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Abstract

Purpose. The purpose of this paper is to further simplify the use of NURBS in industrial environnements.
Although isogeometric analysis (IGA) has been the object of intensive studies over the past decade, its massive
deployment in industrial analysis still appears quite marginal. This is partly due to its implementation, which is
not straightforward with respect to the elementary structure of �nite element (FE) codes. This often discourages
industrial engineers from adopting isogeometric capabilities in their well-established simulation environment.

Methodology. Based on the concept of Bézier and Lagrange extractions, a novel method is proposed to
implement IGA from an existing industrial FE code with the aim of bringing human implementation e�ort to the
minimal possible level (only using standard input-output of FEA codes, avoid code-dependent subroutines imple-
mentation...). An approximate global link to go from Lagrange polynomials to NURBS functions is formulated,
which enables the whole FE routines to be untouched during the implementation.

Findings. As a result, only the linear system resolution step is bypassed: the resolution is performed in an
external script after projecting the FE system onto the reduced, more regular, isogeometric basis. The novel
procedure is successfully validated through di�erent numerical experiments involving linear as well as nonlinear
isogeometric analyses using the standard input/ouput of the industrial FE software Code_Aster.

1 Introduction

Isogeometric Analysis (IGA) was introduced by Hughes et al. [Hughes et al. 2005] and later detailed by Cot-
trell et al. [Cottrel et al. 2009] in order to solve problems directly on the geometry extracted from a Computer-
Aided-Design (CAD) model. The main idea is to use the same basis, e.g. Non-Uniform-Rational-B-Splines
(NURBS) [Cohen et al. 1980, Piegl and Tiller 1997] or T-Splines [Bazilevs et al. 2010], for analysis as the one used
to describe the geometry in CAD. Beyond the reinforced link between CAD and analysis, IGA turned out to
be a superior computational mechanics technology [Evans et al. 2009, Lipton et al. 2010, Schillinger et al. 2013,
Yin et al. 2015, Rauen et al. 2017]. However, despite its real enthusiasm in the computational mechanics commu-
nity, the implementation of IGA in existing industrial codes still appears quite invasive, which limits its massive
deployment in industry. Indeed, IGA comes with an intermediate space for the de�nition of the shape func-
tions which questions the element-wise structure of most existing FE codes. Unlike the standard Finite Element
Method (FEM) where each element has its own parametrization, the parametric space for NURBS is localized
onto a patch that is composed of several elements. Some IGA implementations in commercial FE packages exist
such as in LS-Dyna [Hartmann et al. 2011, Benson et al. 2013, Hartmann et al. 2016, Chen et al. 2016], Abaqus
[Elguedj et al. 2012, Duval et al. 2015, Lai et al. 2017] or Radioss [Occelli et al. 2019], but it is still quite a few.

The concept of Bézier extraction has proved to be a milestone to tie IGA and FEM closer together. Orig-
inally introduced by Borden et al. [Borden et al. 2011] for B-Splines and NURBS, the concept has now been
generalized to a large variety of advanced splines such as T-Splines [Scott et al. 2011, Scott et al. 2012], hier-
archical B-Splines and NURBS [Schillinger et al. 2012, Hennig et al. 2016, Angella et al. 2018], hierarchical T-
Splines [Evans et al. 2015, Chen and de Borst 2018], and LR B-Splines [Dokken et al. 2013]. Focusing on B-Splines
and NURBS, the technology enables to formulate a smooth polynomial B-Spline (respectively NURBS) function in
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terms of C0 polynomial Bernstein (resp. rational Bézier) functions. Nevertheless, it must be stressed, at this stage,
that implementing this strategy still requires modi�cations both at the elementary and at the assembly levels: (1)
modify the standard FE shape functions subroutine to introduce a new element based on polynomial Bernstein (or
rational Bézier) functions, (2) apply the extraction for each element and, (3) modify connectivity since it is based
on the NURBS numbering.

An extension of the idea of Bézier extraction to standard nodal FE functions has been more recently proposed
in Schillinger et al. [Schillinger et al. 2016]. It gave birth to the Lagrange extraction operator that directly links
Lagrange nodal basis with smooth B-Spline basis. This new operator encompasses the Bézier operator and o�ers
an alternative and simple implementation: it merely requires to evaluate the B-Spline basis functions at the nodal
points associated to the Lagrange polynomials. The Lagrange extraction especially appears of great interest for
geometries based on polynomial B-Splines. Indeed, it eliminates the need for introducing Bernstein polynomials
as new shape functions, which makes it possible not to touch the FE subroutines of a standard FE code at the
element level. The Lagrange extraction thus goes a step further to allow for the integration of IGA in an industrial
FE code with minimal invasiveness. However, it has to be underlined from this overview that the procedure cannot
be applied to the general situation of NURBS (or any rational splines). In this case, a family of rational Lagrange
functions can be introduced and used to directly express the NURBS basis; the problem is that such functions
(that integrate weights and a weight function) are not part of a typical FE code which is restricted to polynomial
basis functions. Moreover, it may be noticed that only the potential of the methodology has been underlined
in [Schillinger et al. 2016]. Up to now, it seems that only a very recent attempt that extends this framework to the
real open source FE-code FEniCS can be listed [Kamensky and Bazilevs 2019].

If pure numerical e�ciency is the only criterion for qualifying an implementation of IGA, the best approach
would certainly be to rewrite everything into a dedicated piece of code written using a low-level language (see,
e.g., PetIGA [Dalcin et al. 2016] for high-performance IGA based on the PETSc library, [Chang et al. 2016] for
an implementation using Fortran and [Nguyen et al. 2015] for global implementation aspects). In addition, let us
mention that recent works to implement IGA e�ciently start with a modi�cation of the standard looping over
elements in the assembly process [Calabro et al. 2017], which is incompatible with the use of standard FE codes.
All of these approaches may require signi�cant development e�orts, especially whenever a new nonlinear constitutive
law needs to be added. The approaches based on subroutines, that were mentioned before, represent also interesting
alternatives, as constitutive laws of existing industrial codes can be reused. However, these routines depend on the
considered code and still require a certain e�ort of implementation. This is why, in this study, it is chosen to reduce
the human time required for the computer implementation (even if, obviously, this one may come with a slight
increase of the computational cost).

In other words, this work aims at performing IGA in an available FE software in the least possible invasive
manner. Starting with the Lagrange extraction technology, a global view is adopted and a full algebraic bridge that
directly goes from Lagrange nodal polynomials to NURBS functions is formulated. It leads to a novel, alternative
implementation procedure in which no modi�cation of the whole FE routines is required. As a result, and compared
to the current practice, no modi�cation of the shape functions subroutine and of the assembly is performed. More
precisely, the strategy simply consists of the projection of the FE linear system on an ad-hoc regular reduced basis
whose algebraic construction is automatic and represents an objectively moderate implementation e�ort. In this way,
the method solely uses features o�ered by most modern industrial FE codes, such as, for instance, the possibility to
extract the (tangent) sti�ness operators. This appears of crucial interest regarding industrial FE environments since
the access to the whole code is not needed and the FE routines that may be highly optimized are not touched. In that
sense, the proposed method lies in the family of so-called non-invasive (also denoted non-intrusive) methods that
has been recently applied to local-global coupling [Gendre et al. 2009, Bouclier et al. 2016, Bouclier et al. 2017],
domain decomposition [Duval et al. 2016], contact problems [Oumaziz et al. 2017, Oumaziz et al. 2019], transient
dynamics analysis [Bettinotti et al. 2014] and stochastic partial di�erential equations [Chevreuil et al. 2013]. Their
ultimate goal is then to tackle real industrial applications (see, e.g., [Guinard et al. 2018] for real aeronautical
structures). The strategy is applied here to simply incorporate isogeometric capabilities in the industrial FE code
Code_Aster, which is a familiar open source software package for numerical simulation in structural mechanics
developed by the EDF R&D company [Code_Aster 2014].

The paper is organized as follows: Section 2 speci�es the existing link between NURBS-based IGA and FEM by
reviewing the Bézier and Lagrange extraction technologies. Section 3 is devoted to the development of the proposed
implementation procedure. Then, for validation and demonstration purposes, some numerical experiments are
�rst carried out involving 2D and 3D elasticity in Section 4, before performing the more complex simulation of a
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nonlinear elastoplastic structure in Section 5. Finally, Section 6 concludes on this work.

2 The link between IGA and FEM

In this section, the fundamentals to tie IGA and FEM closer together are given. Although the Lagrange extractor
encompasses the Bézier one, it is chosen here to start with the original Bézier version [Borden et al. 2011] before
introducing the Lagrange transformation [Schillinger et al. 2016] given the importance of the concept of Bézier
extraction in the state-of-the-art of IGA. For completeness, note that further details regarding NURBS and related
algorithms can be found in [Cohen et al. 1980, Piegl and Tiller 1997]. An existing analysis-suitable NURBS or B-
Splines representation is considered as an input to this study. To go from the CAD software to the analysis-suitable
representation the reader is referred to [Al-Akhras et al. 2016].

2.1 NURBS-based IGA

2.1.1 B-Splines.

From a set of non-decreasing coordinates in the parametric space collected in the knot vector Ξ =
{
ξ1, ξ2, ..., ξn+p+1

}
,

a basis of univariate B-Spline functions of order p, denoted by (Ni,p)i∈{1..n}, can be de�ned recursively using the
Cox-de Boor formula [Cohen et al. 1980]. A B-Spline function of order p has p−1 continuous derivatives. Besides, if
a knot ξl has a multiplicity ml, the number of continuous derivatives at this knot will decrease by ml. A comparison
between B-Spline and Lagrange shape functions is given in Figure 1. Then, a B-Spline curve CBS is constructed as
follows:

CBS(ξ) =
n∑
i=1

Ni,p(ξ)Pi = PBST N(ξ), (1)

where PBS =

x11..xd1...
x1n..x

d
n

 is the (n× d) matrix that collects the d coordinates of the n control points and N =

N1

...
Nn


is the vector of the B-Spline basis functions. For a multi-dimensional space domain, the B-Spline basis functions
are determined by performing the tensor product of 1D B-Spline functions, so that in 3D it yields:

NA = Ni,p(ξ)×Nj,q(η)×Nk,r(ζ), (2)

for control point PA that corresponds to the ith, jth and kth control points in each univariate spatial direction.

2.1.2 NURBS.

The multivariate NURBS functions RIGA =
{
RIGAA

}nA

A=1
are de�ned from a set of nA B-Spline functions {NA}nA

A=1.

In order to do so, it is necessary to introduce
{
wIGAA

}nA

A=1
as the weights of each of the control points PIGA ={

P IGAA

}nA

A=1
associated to the NURBS entity. The rational functions read as follows:

RIGAA =
NAw

IGA
A

W IGA
, where W IGA =

nA∑
A=1

NAw
IGA
A . (3)

Following the de�nition of the B-Spline entities in Eq. (1), NURBS objects are then de�ned such that:

VIGA =

nA∑
A=1

RIGAA P IGAA = PIGAT RIGA. (4)

The NURBS functions exactly describe the geometry of conic sections. For illustration purpose, an example
of a 2D circular beam is considered in Figure 1(a). Starting with a quadratic one-element mesh, one can perform
k-re�nement [Cottrell et al. 2007] in the arc direction to obtain a quadratic mesh composed of two elements.

Remark 1 The present article is restricted to quadratic functions since almost all industrial FE codes do not go
beyond second-order Lagrange �nite elements. Nevertheless, we emphasize that the developed implementation could
be directly applied to higher-order spline-based functions, provided that the corresponding higher-order �nite elements
are available in a standard FE code.
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2.2 The Bézier extraction

The �rst step to link IGA and FEM is to formulate the smooth polynomial B-Spline functions in terms of polynomials
that are C0 on the element edges. This is possible as the space generated by the B-Spline functions is included in
the one generated by the C0 functions. Such a link has been developed in [Borden et al. 2011] under the name of
Bézier extraction which maps the Bernstein basis onto the B-Spline basis.

2.2.1 Bézier decomposition by knot insertion.

In order to form a structured C0 Bernstein mesh from a smooth B-spline mesh, one simply needs to repeat all the
inside knots of the knot vectors until they reach a multiplicity p (see Figure 1(b) for the example of a quadratic
B-Spline curve with two elements). The geometry is preserved with the resulting C0 Bernstein representation. It
must be stressed at this stage that the advantage of Bernstein functions is that they exhibit an elementary structure
which is similar to FEM (see Figure 1(c)).

2.2.2 Bernstein polynomial functions.

The Bézier transformation relies on the de�nition of Bézier curves [Bézier 1986] and Bernstein functions. Originally,

a Bézier curve of order p is a linear combination of p + 1 univariate Bernstein functions B(ξ̃) =
{
Bi,p(ξ̃)

}p+1

i=1

associated with control points PBER = {Pi,p}p+1
i=1 . Regarding the expression of the Bernstein functions, they are

de�ned directly in the parent space since each Bernstein element has its own parametrization. As with B-Spline
functions, multi-variate Bernstein functions are built by applying a tensor product between the univariate functions.
From here on, the notations B and PBER are extended to denote the functions and control points of a multi-variate
Bernstein mesh composed of several elements.

2.2.3 Bézier extraction operator.

By making use of the above knot-insertion process, a Bézier extractor matrix C can be constructed in order to
ensure the link between the B-Spline functions and the Bernstein functions as follows:

N = CB. (5)

In order to determine the positions of the Bernstein control points the equality between the expression of the B-
Spline entity (see Eq. (1)) and the Bernstein one is used. By expressing the B-Spline functions using Eq. (5), it
can be shown that PBER = CTPBS .

2.3 The Lagrange extraction

The Lagrange extraction operator directly maps a Lagrange nodal basis onto a B-Spline basis. In the following, the
remaining link between Bernstein and Lagrange shape functions is �rst established and then the direct construction
of the Lagrange extractor is presented.

2.3.1 From Lagrange to Bernstein polynomials.

Denoting by L the classical FE Lagrange functions, the goal is here to build operator DLB that satis�es:

B = DLBL. (6)

Obviously, operator DLB is constructed from its elementary representation De
LB which is the same for each ele-

ment. For illustration purpose, one-dimensional Bernstein and Lagrange shape functions of order 2 are plotted in
Figures1(b) and 1(c).

To construct operator De
LB , one simply needs to express the Bernstein functions as a linear combination of

the Lagrange functions at some interpolation points. Making use of the interpolatory property of the Lagrange
functions, such an operator can be e�ciently constructed by evaluating the Bernstein functions at the nodal points
associated to the Lagrange basis.
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Figure 1: From B-Spline to Lagrange: (a) the initial B-Spline based discretization (four control points associ-
ated with four global quadratic B-Spline functions) ; (b) the Bernstein discretization (one control point is added
throughout the Bézier decomposition and each element has three local Bernstein shape functions) and (c) Lagrange
(FE) discretization (same number of functions as Bernstein, the control points are now on the curve). (top) the
curve with the control points and (bottom) the univariate shape functions plots realized in the parameter space
(ξ ∈ [0; 1]).

Once operator DLB is built, the same treatment as with the Bézier operator can be performed to construct the
FE nodes from the Bernstein mesh: PFE = DT

LBPBER. Such nodes could be used to construct the input mesh
for classical �nite element codes. Obviously, these nodes interpolate the geometry. The B-Spline, Bernstein and
Lagrange control meshes that generate the same two-element quadratic polynomial beam are plotted in Figures
2(b), 2(c) and 2(d) respectively. As expected, the Bernstein control points are far from the geometry in comparison
with the Lagrange nodes that interpolate the geometry.

Figure 2: Di�erent representations of a two-element quadratic curved beam analysed in the example section. (a)
the NURBS representation using rational functions and weights generates the exact circular geometry; (b) B-Spline,
(c) Bernstein and (d) Lagrange control meshes and corresponding geometry which approximate the circles arcs as
described in Section 3.2.2.

2.3.2 A direct link between Lagrange and B-Spline functions.

With previous operators C and DLB in hand, the computation of the Lagrange extraction operator D becomes
straightforward:

N = DL with D = C DLB . (7)

Nevertheless, for better numerical e�ciency, the Lagrange extraction operator is never computed this way. Indeed,
the same procedure as for the Lagrange-Bernstein operator DLB can be directly applied to the full Lagrange
extraction operator D: it merely requires to evaluate the B-spline basis functions at nodal points. An e�cient
algorithm for this has been proposed in [Schillinger et al. 2016].
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2.4 The extraction in case of NURBS

Until now, the link between IGA and FEM is restricted to geometries based on polynomial B-Splines. However, in
general, spline discretizations consist of rational basis functions that integrate weights associated to control points.
The Lagrange extraction can be extended to the case of NURBS. It consists of establishing a link between NURBS
and rational Lagrange basis functions, as detailed in [Schillinger et al. 2016].

Brie�y, it can be extracted from Eqs. (3) and (7) that:

RIGA =
WIGADL

W IGA
, (8)

where WIGA is the diagonal matrix of NURBS weights andW IGA =
∑nA

A=1 w
IGA
A NA is the NURBS weight function.

The NURBS weight function can be rewritten using the Lagrange basis as:

W IGA =

nA∑
A=1

wIGAA NA = (wIGA)TN = (wIGA)TDL

= (DTwIGA)TL = (wLAG)TD =WLAG,

(9)

where the weights associated to the rational Lagrange control points are:

wLAG = DTwIGA. (10)

The rational Lagrange functions are then de�ned as follows:

RLAG =
WLAGL

WLAG
, (11)

where WLAG is the diagonal matrix of the Lagrange weights. The link between NURBS functions and rational
Lagrange functions is �nally made using Eqs. (11) and (9) in Eq. (8). Consequently, a new extraction operator
DW is created as described below:

RIGA = WIGAD(WLAG)−1RLAG = DWRLAG. (12)

Therefore, the rational Lagrange control points depend on the NURBS control points: PLAG = (DW )TPIGA.
Let us emphasize at this stage that this link from rational Lagrange functions to NURBS is exact since both

bases are rational and NURBS are of higher-order smoothness. However, one must keep in mind that the de�nition
of these rational Lagrange functions requires, from standard Lagrange polynomials, the incorporation of Lagrange
weights WLAG and of the Lagrange weight function WLAG. Those operations are not part of standard FE codes
that are restricted to polynomial basis functions. As shown in Section 3, an additional work thus needs to be
achieved to directly go from Lagrange polynomials to NURBS.

3 The non-invasive implementation

Let us recall that our interest is to implement IGA in an available FE software with a reduced level of invasiveness.
The potential of the Lagrange extraction technology to allow for the implementation of IGA in standard FE codes
has been underlined in [Schillinger et al. 2016]. Especially in case of geometries based on polynomial B-Splines, a
strategy with minimal invasiveness has been derived. After exposing the current practice for setting up IGA using
the previous extraction concepts, the proposed novel implementation procedure is presented.

3.1 A �rst option

3.1.1 General case of NURBS.

The rational Lagrange geometry that has been created using DW (see Eq. (12)) has an elementary structure which
makes it more likely to be implemented in a FE software. The resulting implementation scheme and the interaction
between the initial NURBS mesh and the computed rational Lagrange mesh are described in Figure 3. On each
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branch, the quantities of interest needed to perform the next step are pointed out, for example the global and local
rational Lagrange extraction operators DW and De

W , or the NURBS and rational Lagrange shape functions RIGA

and RLAG. Moreover, the connectivity table used for the matrix assembly is indicated. From this procedure, the
following modi�cations to be done in the FE software can be listed:

1. Modify the standard FE shape functions subroutine to incorporate the Lagrange weights and the weight
function and thus, construct the rational Lagrange shape functions from the existing Lagrange polynomials,
as expressed in Eq. (11);

2. Apply the extraction for each element using operator De
W ;

3. Change the connectivity table in order to perform an IGA assembly.

Figure 3: General standard implementation procedure using the Lagrange extraction for NURBS: from a NURBS
de�nition of the geometry and with the creation of operator DW , a rational Lagrange representation of the geometry
is created. By modifying the shape functions subroutine, to express rational Lagrange functions, and applying the
local Lagrange extraction, the IGA elementary sti�ness matrix is computed. Finally, the assembly subroutine needs
to be modi�ed to allow the use of the NURBS degrees of freedom to get the global NURBS sti�ness matrix.

3.1.2 Speci�c case of B-Splines.

In the particular case where the geometry is generated only with B-Spline polynomials (no rational basis functions),
the standard FE subroutines do not need to be touched at the element level. In other words, point 1 above does

not stand anymore. Indeed, after computing the standard FE elementary sti�ness matrices KeFE

, only additional

matrix-matrix products are required to obtain the corresponding IGA elementary matrices KeIGA

:

KeIGA

= DeKeFE

DeT . (13)

This is made possible since a direct link is established between the Lagrange polynomials that are present in standard
FE software and the smooth B-Spline functions. As a result, part of our work now consists in elaborating a direct
link between NURBS and Lagrange polynomials to meet such a non-invasiveness in the case of rational functions
as well.
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3.2 The proposed strategy

3.2.1 Principle.

As stated above, no modi�cation of the whole FE routines is envisaged in this work (i.e., no modi�cation into
the shape functions subroutine (point 1 above) and concerning the assembly (point 2 above)). In order to do so,
a global view of the extraction is adopted, as depicted in Figure 4. The path starting with a B-Spline mesh is
exact and mainly consists of applying procedure exposed in [Schillinger et al. 2016], but in a global way. The path
related to NURBS however requires the construction of an additional operator to go from polynomials to rational
functions. Such a transformation cannot be exact since this is the space of the rational functions that includes the
associated polynomials and not the other way around. A projection thus needs to be performed. For simplicity, the
projection is performed on the Lagrange side, i.e., the idea is to project the rational Lagrange discretization onto
the polynomial Lagrange space. Operator DLL is introduced as:

RLAG = DLLL, (14)

and its construction is explained in the next paragraphs.

Figure 4: Approach to link a NURBS mesh to a FE mesh using di�erent global operators. Those operators are
then used to recover the NURBS sti�ness matrix from the FE one computed using a classical FE software, taken
as a black-box. Black arrows represent an exact link, gray arrows an approximation.

Once the �nite element mesh is created from the IGA mesh in a pre-processing step, it is used as an input for the
classical FE code in order to compute the FE sti�ness matrix. With the di�erent elaborated operators, successive
transformations are then performed to obtain the �nal isogeometric sti�ness matrix, as follows:

KIGA = DWDLLKFEDT
LLDT

W . (15)

This transformation is also applied on the right-hand side:

FIGA = DWDLLFFE . (16)

Consequently, the system KIGAUIGA = FIGA can be solved to obtain the displacement UIGA. Finally, note that
the resulting IGA displacement can be back-converted in terms of nodal displacements:

UFE = DT
LLDT

WUIGA, (17)

so that existing subroutines of the FE code can be used for post-processing.

Remark 2 Notice that Eqs. (15) and (16) can be interpreted as projecting the FE system onto the isogeometric
basis. As a result, the developed algebraic bridge (DWDLL) provides a new point of view on the relation between
IGA and FEA: IGA can be interpreted as the projection of FEA on a speci�c regular reduced basis.

3.2.2 Simple approximation.

Acting at the Lagrange level for performing the projection between the rational and associated polynomial spaces
o�ers the opportunity to follow a pragmatic yet accurate strategy. Indeed, it has to be emphasized that the
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control points of the rational Lagrange discretization interpolate the geometry. As a result, it is possible to simply
consider that the position of the FE nodes PFE is exactly the same as the position of the rational Lagrange control
points PLAG. In this case, DLL formally reads as the identity operator (denoted by ID in the following), so that
the derived procedure does not add any extra-computational e�ort from the current practice. As an illustration,
Figure 5 investigates the di�erence in terms of geometry in case of a quarter circular beam. It can be observed
that the approximation is already very accurate for a single element (Figure 5(a)) and, obviously, it is improved
through the re�nement of the mesh since more interpolated control points are added (Figure 5(b)). The accuracy
of the approximation technique can also be appreciated through Figure 5(d) that displays the geometry error in
terms of the relative di�erence in radius from the exact value evaluated along the circular annulus. Given this high
accuracy, it is expected that the error related to the mapping DLL = ID appears largely insigni�cant compared to
that associated to the �nite element resolution of an underlying mechanical problem.

(a) Simple approximation for one element. (b) Simple approximation for two elements (in the arc
direction).

(c) Geometry error in terms of the relative di�erence
in radius between the simple approximation and the
exact circle.

(d) Weight evolution with re�nement. The weight of
the rational Lagrange control point PLAG is equal to
cos2(α/2), which quickly converges to 1 as the mesh is
re�ned.

Figure 5: The simple approximation in case of a quarter circular beam. The di�erence in terms of geometry quickly
vanishes with the re�nement of the mesh.

An alternative interpretation can be given: the strategy simply consists of considering all the weights of the
rational Lagrange discretization equal to one. Taking back the example of a quarter circular beam, the approxi-
mation can be illustrated as follows (see Figure 5(d)). As explained in the NURBS technology [Cottrel et al. 2009,
Piegl and Tiller 1997], the weight of the middle point of a quadratic circular one-element arc is equal to the cosine
of half of the angle subtended by the arc (the weights of the two boundary control points being one). From here
on, α denotes the angle of interest (see Figure 5(d) again). Making use of previous equality (10), then expressing
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operator D using (7), and �nally noting that C = ID in case of a mesh composed of a single NURBS element, the
weights associated to the rational Lagrange discretization of this circular arc can be computed as follows:

wLAG =
(
De1D

LB

)T
wIGA, (18)

with wIGA =

 1
cos(α)

1

 and De1D

LB the 1D version of De
LB (6), which ends up with the weight:

wLAG =
1

2
(1 + cos(α)) = cos2

(α
2

)
(19)

for the middle point of the rational Lagrange parametrization. Therefore, the good accuracy of the simple ap-
proximation is accounted for: when α decreases cos2(α/2) quickly tends towards one. Note �nally that going from
Bernstein polynomials to rational Bézier functions with the same treatment would lead to a convergence speed
of cos(α) instead, and going from B-Spline polynomials to NURBS functions similarly would converge even less
quickly.

3.2.3 Local least-square approximation.

As a more rigorous mathematical approach, a strategy based on a projection using a L2-norm is also proposed to
approximate the rational Lagrange functions by means of linear combinations of Lagrange polynomials. The pre-
sentation of the method is restricted to the two-dimensional setting. Given the local structure of rational Lagrange
functions as well as Lagrange polynomials, the methodology proceeds element-by-element for the construction of op-
erator DLL, thus providing simplicity and limiting the computational cost. Note that similar works have been made
in quite related contexts, such as to project C0 discretizations to smoother basis (see, e.g., [Thomas et al. 2014]
and [Schillinger et al. 2016] that build Bézier and Lagrange projection, respectively). Here, the following simple
treatment can be performed. To start with, the vertex Lagrange nodes of the considered element are taken equal
to the corresponding vertex rational Lagrange control points. Then, in order to be directly compatible with the
neighboring elements, the projection is formulated by writing a least-square problem on each element edge. As a
result, the developed strategy does not require the assembly step encountered in common local least-square pro-
cedures (see, e.g., [Govindjee et al. 2012]) in order to combine in some way the di�erent values obtained from the
di�erent elements for the same point.

More precisely, let us consider an elementary rational Lagrange geometry expressed similarly as in Eqs (1)
and (4):

Se
LAG

= PeLAGT
ReLAG

, (20)

where PeLAG

is a matrix that collects the positions of the control points related to the considered rational Lagrange

element and ReLAG

is the vector of the elementary rational Lagrange functions. The objective is to determine

the positions of the equivalent Lagrange nodes PeFE

that give an accurate approximation of the initial rational

Lagrange geometry SeLAG

. Considering an element edge de�ned by the same second coordinate η̃ in the parent
space, the quadratic functional J is minimized such that:

J =
1

2

∫ 1

ξ̃=−1

(
Ce

LAG

(ξ̃)− Ce
FE

(ξ̃)
)2
, (21)

to compute the equivalent Lagrange nodes related to the considered edge. Let us emphasize that the curves CeLAG

(ξ̃)

and CeFE

(ξ̃) only involve the one-dimensional rational Lagrange functions and Lagrange polynomials, respectively.
After di�erentiation, we end up with the following linear system that relates each of the spacial coordinates of the

edge Lagrange nodes (XeFE

) with that of the edge rational Lagrange control points (XeLAG

):

Me
1DX

eFE

= Me
RX

eLAG

, (22)
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where Me
1D is simply the elementary mass matrix (with unit density) of the 1D Lagrange polynomials and Me

R

reads as follows: 

∫ 1

ξ̃=−1
L1(ξ̃)R

LAG
1 (ξ̃)

∫ 1

ξ̃=−1
L1(ξ̃)R

LAG
2 (ξ̃)

∫ 1

ξ̃=−1
L1(ξ̃)R

LAG
3 (ξ̃)

∫ 1

ξ̃=−1
L2(ξ̃)R

LAG
1 (ξ̃)

∫ 1

ξ̃=−1
L2(ξ̃)R

LAG
2 (ξ̃)

∫ 1

ξ̃=−1
L2(ξ̃)R

LAG
3 (ξ̃)

∫ 1

ξ̃=−1
L3(ξ̃)R

LAG
1 (ξ̃)

∫ 1

ξ̃=−1
L3(ξ̃)R

LAG
2 (ξ̃)

∫ 1

ξ̃=−1
L3(ξ̃)R

LAG
3 (ξ̃)


. (23)

From system (22), the position of the middle Lagrange node alone is actually picked since, as stated above, the
vertex nodes are taken equal to the vertex Lagrange control points. The procedure is then repeated to all element
edges. Unlike operator De

LB , note that De
LL is not the same for each element, as it depends on the weights of

the control points of the considered rational Lagrange element. However, let us emphasize that those weights only
appear on the right-hand side of the local least-square problem (through Me

R, see Eq. (23)). As a consequence,
Me

1D is analytically computed and inverted once and for all elements:

(Me
1D)
−1

=


9/2 −3/4 3/2

−3/4 9/8 −3/4

3/2 −3/4 9/2

 . (24)

The only requirement of the developed procedure is actually to compute Me
R on each element, that is, to perform

a numerical integration in the parent space of an element edge. This is straightforward using standard numerical
analysis packages.

Still on a quarter circular arc, Figure 6 shows the di�erence in terms of geometry encountered when applying
the proposed local least-square procedure for a mesh composed of a single element. From a global point of view,
this more rigorous alternative seems to produce equivalent results (at least in terms of geometry) as the previous
pragmatic strategy that considers all the weights equal to one. This accounts for the validity of the previous simple
approximation in practical (engineering) applications.

4 Examples with elasticity models

As a �rst assessment of the method, numerical experiments with two and three-dimensional linear elasticity models
are carried out in this section. For validation purpose, the �rst test-case (for which a reference analytical solution
is available) is computed using a Matlab homemade code. Then, for proof-of-concept, the open source package
Code_Aster, which is developed by the EDF R&D company [Code_Aster 2014], is used as an industrial FE software
for the second benchmark. It may be noticed that no unit is given for the following test-cases (as it is usually the
case in the literature). The given values are those that are directly taken as input for the numerical process.

4.1 2D circular beam under end shear

The �rst example consists of a 2D circular beam under plane stress subjected to end shear, as illustrated in Figure
7. The material properties are the following: Young Modulus, E = 10000 and Poisson ratio, ν = 0.25. A radial
constant displacement u0 = 0.01 is prescribed on the bottom edge of the beam. The closed form solution in terms
of strain energy can be found in [Zienkiewicz et al. 2003].

In Figure 8, the evolution of the relative error regarding the strain energy is given as a function of the number
of degrees of freedom. The relative error is computed as:

|Eexd − E
fe
d |

|Eexd |
, (25)

where Eexd denotes the reference exact strain energy and Efed the strain energy of the discrete model.
To start with, it can be noticed that the results for the 9-node element created with the simple or the least-

square projections are similar. This behavior was expected because, as it has been previously illustrated from a
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(a) Local least-square approximation for one element. (b) Zoomed window.

(c) Geometry error in terms of the relative di�erence
in radius.

Figure 6: The local least-square approximation in case of a quarter circular beam. It consists of an element-level
projection technology which �nds the best position of the Lagrange nodes that generates a geometry close to the
Rational Lagrange one.

Figure 7: Problem description of the circular beam under end shear.

geometrical viewpoint, the simple approximation was already good for one element in the arc direction. Here,
with the �rst re�nement used, there are already 6 elements in this direction; therefore, the error related to the
mapping DLL = ID is largely insigni�cant compared to the associated FE error. The analysis performed with the
FE mesh created by both of these approximation methods gives an error evolution similar to the FEM reference
[Zienkiewicz et al. 2003]. Then, in order to obtain the IGA sti�ness matrix, and thus to recover the isogeometric
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Figure 8: Evolution of the relative energy error of the circular beam. Full FEM [Zienkiewicz et al. 2003] and IGA
resolutions are used as references. On the one hand, the error is calculated by using the simple approximation
between rational Lagrange functions and Lagrange polynomials (see section 3.2.2) for the resulting FE problem
(curve "Simple projected FEM") and back-projected IGA problem (curve "Simple projected IGA"). On the other
hand, this error is computed for the FE and IGA problems with a least-square approximation between rational
Lagrange functions and Lagrange polynomials (see section 3.2.3, associated curves "Least-square projected IGA
and FEM").

results, the FE sti�ness matrices are back-projected using the developed global bridge. The errors found with the
simple and least-square projected IGA are similar to the error of a full IGA reference computation (the curves
"IGA reference", "Simple projected IGA" and "Least-square projected IGA" are superimposed). This accounts
for the accuracy of the developed global bridge in case of NURBS. Finally, one can notice that for a given mesh
re�nement, the errors are about the same for FEM and IGA. The main di�erence is the number of degrees of
freedom which signi�cantly decreases when IGA is performed (the two curves are simply horizontally translated).
This gap between the two curves illustrates the increased per-degree-of-freedom accuracy of IGA (reduction by a
factor of more than 3 here) which has been deeply demonstrated in the literature (see, e.g., [Evans et al. 2009,
Cottrell et al. 2006, Schillinger et al. 2013]).

4.2 Solid horseshoe

In this section, a solid horseshoe subjected to equal and opposite displacements on the top surfaces is used as a
full 3D example (see, e.g., [Hughes et al. 2005] for similar computations). The geometry and the NURBS mesh
associated with the solid horseshoe are given in Figure 9(a). Let us emphasize that it involves a multi-patch model
which can be easily handled using the proposed methodology. The NURBS mesh is composed of 1152 elements
of degree 2 with 7020 degrees of freedom. The material properties are the following: E = 3 × 107 and ν = 0.3.
An initial displacement u0 = y is applied to the top-left surface and a similar displacement u0 = −y is applied
to the top-right surface. In addition, the top surface displacement across the x-direction is locked whereas for the
z-displacement only the corner points on each top surface are locked. This choice of boundary conditions makes
the loading asymmetric. Using the developed global bridge, a corresponding �nite element mesh, composed of
hexahedral elements with 27 nodes, is created (see Figure 9(b)). The FE mesh is composed of 33507 degrees of
freedom. It is used as an input mesh in the industrial FE software. After recovering and solving the IGA linear
system from the FE one constructed in Code_Aster, the obtained IGA displacement �eld can be back-converted
in terms of nodal displacements (see Eq. (17)) and the pre-processing routines of the FE code can be used to plot
the NURBS stress, see Figure 10(a). A zoom on the area of stress concentration of σyy, due to the asymmetric
loading, is made in Figure 10(b). Results are smooth and in good agreement with reference IGA computations
[Hughes et al. 2005], which means that the developed global bridge does not introduce signi�cant errors for the
projection.
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(a) Initial NURBS de�nition of the horseshoe geometry (b) Associated constructed FE mesh.

Figure 9: Example of coarse meshes of the horseshoe.

(a) Stress σzz over the global surface (b) Detail on the localized stress σyy due to the asym-
metric loading.

Figure 10: Contour plot of the stress for the solid horseshoe (simple projected IGA).
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5 Extension to nonlinear analysis

Making IGA more accessible for industrial applications requires not to touch optimized routines which perform the
integration of the nonlinear mechanical behavior. In this part the case of a nonlinear problem is considered with
minimal invasiveness (no modi�cation into the nonlinear solver). The only requirement of the method is to be able
to extract the tangent sti�ness and right-hand-side operators at each iteration of the nonlinear solver.

5.1 Implementation of the method

In the nonlinear case, the resolution of the tangent problem is performed within a Newton solver which is still realized
by the commercial FE code. The method is thus non-invasive also with respect to the options of the nonlinear
solver. Technically, it requires additional features of the FE code, which consist in being able to pause the nonlinear
resolution in order to externalize only the resolution of the global tangent system; then, to re-inject the displacement
�eld solution; and �nally, to restart the nonlinear resolution without any other external treatments. The method
is implemented here using Code_Aster software which o�ers this possibility thanks to Python subroutines and the
so-called STAT_NON_LINE in splitted commands solver.

More precisely, Figure 11 shows how the method works in a nonlinear context. After the pre-processing that
does not change with respect to the elastic case, the solver STAT_NON_LINE in splitted commands enters the
Newton loop. The nonlinear behavior is integrated and the tangent problem assembled with the optimized Fortran

Figure 11: Flowchart of the non-invasive and nonlinear implementation in an existing FE software, taken as a black-
box. Note that operator Π is introduced to de�ne the full bridge between IGA and FEA (i.e., D for B-Splines or
DWDLL for NURBS).

routines of Code_Aster. On the other hand, the resolution of the tangent linear system is replaced by a Python
subroutine, which consists in solving its projection onto the subspace spanned by Π. Once this resolution is made,
the IGA displacement solution vector is transferred on the FE space so that it can be re-introduced in Code_Aster
in order to update the behavior. It is worth noticing that a second very short Python subroutine is needed for the
calculation of the IGA residual from the FE one.

Some elements of these subroutines are provided hereafter for the implementation in Code_Aster. For instance,
the subroutine iga_solver.py is roughly organized as follows:
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• get the Aster concept which corresponds to the matrix and the right-hand side and convert to numpy arrays:
Kef = sparse.csr_matrix(STIFF.EXTR_MATR())

Fef = FORCE.EXTR_COMP().valeurs

• projection of the global system and resolution:
Uiga = scipy.sparse.linalg.spsolve( Pi.T.dot(K.dot(Pi)) , Pi.T.dot(F) )

• reconstruction of the FE solution vector
Uef = Pi.dot(Uiga)

This Python subroutine is called in the COMM �le of Code_Aster using the command below:
from iga_solver import *

Uef=iga_solver(STIFF,FORCE)

Finally, in the COMM �le, an Aster concept has to be built from the displacement Uef using CREA_TABLE(...)

and CREA_CHAMP(...) functions.

Remark 3 The application programming interface of Code_Aster being Python, it is possible in this particular
case to avoid reading/writing the linear operators on the drive, as it may be required with other industrial software.
The operators are kept in memory in sparse format. The algorithm simply requires to project the FE tangent sys-
tem and FE residual on an ad-hoc reduced basis. This operation is e�ciently performed using a dedicated sparse
Library Scipy.Sparse. Note that this kind of projection is classically used in many model order reduction tech-
niques (Proper Orthogonal Decomposition, Reduced Basis, see, e.g. [Kerfriden et al. 2012, Quarteroni et al. 2016,
Chinesta et al. 2017]).

Remark 4 It may also be noticed that our method appears compatible with previous works performed regarding the
parallel computation of nonlinear problems using Code_Aster (see, e.g, [Duval et al. 2016, Oumaziz et al. 2019]).
As a result, the use of our strategy in combination with such works should allow the parallel computation of nonlinear
IGA using Code_Aster.

5.2 Application to elastoplasticity

For illustration purpose, a 3D dog-bone sample in tension is considered in this section. Such an experimental test
is often used to characterize the hardening of metallic materials [Mathieu et al. 2015]. The specimen is 100mm
long, the ligament is 5 mm wide and the sample is 2.5 mm thick, as shown in Figure 12 (top). An elastoplastic
constitutive behavior is considered with a Von Mises mixed hardening (see Figure 12 (bottom)). The parameters
are the Young modulus E=22.13GPa and Poisson ratio ν=0.3. The Prager constant is set to 2200MPa and the
nonlinear hardening is based on the tensile stress-strain curve given in Figure 12. The sample is subjected to
a remote tension: the load goes from p = 0MPa to p = 80MPa within 10 (non-uniform) increments. With such
parameters, the nonlinearity is easily computed using very few iterations of the Newton-based solver at each loading
step.

Remark 5 To prescribe the Dirichlet conditions, Code_Aster uses the double Lagrange multiplier method (see
[Charras et al. 1993]) to avoid losing the positive-de�niteness of the operator. The associated Lagrange multipliers
are used in the nonlinear solver of Code_Aster to update the behavior. Although this does not represent any
theoretical limitation, for the sake of simplicity, a Neumann problem is considered here, so that the multipliers
vanish.

The FE mesh is built from the CAD as described in Section 3. Even if, in this case, only one element was used
along the sample thickness, the number of degrees of freedom is signi�cantly reduced: 6561 for the IGA versus
23409 for the associated �nite element mesh, see Fig. 13.

The longitudinal component of the displacement �eld solution is depicted in Figure 14 (left). The Von Mises
stress �eld obtained with the non-invasive IGA method (STAT_NON_LINE in splitted commands + subroutine
Python) is also presented in Figure 14 (center). It can be seen that, in the region of the ligament, this �eld has
values above the yield stress (≈ 200MPa) which illustrates that in its central part, the specimen has undergone
plastic deformations. This IGA stress �eld is compared to the Von Mises stress �eld obtained using the input FE
mesh and the nonlinear FE solver STAT_NON_LINE of Code_Aster with the same mesh. Let us notice that

16



Figure 12: Problem description of the elastoplastic dog-bone sample in tension.

Figure 13: Initial IGA mesh (left) and re�ned automatically generated FE mesh (right).
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no signi�cant di�erence regarding the convergence speed of the nonlinear solver has been observed between the
IGA and FE versions for this test-case. Since the converged solutions are very close, the relative discrepancy in
Von Mises stress between the IGA and FE solutions is plotted in Figure 14 (right). Despite a reduction of more
than 70% in the number of degrees of freedom, the solutions are very close (less than 2% of local mismatch while
the two solutions come from di�erent approximation subspaces), which con�rms, in the nonlinear framework, the
observations that had been made in elasticity.

Figure 14: Accuracy of the proposed non-invasive IGA implementation: Longitudinal displacement �eld (left,
ampli�cation 100) ; Von Mises stress �eld (center); and relative discrepancy in Von Mises stress from the FE
reference solution computed using Code_Aster (right). The seventh increment, which corresponds to p = 70MPa,
is considered for the plot.

In order to quantitatively assess the proposed non-invasive IGA method with respect to the classical FE method,
the tensile force-displacement curve is eventually plotted in Figure 15. Again, despite its much smaller dimension,

Figure 15: Force versus displacement curve. Comparison between Code_Aster FE reference (solid black line) and
non-invasive IGA (blue crosses).

the IGA subspace is able to provide a solution almost identical to that generated by FEM. This result is in line
with an interpretation of the IGA as the projection of FEA on a speci�c regular reduced basis (see Remark 2).

18



6 Conclusions

In this work, a novel implementation procedure was developed that further simpli�es the integration of IGA in
well-established FE environments, the ultimate goal being to make IGA more accessible for industrial applications.
The attractive property of our approach is that it exhibits a reduced level of invasiveness. More precisely, in the
proposed implementation, the whole FE routines remain completely untouched. As a result, the total FE code that
may integrate complex, nonlinear numerical models and optimized routines can be used as a black box. The only
requirements is that the commercial code (a) is able to output the tangent sti�ness and right-hand side operators
and (b) has full quadratic elements (the 9-node quadrilateral element in 2D, or the 27-node cubic element in 3D)
so that it becomes possible to recover and solve, in an external script, the isogeometric system from the FE one.
In that sense, the proposed procedure lies in the family of non-invasive methods whose interest for the transfer of
advanced technologies to the industrial community has been proved these last years [Duval et al. 2016].

The key aspect of our approach was to adopt a global vision regarding the link between IGA and FEM. Starting
with a global formulation of the Lagrange extraction operator [Schillinger et al. 2016], it was shown that it is possible
to perform non-invasive B-Spline based IGA in a real industrial FE code, which already constitutes a progress from a
practical point of view. Then, to meet a similar reduced level of invasiveness in the case of rational functions as well,
a global approximate link to go from standard nodal Lagrange polynomials to NURBS functions was developed.
An additional operator that enables to take into account the weights of the rational Lagrange control points was
constructed, which enabled to perform non-invasive NURBS-based IGA. The performance of the implementation
was �rst illustrated through a series of numerical experiments involving 2D and 3D elasticity problems and the use
of the industrial FE software Code_Aster developed by the EDF R&D company [Code_Aster 2014]. According to
the authors knowledge, this is the �rst time that IGA has been implemented in Code_Aster. Then, the potential
of the method was assessed in the nonlinear regime. None of the routines concerning the nonlinearity has been
touched: at each iteration of the nonlinear solver, the FE tangent system and the FE nonlinear residual were simply
projected on an ad-hoc reduced basis to obtain their isogeometric counterparts.

From a general point of view, this work further contributes to bridging the gap between IGA and standard FEM.
Indeed, the developed full algebraic bridge going from Lagrange polynomials to (possibly rational) isogeometric
functions o�ers a new lighting on the relation between IGA and FEA. IGA can be interpreted as the projection of
FEA on a speci�c regular reduced basis. Pushing this interpretation a step further, the implementation procedure
may also appear of interest in the context of reduced-order modeling [Kerfriden et al. 2012, Quarteroni et al. 2016,
Chinesta et al. 2017]: it could be used to implement any reduced order model in a non-invasive way from a standard
FE code.
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