Marie Tirvaudey

Robin Bouclier

Jean-Charles Passieux

Ludovic

Ludovic Chamoin

Non-invasive implementation of nonlinear IsoGeometric Analysis in an industrial FE software

come

Introduction

Isogeometric Analysis (IGA) was introduced by Hughes et al. [Hughes et al. 2005] and later detailed by Cottrell et al. [Cottrel et al. 2009] in order to solve problems directly on the geometry extracted from a Computer-Aided-Design (CAD) model. The main idea is to use the same basis, e.g. Non-Uniform-Rational-B-Splines (NURBS) [Cohen et al. 1980, Piegl andTiller 1997] or T-Splines [START_REF] Bazilevs | [END_REF], for analysis as the one used to describe the geometry in CAD. Beyond the reinforced link between CAD and analysis, IGA turned out to be a superior computational mechanics technology [Evans et al. 2009, Lipton et al. 2010, Schillinger et al. 2013, Yin et al. 2015, Rauen et al. 2017]. However, despite its real enthusiasm in the computational mechanics community, the implementation of IGA in existing industrial codes still appears quite invasive, which limits its massive deployment in industry. Indeed, IGA comes with an intermediate space for the denition of the shape functions which questions the element-wise structure of most existing FE codes. Unlike the standard Finite Element Method (FEM) where each element has its own parametrization, the parametric space for NURBS is localized onto a patch that is composed of several elements. Some IGA implementations in commercial FE packages exist such as in LS-Dyna [Hartmann et al. 2011, Benson et al. 2013, Hartmann et al. 2016, Chen et al. 2016], Abaqus [Elguedj et al. 2012, Duval et al. 2015, Lai et al. 2017] or Radioss [Occelli et al. 2019], but it is still quite a few.

The concept of Bézier extraction has proved to be a milestone to tie IGA and FEM closer together. Originally introduced by Borden et al. [Borden et al. 2011] for B-Splines and NURBS, the concept has now been generalized to a large variety of advanced splines such as T-Splines [Scott et al. 2011, Scott et al. 2012], hierarchical B-Splines and NURBS [Schillinger et al. 2012, Hennig et al. 2016, Angella et al. 2018], hierarchical T-Splines [Evans et al. 2015, Chen andde Borst 2018], and LR B-Splines [Dokken et al. 2013]. Focusing on B-Splines and NURBS, the technology enables to formulate a smooth polynomial B-Spline (respectively NURBS) function in terms of C 0 polynomial Bernstein (resp. rational Bézier) functions. Nevertheless, it must be stressed, at this stage, that implementing this strategy still requires modications both at the elementary and at the assembly levels: (1) modify the standard FE shape functions subroutine to introduce a new element based on polynomial Bernstein (or rational Bézier) functions, (2) apply the extraction for each element and, (3) modify connectivity since it is based on the NURBS numbering.

An extension of the idea of Bézier extraction to standard nodal FE functions has been more recently proposed in Schillinger et al. [Schillinger et al. 2016]. It gave birth to the Lagrange extraction operator that directly links Lagrange nodal basis with smooth B-Spline basis. This new operator encompasses the Bézier operator and oers an alternative and simple implementation: it merely requires to evaluate the B-Spline basis functions at the nodal points associated to the Lagrange polynomials. The Lagrange extraction especially appears of great interest for geometries based on polynomial B-Splines. Indeed, it eliminates the need for introducing Bernstein polynomials as new shape functions, which makes it possible not to touch the FE subroutines of a standard FE code at the element level. The Lagrange extraction thus goes a step further to allow for the integration of IGA in an industrial FE code with minimal invasiveness. However, it has to be underlined from this overview that the procedure cannot be applied to the general situation of NURBS (or any rational splines). In this case, a family of rational Lagrange functions can be introduced and used to directly express the NURBS basis; the problem is that such functions (that integrate weights and a weight function) are not part of a typical FE code which is restricted to polynomial basis functions. Moreover, it may be noticed that only the potential of the methodology has been underlined in [Schillinger et al. 2016]. Up to now, it seems that only a very recent attempt that extends this framework to the real open source FE-code FEniCS can be listed [Kamensky and Bazilevs 2019].

If pure numerical eciency is the only criterion for qualifying an implementation of IGA, the best approach would certainly be to rewrite everything into a dedicated piece of code written using a low-level language (see, e.g., PetIGA [Dalcin et al. 2016] for high-performance IGA based on the PETSc library, [Chang et al. 2016] for an implementation using Fortran and [Nguyen et al. 2015] for global implementation aspects). In addition, let us mention that recent works to implement IGA eciently start with a modication of the standard looping over elements in the assembly process [Calabro et al. 2017], which is incompatible with the use of standard FE codes. All of these approaches may require signicant development eorts, especially whenever a new nonlinear constitutive law needs to be added. The approaches based on subroutines, that were mentioned before, represent also interesting alternatives, as constitutive laws of existing industrial codes can be reused. However, these routines depend on the considered code and still require a certain eort of implementation. This is why, in this study, it is chosen to reduce the human time required for the computer implementation (even if, obviously, this one may come with a slight increase of the computational cost).

In other words, this work aims at performing IGA in an available FE software in the least possible invasive manner. Starting with the Lagrange extraction technology, a global view is adopted and a full algebraic bridge that directly goes from Lagrange nodal polynomials to NURBS functions is formulated. It leads to a novel, alternative implementation procedure in which no modication of the whole FE routines is required. As a result, and compared to the current practice, no modication of the shape functions subroutine and of the assembly is performed. More precisely, the strategy simply consists of the projection of the FE linear system on an ad-hoc regular reduced basis whose algebraic construction is automatic and represents an objectively moderate implementation eort. In this way, the method solely uses features oered by most modern industrial FE codes, such as, for instance, the possibility to extract the (tangent) stiness operators. This appears of crucial interest regarding industrial FE environments since the access to the whole code is not needed and the FE routines that may be highly optimized are not touched. In that sense, the proposed method lies in the family of so-called non-invasive (also denoted non-intrusive) methods that has been recently applied to local-global coupling [Gendre et al. 2009, Bouclier et al. 2016, Bouclier et al. 2017], domain decomposition [Duval et al. 2016], contact problems [Oumaziz et al. 2017, Oumaziz et al. 2019], transient dynamics analysis [Bettinotti et al. 2014] and stochastic partial dierential equations [Chevreuil et al. 2013]. Their ultimate goal is then to tackle real industrial applications (see, e.g., [Guinard et al. 2018] for real aeronautical structures). The strategy is applied here to simply incorporate isogeometric capabilities in the industrial FE code Code_Aster, which is a familiar open source software package for numerical simulation in structural mechanics developed by the EDF R&D company [Code_Aster 2014].

The paper is organized as follows: Section 2 species the existing link between NURBS-based IGA and FEM by reviewing the Bézier and Lagrange extraction technologies. Section 3 is devoted to the development of the proposed implementation procedure. Then, for validation and demonstration purposes, some numerical experiments are rst carried out involving 2D and 3D elasticity in Section 4, before performing the more complex simulation of a nonlinear elastoplastic structure in Section 5. Finally, Section 6 concludes on this work.

2

The link between IGA and FEM

In this section, the fundamentals to tie IGA and FEM closer together are given. Although the Lagrange extractor encompasses the Bézier one, it is chosen here to start with the original Bézier version [Borden et al. 2011] before introducing the Lagrange transformation [Schillinger et al. 2016] given the importance of the concept of Bézier extraction in the state-of-the-art of IGA. For completeness, note that further details regarding NURBS and related algorithms can be found in [Cohen et al. 1980, Piegl andTiller 1997]. From a set of non-decreasing coordinates in the parametric space collected in the knot vector Ξ = ξ 1 , ξ 2 , ..., ξ n+p+1 , a basis of univariate B-Spline functions of order p, denoted by (N i,p) i∈{1..n} , can be dened recursively using the Cox-de Boor formula [Cohen et al. 1980]. A B-Spline function of order p has p-1 continuous derivatives. Besides, if a knot ξ l has a multiplicity m l , the number of continuous derivatives at this knot will decrease by m l . A comparison between B-Spline and Lagrange shape functions is given in Figure 1. Then, a B-Spline curve C BS is constructed as follows:

C BS (ξ) = n i=1 N i,p (ξ)P i = P BS T N(ξ), (1)
where

P BS =   x 1 1 ..x d 1 ... x 1 n ..x d n   is the (n × d) matrix that collects the d coordinates of the n control points and N =   N 1 ... N n  
is the vector of the B-Spline basis functions. For a multi-dimensional space domain, the B-Spline basis functions are determined by performing the tensor product of 1D B-Spline functions, so that in 3D it yields:

N A = N i,p (ξ) × N j,q (η) × N k,r (ζ), (2)
for control point P A that corresponds to the i th , j th and k th control points in each univariate spatial direction.

NURBS.

The multivariate NURBS functions

R IGA = R IGA A n A A=1 are dened from a set of n A B-Spline functions {N A } n A
A=1 . In order to do so, it is necessary to introduce w IGA A n A A=1 as the weights of each of the control points P IGA = P IGA A n A A=1 associated to the NURBS entity. The rational functions read as follows:

R IGA A = N A w IGA A W IGA , where W IGA = n A A=1 N A w IGA A . (3)
Following the denition of the B-Spline entities in Eq. (1), NURBS objects are then dened such that:

V IGA = n A A=1 R IGA A P IGA A = P IGA T R IGA . (4
)
The NURBS functions exactly describe the geometry of conic sections. For illustration purpose, an example of a 2D circular beam is considered in Figure 1(a). Starting with a quadratic one-element mesh, one can perform k-renement [Cottrell et al. 2007] in the arc direction to obtain a quadratic mesh composed of two elements.

Remark 1 The present article is restricted to quadratic functions since almost all industrial FE codes do not go beyond second-order Lagrange nite elements. Nevertheless, we emphasize that the developed implementation could be directly applied to higher-order spline-based functions, provided that the corresponding higher-order nite elements are available in a standard FE code.

The Bézier extraction

The rst step to link IGA and FEM is to formulate the smooth polynomial B-Spline functions in terms of polynomials that are C 0 on the element edges. This is possible as the space generated by the B-Spline functions is included in the one generated by the C 0 functions. Such a link has been developed in [Borden et al. 2011] under the name of Bézier extraction which maps the Bernstein basis onto the B-Spline basis.

Bézier decomposition by knot insertion.

In order to form a structured C 0 Bernstein mesh from a smooth B-spline mesh, one simply needs to repeat all the inside knots of the knot vectors until they reach a multiplicity p (see Figure 1(b) for the example of a quadratic B-Spline curve with two elements). The geometry is preserved with the resulting C 0 Bernstein representation. It must be stressed at this stage that the advantage of Bernstein functions is that they exhibit an elementary structure which is similar to FEM (see Figure 1(c)).

Bernstein polynomial functions.

The Bézier transformation relies on the denition of Bézier curves [Bézier 1986] and Bernstein functions. Originally, a Bézier curve of order p is a linear combination of p + 1 univariate Bernstein functions

B(ξ) = B i,p (ξ) p+1 i=1 associated with control points P BER = {P i,p } p+1 i=1
. Regarding the expression of the Bernstein functions, they are dened directly in the parent space since each Bernstein element has its own parametrization. As with B-Spline functions, multi-variate Bernstein functions are built by applying a tensor product between the univariate functions. From here on, the notations B and P BER are extended to denote the functions and control points of a multi-variate Bernstein mesh composed of several elements.

Bézier extraction operator.

By making use of the above knot-insertion process, a Bézier extractor matrix C can be constructed in order to ensure the link between the B-Spline functions and the Bernstein functions as follows:

N = CB.
(5)

In order to determine the positions of the Bernstein control points the equality between the expression of the B-Spline entity (see Eq. (1)) and the Bernstein one is used. By expressing the B-Spline functions using Eq. (5), it can be shown that P BER = C T P BS .

The Lagrange extraction

The Lagrange extraction operator directly maps a Lagrange nodal basis onto a B-Spline basis. In the following, the remaining link between Bernstein and Lagrange shape functions is rst established and then the direct construction of the Lagrange extractor is presented.

From Lagrange to Bernstein polynomials.

Denoting by L the classical FE Lagrange functions, the goal is here to build operator D LB that satises:

B = D LB L. (6)
Obviously, operator D LB is constructed from its elementary representation D e LB which is the same for each element. For illustration purpose, one-dimensional Bernstein and Lagrange shape functions of order 2 are plotted in Figures1(b) and 1(c).

To construct operator D e LB , one simply needs to express the Bernstein functions as a linear combination of the Lagrange functions at some interpolation points. Making use of the interpolatory property of the Lagrange functions, such an operator can be eciently constructed by evaluating the Bernstein functions at the nodal points associated to the Lagrange basis. Once operator D LB is built, the same treatment as with the Bézier operator can be performed to construct the FE nodes from the Bernstein mesh: P F E = D T LB P BER . Such nodes could be used to construct the input mesh for classical nite element codes. Obviously, these nodes interpolate the geometry. The B-Spline, Bernstein and Lagrange control meshes that generate the same two-element quadratic polynomial beam are plotted in Figures 2(b), 2(c) and 2(d) respectively. As expected, the Bernstein control points are far from the geometry in comparison with the Lagrange nodes that interpolate the geometry.

A direct link between Lagrange and B-Spline functions.

With previous operators C and D LB in hand, the computation of the Lagrange extraction operator D becomes straightforward:

N = DL with D = C D LB . (7)
Nevertheless, for better numerical eciency, the Lagrange extraction operator is never computed this way. Indeed, the same procedure as for the Lagrange-Bernstein operator D LB can be directly applied to the full Lagrange extraction operator D: it merely requires to evaluate the B-spline basis functions at nodal points. An ecient algorithm for this has been proposed in [Schillinger et al. 2016].

The extraction in case of NURBS

Until now, the link between IGA and FEM is restricted to geometries based on polynomial B-Splines. However, in general, spline discretizations consist of rational basis functions that integrate weights associated to control points. The Lagrange extraction can be extended to the case of NURBS. It consists of establishing a link between NURBS and rational Lagrange basis functions, as detailed in [Schillinger et al. 2016]. Briey, it can be extracted from Eqs. (3) and (7) that:

R IGA = W IGA DL W IGA , (8)
where W IGA is the diagonal matrix of NURBS weights and

W IGA = n A A=1 w IGA A
N A is the NURBS weight function. The NURBS weight function can be rewritten using the Lagrange basis as:

W IGA = n A A=1 w IGA A N A = (w IGA) T N = (w IGA) T DL = (D T w IGA) T L = (w LAG) T D = W LAG , (9)
where the weights associated to the rational Lagrange control points are:

w LAG = D T w IGA . (10
)
The rational Lagrange functions are then dened as follows:

R LAG = W LAG L W LAG , (11)
where W LAG is the diagonal matrix of the Lagrange weights. The link between NURBS functions and rational Lagrange functions is nally made using Eqs. (11) and (9) in Eq. (8). Consequently, a new extraction operator D W is created as described below:

R IGA = W IGA D(W LAG) -1 R LAG = D W R LAG . (12
)
Therefore, the rational Lagrange control points depend on the NURBS control points:

P LAG = (D W) T P IGA .
Let us emphasize at this stage that this link from rational Lagrange functions to NURBS is exact since both bases are rational and NURBS are of higher-order smoothness. However, one must keep in mind that the denition of these rational Lagrange functions requires, from standard Lagrange polynomials, the incorporation of Lagrange weights W LAG and of the Lagrange weight function W LAG . Those operations are not part of standard FE codes that are restricted to polynomial basis functions. As shown in Section 3, an additional work thus needs to be achieved to directly go from Lagrange polynomials to NURBS.

3

The non-invasive implementation

Let us recall that our interest is to implement IGA in an available FE software with a reduced level of invasiveness. The potential of the Lagrange extraction technology to allow for the implementation of IGA in standard FE codes has been underlined in [Schillinger et al. 2016]. Especially in case of geometries based on polynomial B-Splines, a strategy with minimal invasiveness has been derived. After exposing the current practice for setting up IGA using the previous extraction concepts, the proposed novel implementation procedure is presented.

3.1 A rst option 3.1.1 General case of NURBS.

The rational Lagrange geometry that has been created using D W (see Eq. (12)) has an elementary structure which makes it more likely to be implemented in a FE software. The resulting implementation scheme and the interaction between the initial NURBS mesh and the computed rational Lagrange mesh are described in Figure 3. On each branch, the quantities of interest needed to perform the next step are pointed out, for example the global and local rational Lagrange extraction operators D W and D e W , or the NURBS and rational Lagrange shape functions R IGA and R LAG . Moreover, the connectivity table used for the matrix assembly is indicated. From this procedure, the following modications to be done in the FE software can be listed:

1. Modify the standard FE shape functions subroutine to incorporate the Lagrange weights and the weight function and thus, construct the rational Lagrange shape functions from the existing Lagrange polynomials, as expressed in Eq. (11);

2. Apply the extraction for each element using operator D e W ; 3. Change the connectivity table in order to perform an IGA assembly.

Figure 3: General standard implementation procedure using the Lagrange extraction for NURBS: from a NURBS denition of the geometry and with the creation of operator D W , a rational Lagrange representation of the geometry is created. By modifying the shape functions subroutine, to express rational Lagrange functions, and applying the local Lagrange extraction, the IGA elementary stiness matrix is computed. Finally, the assembly subroutine needs to be modied to allow the use of the NURBS degrees of freedom to get the global NURBS stiness matrix.

Specic case of B-Splines.

In the particular case where the geometry is generated only with B-Spline polynomials (no rational basis functions), the standard FE subroutines do not need to be touched at the element level. In other words, point 1 above does not stand anymore. Indeed, after computing the standard FE elementary stiness matrices K e F E , only additional matrix-matrix products are required to obtain the corresponding IGA elementary matrices K e IGA :

K e IGA = D e K e F E D eT . (13
)
This is made possible since a direct link is established between the Lagrange polynomials that are present in standard FE software and the smooth B-Spline functions. As a result, part of our work now consists in elaborating a direct link between NURBS and Lagrange polynomials to meet such a non-invasiveness in the case of rational functions as well.

3.2 The proposed strategy 3.2.1 Principle.

As stated above, no modication of the whole FE routines is envisaged in this work (i.e., no modication into the shape functions subroutine (point 1 above) and concerning the assembly (point 2 above)). In order to do so, a global view of the extraction is adopted, as depicted in Figure 4. The path starting with a B-Spline mesh is exact and mainly consists of applying procedure exposed in [Schillinger et al. 2016], but in a global way. The path related to NURBS however requires the construction of an additional operator to go from polynomials to rational functions. Such a transformation cannot be exact since this is the space of the rational functions that includes the associated polynomials and not the other way around. A projection thus needs to be performed. For simplicity, the projection is performed on the Lagrange side, i.e., the idea is to project the rational Lagrange discretization onto the polynomial Lagrange space. Operator D LL is introduced as:

R LAG = D LL L, (14)
and its construction is explained in the next paragraphs.

Figure 4: Approach to link a NURBS mesh to a FE mesh using dierent global operators. Those operators are then used to recover the NURBS stiness matrix from the FE one computed using a classical FE software, taken as a black-box. Black arrows represent an exact link, gray arrows an approximation.

Once the nite element mesh is created from the IGA mesh in a pre-processing step, it is used as an input for the classical FE code in order to compute the FE stiness matrix. With the dierent elaborated operators, successive transformations are then performed to obtain the nal isogeometric stiness matrix, as follows:

K IGA = D W D LL K F E D T LL D T W . (15
)
This transformation is also applied on the right-hand side:

F IGA = D W D LL F F E . (16
)
Consequently, the system K IGA U IGA = F IGA can be solved to obtain the displacement U IGA . Finally, note that the resulting IGA displacement can be back-converted in terms of nodal displacements:

U F E = D T LL D T W U IGA , (17)
so that existing subroutines of the FE code can be used for post-processing.

Remark 2 Notice that Eqs. (15) and (16) can be interpreted as projecting the FE system onto the isogeometric basis. As a result, the developed algebraic bridge (D W D LL) provides a new point of view on the relation between IGA and FEA: IGA can be interpreted as the projection of FEA on a specic regular reduced basis.

Simple approximation.

Acting at the Lagrange level for performing the projection between the rational and associated polynomial spaces oers the opportunity to follow a pragmatic yet accurate strategy. Indeed, it has to be emphasized that the control points of the rational Lagrange discretization interpolate the geometry. As a result, it is possible to simply consider that the position of the FE nodes P F E is exactly the same as the position of the rational Lagrange control points P LAG . In this case, D LL formally reads as the identity operator (denoted by I D in the following), so that the derived procedure does not add any extra-computational eort from the current practice. As an illustration, Figure 5 investigates the dierence in terms of geometry in case of a quarter circular beam. It can be observed that the approximation is already very accurate for a single element (Figure 5(a)) and, obviously, it is improved through the renement of the mesh since more interpolated control points are added (Figure 5(b)). The accuracy of the approximation technique can also be appreciated through Figure 5(d) that displays the geometry error in terms of the relative dierence in radius from the exact value evaluated along the circular annulus. Given this high accuracy, it is expected that the error related to the mapping D LL = I D appears largely insignicant compared to that associated to the nite element resolution of an underlying mechanical problem.

(a) Simple approximation for one element. (b) Simple approximation for two elements (in the arc direction).

(c) Geometry error in terms of the relative dierence in radius between the simple approximation and the exact circle.

(d) Weight evolution with renement. The weight of the rational Lagrange control point P LAG is equal to cos 2 (α/2), which quickly converges to 1 as the mesh is rened.

Figure 5: The simple approximation in case of a quarter circular beam. The dierence in terms of geometry quickly vanishes with the renement of the mesh.

An alternative interpretation can be given: the strategy simply consists of considering all the weights of the rational Lagrange discretization equal to one. Taking back the example of a quarter circular beam, the approximation can be illustrated as follows (see Figure 5(d)). As explained in the NURBS technology [Cottrel et al. 2009, Piegl andTiller 1997], the weight of the middle point of a quadratic circular one-element arc is equal to the cosine of half of the angle subtended by the arc (the weights of the two boundary control points being one). From here on, α denotes the angle of interest (see Figure 5(d) again). Making use of previous equality (10), then expressing operator D using (7), and nally noting that C = I D in case of a mesh composed of a single NURBS element, the weights associated to the rational Lagrange discretization of this circular arc can be computed as follows:

w LAG = D e 1D LB T w IGA , (18)
with

w IGA =   1 cos(α) 1   and D e 1D
LB the 1D version of D e LB (6), which ends up with the weight:

w LAG = 1 2 (1 + cos(α)) = cos 2 α 2 (19)
for the middle point of the rational Lagrange parametrization. Therefore, the good accuracy of the simple approximation is accounted for: when α decreases cos 2 (α/2) quickly tends towards one. Note nally that going from Bernstein polynomials to rational Bézier functions with the same treatment would lead to a convergence speed of cos(α) instead, and going from B-Spline polynomials to NURBS functions similarly would converge even less quickly.

Local least-square approximation.

As a more rigorous mathematical approach, a strategy based on a projection using a L 2 -norm is also proposed to approximate the rational Lagrange functions by means of linear combinations of Lagrange polynomials. The presentation of the method is restricted to the two-dimensional setting. Given the local structure of rational Lagrange functions as well as Lagrange polynomials, the methodology proceeds element-by-element for the construction of operator D LL , thus providing simplicity and limiting the computational cost. Note that similar works have been made in quite related contexts, such as to project C 0 discretizations to smoother basis (see, e.g., [START_REF] Thomas | [END_REF] and [Schillinger et al. 2016] that build Bézier and Lagrange projection, respectively). Here, the following simple treatment can be performed. To start with, the vertex Lagrange nodes of the considered element are taken equal to the corresponding vertex rational Lagrange control points. Then, in order to be directly compatible with the neighboring elements, the projection is formulated by writing a least-square problem on each element edge. As a result, the developed strategy does not require the assembly step encountered in common local least-square procedures (see, e.g., [Govindjee et al. 2012]) in order to combine in some way the dierent values obtained from the dierent elements for the same point. More precisely, let us consider an elementary rational Lagrange geometry expressed similarly as in Eqs (1) and (4):

S e LAG = P e LAG T R e LAG , (20
)
where P e LAG is a matrix that collects the positions of the control points related to the considered rational Lagrange element and R e LAG is the vector of the elementary rational Lagrange functions. The objective is to determine the positions of the equivalent Lagrange nodes P e F E that give an accurate approximation of the initial rational Lagrange geometry S e LAG . Considering an element edge dened by the same second coordinate η in the parent space, the quadratic functional J is minimized such that:

J = 1 2 1 ξ=-1 C e LAG (ξ) -C e F E (ξ) 2 , (21
)
to compute the equivalent Lagrange nodes related to the considered edge. Let us emphasize that the curves C e LAG (ξ) and C e F E (ξ) only involve the one-dimensional rational Lagrange functions and Lagrange polynomials, respectively. After dierentiation, we end up with the following linear system that relates each of the spacial coordinates of the edge Lagrange nodes (X e F E) with that of the edge rational Lagrange control points (X e LAG):

M e 1D X e F E = M e R X e LAG , (22
)
where M e 1D is simply the elementary mass matrix (with unit density) of the 1D Lagrange polynomials and M e R reads as follows:

           1 ξ=-1 L 1 (ξ)R LAG 1 (ξ) 1 ξ=-1 L 1 (ξ)R LAG 2 (ξ) 1 ξ=-1 L 1 (ξ)R LAG 3 (ξ) 1 ξ=-1 L 2 (ξ)R LAG 1 (ξ) 1 ξ=-1 L 2 (ξ)R LAG 2 (ξ) 1 ξ=-1 L 2 (ξ)R LAG 3 (ξ) 1 ξ=-1 L 3 (ξ)R LAG 1 (ξ) 1 ξ=-1 L 3 (ξ)R LAG 2 (ξ) 1 ξ=-1 L 3 (ξ)R LAG 3 (ξ)            . (23
)
From system (22), the position of the middle Lagrange node alone is actually picked since, as stated above, the vertex nodes are taken equal to the vertex Lagrange control points. The procedure is then repeated to all element edges. Unlike operator D e LB , note that D e LL is not the same for each element, as it depends on the weights of the control points of the considered rational Lagrange element. However, let us emphasize that those weights only appear on the right-hand side of the local least-square problem (through M e R , see Eq. (23)). As a consequence, M e 1D is analytically computed and inverted once and for all elements:

(M e 1D) -1 =     9/2 -3/4 3/2 -3/4 9/8 -3/4 3/2 -3/4 9/2     . (24
)
The only requirement of the developed procedure is actually to compute M e R on each element, that is, to perform a numerical integration in the parent space of an element edge. This is straightforward using standard numerical analysis packages.

Still on a quarter circular arc, Figure 6 shows the dierence in terms of geometry encountered when applying the proposed local least-square procedure for a mesh composed of a single element. From a global point of view, this more rigorous alternative seems to produce equivalent results (at least in terms of geometry) as the previous pragmatic strategy that considers all the weights equal to one. This accounts for the validity of the previous simple approximation in practical (engineering) applications.

4

Examples with elasticity models

As a rst assessment of the method, numerical experiments with two and three-dimensional linear elasticity models are carried out in this section. For validation purpose, the rst test-case (for which a reference analytical solution is available) is computed using a Matlab homemade code. Then, for proof-of-concept, the open source package Code_Aster, which is developed by the EDF R&D company [Code_Aster 2014], is used as an industrial FE software for the second benchmark. It may be noticed that no unit is given for the following test-cases (as it is usually the case in the literature). The given values are those that are directly taken as input for the numerical process.

2D circular beam under end shear

The rst example consists of a 2D circular beam under plane stress subjected to end shear, as illustrated in Figure 7. The material properties are the following: Young Modulus, E = 10000 and Poisson ratio, ν = 0.25. A radial constant displacement u 0 = 0.01 is prescribed on the bottom edge of the beam. The closed form solution in terms of strain energy can be found in [Zienkiewicz et al. 2003].

In Figure 8, the evolution of the relative error regarding the strain energy is given as a function of the number of degrees of freedom. The relative error is computed as:

|E ex d -E f e d | |E ex d | , (25)
where E ex d denotes the reference exact strain energy and E f e d the strain energy of the discrete model. To start with, it can be noticed that the results for the 9-node element created with the simple or the leastsquare projections are similar. This behavior was expected because, as it has been previously illustrated from a geometrical viewpoint, the simple approximation was already good for one element in the arc direction. Here, with the rst renement used, there are already 6 elements in this direction; therefore, the error related to the mapping D LL = I D is largely insignicant compared to the associated FE error. The analysis performed with the FE mesh created by both of these approximation methods gives an error evolution similar to the FEM reference [Zienkiewicz et al. 2003]. Then, in order to obtain the IGA stiness matrix, and thus to recover the isogeometric Figure 8: Evolution of the relative energy error of the circular beam. Full FEM [Zienkiewicz et al. 2003] and IGA resolutions are used as references. On the one hand, the error is calculated by using the simple approximation between rational Lagrange functions and Lagrange polynomials (see section 3.2.2) for the resulting FE problem (curve "Simple projected FEM") and back-projected IGA problem (curve "Simple projected IGA"). On the other hand, this error is computed for the FE and IGA problems with a least-square approximation between rational Lagrange functions and Lagrange polynomials (see section 3.2.3, associated curves "Least-square projected IGA and FEM"). results, the FE stiness matrices are back-projected using the developed global bridge. The errors found with the simple and least-square projected IGA are similar to the error of a full IGA reference computation (the curves "IGA reference", "Simple projected IGA" and "Least-square projected IGA" are superimposed). This accounts for the accuracy of the developed global bridge in case of NURBS. Finally, one can notice that for a given mesh renement, the errors are about the same for FEM and IGA. The main dierence is the number of degrees of freedom which signicantly decreases when IGA is performed (the two curves are simply horizontally translated). This gap between the two curves illustrates the increased per-degree-of-freedom accuracy of IGA (reduction by a factor of more than 3 here) which has been deeply demonstrated in the literature (see, e.g., [Evans et al. 2009, Cottrell et al. 2006, Schillinger et al. 2013]).

Solid horseshoe

In this section, a solid horseshoe subjected to equal and opposite displacements on the top surfaces is used as a full 3D example (see, e.g., [Hughes et al. 2005] for similar computations). The geometry and the NURBS mesh associated with the solid horseshoe are given in Figure 9(a). Let us emphasize that it involves a multi-patch model which can be easily handled using the proposed methodology. The NURBS mesh is composed of 1152 elements of degree 2 with 7020 degrees of freedom. The material properties are the following: E = 3 × 10 7 and ν = 0.3. An initial displacement u 0 = y is applied to the top-left surface and a similar displacement u 0 = -y is applied to the top-right surface. In addition, the top surface displacement across the x-direction is locked whereas for the z-displacement only the corner points on each top surface are locked. This choice of boundary conditions makes the loading asymmetric. Using the developed global bridge, a corresponding nite element mesh, composed of hexahedral elements with 27 nodes, is created (see Figure 9(b)). The FE mesh is composed of 33507 degrees of freedom. It is used as an input mesh in the industrial FE software. After recovering and solving the IGA linear system from the FE one constructed in Code_Aster, the obtained IGA displacement eld can be back-converted in terms of nodal displacements (see Eq. (17)) and the pre-processing routines of the FE code can be used to plot the NURBS stress, see Figure 10(a). A zoom on the area of stress concentration of σ yy , due to the asymmetric loading, is made in Figure 10(b). Results are smooth and in good agreement with reference IGA computations [Hughes et al. 2005], which means that the developed global bridge does not introduce signicant errors for the projection.

Extension to nonlinear analysis

Making IGA more accessible for industrial applications requires not to touch optimized routines which perform the integration of the nonlinear mechanical behavior. In this part the case of a nonlinear problem is considered with minimal invasiveness (no modication into the nonlinear solver). The only requirement of the method is to be able to extract the tangent stiness and right-hand-side operators at each iteration of the nonlinear solver.

Implementation of the method

In the nonlinear case, the resolution of the tangent problem is performed within a Newton solver which is still realized by the commercial FE code. The method is thus non-invasive also with respect to the options of the nonlinear solver. Technically, it requires additional features of the FE code, which consist in being able to pause the nonlinear resolution in order to externalize only the resolution of the global tangent system; then, to re-inject the displacement eld solution; and nally, to restart the nonlinear resolution without any other external treatments. The method is implemented here using Code_Aster software which oers this possibility thanks to Python subroutines and the so-called STAT_NON_LINE in splitted commands solver. More precisely, Figure 11 shows how the method works in a nonlinear context. After the pre-processing that does not change with respect to the elastic case, the solver STAT_NON_LINE in splitted commands enters the Newton loop. The nonlinear behavior is integrated and the tangent problem assembled with the optimized Fortran Figure 11: Flowchart of the non-invasive and nonlinear implementation in an existing FE software, taken as a blackbox. Note that operator Π is introduced to dene the full bridge between IGA and FEA (i.e., D for B-Splines or D W D LL for NURBS). routines of Code_Aster. On the other hand, the resolution of the tangent linear system is replaced by a Python subroutine, which consists in solving its projection onto the subspace spanned by Π. Once this resolution is made, the IGA displacement solution vector is transferred on the FE space so that it can be re-introduced in Code_Aster in order to update the behavior. It is worth noticing that a second very short Python subroutine is needed for the calculation of the IGA residual from the FE one. Some elements of these subroutines are provided hereafter for the implementation in Code_Aster. For instance, the subroutine iga_solver.py is roughly organized as follows:

• get the Aster concept which corresponds to the matrix and the right-hand side and convert to numpy arrays: Kef = sparse.csr_matrix(STIFF.EXTR_MATR()) Fef = FORCE.EXTR_COMP().valeurs

• projection of the global system and resolution: Uiga = scipy.sparse.linalg.spsolve(Pi.T.dot(K.dot(Pi)) , Pi.T.dot(F))

• reconstruction of the FE solution vector Uef = Pi.dot(Uiga)

This Python subroutine is called in the COMM le of Code_Aster using the command below: from iga_solver import * Uef=iga_solver(STIFF,FORCE)

Finally, in the COMM le, an Aster concept has to be built from the displacement Uef using CREA_TABLE(...) and CREA_CHAMP(...) functions.

Remark 3 The application programming interface of Code_Aster being Python, it is possible in this particular case to avoid reading/writing the linear operators on the drive, as it may be required with other industrial software. The operators are kept in memory in sparse format. The algorithm simply requires to project the FE tangent system and FE residual on an ad-hoc reduced basis. This operation is eciently performed using a dedicated sparse Library Scipy.Sparse. Note that this kind of projection is classically used in many model order reduction techniques (Proper Orthogonal Decomposition, Reduced Basis, see, e.g. [Kerfriden et al. 2012, Quarteroni et al. 2016, Chinesta et al. 2017]).

Remark 4 It may also be noticed that our method appears compatible with previous works performed regarding the parallel computation of nonlinear problems using Code_Aster (see, e.g, [Duval et al. 2016, Oumaziz et al. 2019]). As a result, the use of our strategy in combination with such works should allow the parallel computation of nonlinear IGA using Code_Aster.

Application to elastoplasticity

For illustration purpose, a 3D dog-bone sample in tension is considered in this section. Such an experimental test is often used to characterize the hardening of metallic materials [Mathieu et al. 2015]. The specimen is 100mm long, the ligament is 5 mm wide and the sample is 2.5 mm thick, as shown in Figure 12 (top). An elastoplastic constitutive behavior is considered with a Von Mises mixed hardening (see Figure 12 (bottom)). The parameters are the Young modulus E=22.13GPa and Poisson ratio ν=0.3. The Prager constant is set to 2200MPa and the nonlinear hardening is based on the tensile stress-strain curve given in Figure 12. The sample is subjected to a remote tension: the load goes from p = 0MPa to p = 80MPa within 10 (non-uniform) increments. With such parameters, the nonlinearity is easily computed using very few iterations of the Newton-based solver at each loading step.

Remark 5 To prescribe the Dirichlet conditions, Code_Aster uses the double Lagrange multiplier method (see [Charras et al. 1993]) to avoid losing the positive-deniteness of the operator. The associated Lagrange multipliers are used in the nonlinear solver of Code_Aster to update the behavior. Although this does not represent any theoretical limitation, for the sake of simplicity, a Neumann problem is considered here, so that the multipliers vanish.

The FE mesh is built from the CAD as described in Section 3. Even if, in this case, only one element was used along the sample thickness, the number of degrees of freedom is signicantly reduced: 6561 for the IGA versus 23409 for the associated nite element mesh, see Fig. 13.

The longitudinal component of the displacement eld solution is depicted in Figure 14 (left). The Von Mises stress eld obtained with the non-invasive IGA method (STAT_NON_LINE in splitted commands + subroutine Python) is also presented in Figure 14 (center). It can be seen that, in the region of the ligament, this eld has values above the yield stress (≈ 200MPa) which illustrates that in its central part, the specimen has undergone plastic deformations. This IGA stress eld is compared to the Von Mises stress eld obtained using the input FE mesh and the nonlinear FE solver STAT_NON_LINE of Code_Aster with the same mesh. Let us notice that no signicant dierence regarding the convergence speed of the nonlinear solver has been observed between the IGA and FE versions for this test-case. Since the converged solutions are very close, the relative discrepancy in Von Mises stress between the IGA and FE solutions is plotted in Figure 14 (right). Despite a reduction of more than 70% in the number of degrees of freedom, the solutions are very close (less than 2% of local mismatch while the two solutions come from dierent approximation subspaces), which conrms, in the nonlinear framework, the observations that had been made in elasticity. In order to quantitatively assess the proposed non-invasive IGA method with respect to the classical FE method, the tensile force-displacement curve is eventually plotted in Figure 15. Again, despite its much smaller dimension, the IGA subspace is able to provide a solution almost identical to that generated by FEM. This result is in line with an interpretation of the IGA as the projection of FEA on a specic regular reduced basis (see Remark 2).

Conclusions

In this work, a novel implementation procedure was developed that further simplies the integration of IGA in well-established FE environments, the ultimate goal being to make IGA more accessible for industrial applications. The attractive property of our approach is that it exhibits a reduced level of invasiveness. More precisely, in the proposed implementation, the whole FE routines remain completely untouched. As a result, the total FE code that may integrate complex, nonlinear numerical models and optimized routines can be used as a black box. The only requirements is that the commercial code (a) is able to output the tangent stiness and right-hand side operators and (b) has full quadratic elements (the 9-node quadrilateral element in 2D, or the 27-node cubic element in 3D) so that it becomes possible to recover and solve, in an external script, the isogeometric system from the FE one. In that sense, the proposed procedure lies in the family of non-invasive methods whose interest for the transfer of advanced technologies to the industrial community has been proved these last years [Duval et al. 2016].

The key aspect of our approach was to adopt a global vision regarding the link between IGA and FEM. Starting with a global formulation of the Lagrange extraction operator [Schillinger et al. 2016], it was shown that it is possible to perform non-invasive B-Spline based IGA in a real industrial FE code, which already constitutes a progress from a practical point of view. Then, to meet a similar reduced level of invasiveness in the case of rational functions as well, a global approximate link to go from standard nodal Lagrange polynomials to NURBS functions was developed. An additional operator that enables to take into account the weights of the rational Lagrange control points was constructed, which enabled to perform non-invasive NURBS-based IGA. The performance of the implementation was rst illustrated through a series of numerical experiments involving 2D and 3D elasticity problems and the use of the industrial FE software Code_Aster developed by the EDF R&D company [Code_Aster 2014]. According to the authors knowledge, this is the rst time that IGA has been implemented in Code_Aster. Then, the potential of the method was assessed in the nonlinear regime. None of the routines concerning the nonlinearity has been touched: at each iteration of the nonlinear solver, the FE tangent system and the FE nonlinear residual were simply projected on an ad-hoc reduced basis to obtain their isogeometric counterparts.

From a general point of view, this work further contributes to bridging the gap between IGA and standard FEM. Indeed, the developed full algebraic bridge going from Lagrange polynomials to (possibly rational) isogeometric functions oers a new lighting on the relation between IGA and FEA. IGA can be interpreted as the projection of FEA on a specic regular reduced basis. Pushing this interpretation a step further, the implementation procedure may also appear of interest in the context of reduced-order modeling [Kerfriden et al. 2012, Quarteroni et al. 2016, Chinesta et al. 2017]: it could be used to implement any reduced order model in a non-invasive way from a standard FE code.

Figure 1 :

 1 Figure 1: From B-Spline to Lagrange: (a) the initial B-Spline based discretization (four control points associated with four global quadratic B-Spline functions) ; (b) the Bernstein discretization (one control point is added throughout the Bézier decomposition and each element has three local Bernstein shape functions) and (c) Lagrange (FE) discretization (same number of functions as Bernstein, the control points are now on the curve). (top) the curve with the control points and (bottom) the univariate shape functions plots realized in the parameter space (ξ ∈ [0; 1]).

Figure 2 :

 2 Figure 2: Dierent representations of a two-element quadratic curved beam analysed in the example section. (a) the NURBS representation using rational functions and weights generates the exact circular geometry; (b) B-Spline, (c) Bernstein and (d) Lagrange control meshes and corresponding geometry which approximate the circles arcs as described in Section 3.2.2.

 (a) Local least-square approximation for one element. (b) Zoomed window. (c) Geometry error in terms of the relative dierence in radius.

Figure 6 :

 6 Figure 6: The local least-square approximation in case of a quarter circular beam. It consists of an element-level projection technology which nds the best position of the Lagrange nodes that generates a geometry close to the Rational Lagrange one.

Figure 7 :

 7 Figure 7: Problem description of the circular beam under end shear.

 (a) Initial NURBS denition of the horseshoe geometry (b) Associated constructed FE mesh.

Figure 9 :

 9 Figure 9: Example of coarse meshes of the horseshoe.

 (a) Stress σzz over the global surface (b) Detail on the localized stress σyy due to the asymmetric loading.

Figure 10 :

 10 Figure 10: Contour plot of the stress for the solid horseshoe (simple projected IGA).

Figure 12 :

 12 Figure 12: Problem description of the elastoplastic dog-bone sample in tension.

Figure 13 :

 13 Figure 13: Initial IGA mesh (left) and rened automatically generated FE mesh (right).

Figure 14 :

 14 Figure 14: Accuracy of the proposed non-invasive IGA implementation: Longitudinal displacement eld (left, amplication 100) ; Von Mises stress eld (center); and relative discrepancy in Von Mises stress from the FE reference solution computed using Code_Aster (right). The seventh increment, which corresponds to p = 70MPa, is considered for the plot.

Figure 15 :

 15 Figure 15: Force versus displacement curve. Comparison between Code_Aster FE reference (solid black line) and non-invasive IGA (blue crosses).

Acknowledgements

The authors would like to thank Paul Oumaziz, from Núcleo Cientíco Multidisciplinario-DI, Universidad de Talca, Chile, for his valuable help regarding the implementation of the method in Code_Aster.