370.
- Perera, D. S., Vance, E. R., Finnie, K. S., Blackford, M. G., Hanna, J. V., & Cassidy, D. J. (2005). Disposition of
 water in metakaolinite based geopolymers. Advances in Ceramic Matrix Composites XI, Volume 175,
 225-236.
- Pouhet, R. (2015). Formulation and durability of metakaolin-based geopolymers (Doctoral dissertation,
 Université de Toulouse, Université Toulouse III-Paul Sabatier).
- Pouhet, R. and Cyr, M. (2016a). Formulation and performance of flash metakaolin geopolymer concretes.
 Construction and Building Materials, 120, 150-160.
- Pouhet, R. and Cyr, M. (2016b). Carbonation in the pore solution of metakaolin-based geopolymer. *Cement and Concrete Research*, 88, 227-235.
- Provis, J. L., and Van Deventer, J. S. J. (2009a), Geopolymers: Structures, Processing, Properties and Industrial
 Applications, *Woodhead Publishing Limited*.
- Provis, J. L., Yong, C. Z., Duxson, P., & van Deventer, J. S. (2009b). Correlating mechanical and thermal
 properties of sodium silicate-fly ash geopolymers. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 336(1), 57-63.
- Rovnaník, P. (2010) Effect of curing temperature on the development of hard structure of metakaolin-based
 geopolymer, *Construction and Building Materials*, 24(7): 1176-1183.
 DOI:10.1016/j.conbuildmat.2009.12.023.
- Rowles, M., et O'Connor, B. (2003) Chemical optimisation of the compressive strength of aluminosilicate
 geopolymers synthesised by sodium silicate activation of metakaolinite. *Journal of Materials Chemistry* 13(5): 1161-1165. DOI:10.1039/b212629j.
- San Nicolas, R. (2011). Approche performantielle des bétons avec métakaolins obtenus par calcination
 flash (Doctoral dissertation, Université Toulouse III-Paul Sabatier).
- San Nicolas, R., Cyr, M., Escadeillas G. (2013) Characteristics and applications of flash metakaolins, *Applied Clay Science*, 83–84: 253-262. DOI: 10.1016/j.clay.2013.08.036.
- Shi, C., Krivenko, P. v. and Roy, D. M. (2006) *Alkali-Activated Cements and Concretes*, Abingdon, UK, Taylor
 and Francis.

- Steins, P., Poulesquen, A., Frizon, F., Diat, O., Jestin, J., Causse, J., Lambertina, D., Rossignol, S. (2013) Effect
 of aging and alkali activator on the porous structure of a geopolymer, *Journal of Applied Crystallography*,
 47:316-324.
- White, C. E., Provis, J. L., Proffen, T., & Van Deventer, J. S. (2010). The effects of temperature on the local
 structure of metakaolin-based geopolymer binder: A neutron pair distribution function investigation. *Journal of the American Ceramic Society*, 93(10), 3486-3492.
- Zuhua, Z., Xiao, Y., Huajun, Z., & Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based
 geopolymer. Applied Clay Science, 43(2), 218-223.