

# GENIUS: A tool for multi-disciplinary and multi-scalar databases

Marion Bonhomme, Valéry Masson, Serge Faraut, Luc Adolphe

### ▶ To cite this version:

Marion Bonhomme, Valéry Masson, Serge Faraut, Luc Adolphe. GENIUS: A tool for multi-disciplinary and multi-scalar databases. SWIRL, Dec 2013, San Francisco, United States. hal-02158500

### HAL Id: hal-02158500 https://hal.insa-toulouse.fr/hal-02158500

Submitted on 18 Jun2019

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# GC53A-1018 - GENIUS, A tool for multi-disciplinary and multi-scalar databases BONHOMME Marion, MASSON Valéry, FARAUT Serge, ADOLPHE Luc

marion.bonhomme@toulouse.archi.fr

# LRA, Ecole Nationale d'Architecture de Toulouse / GAME CNRM, Météo-France

# San Francisco | 9–13 December 2013

### Cities and energy, disease or cure ?

Cities are the biggest consumers of energy due to the concentration of human activities on their territory. But life in cities seems to be the best way to preserve the environment and save natural resources.

# A multidisciplinary question

To assess the question of energy consumed and produced at the city scale, a multidisciplinary approach is required. In particular, energy balance models must be coupled with microclimate simulations.

# A multi-scale question

Coupling models goes with multiple spatial scales. The evolution of the city and of the climate also involves multiple temporal scales (from yearly analysis to simulations of towns' evolutions over a century).

Conclusion : A lack of multi-scaled urban databases for multidisciplinary research

# DATABASES FOR CITIES, ENERGY & MICROCLIMATE

# **Objectives of GENIUS : to provide databases**

# At building scale for energy balance models:

- Building height, footprint, roof slope,
- Building materials and thermal properties,
- Inhabitants' behaviors,
- Building equipment (H&V systems)...

# At neighborhood scale for microclimate models:

- Surfaces of roads, roofs, walls,
- Surfaces of vegetation and water,
- Height of urban canopy layer...

# **Evolutionary databases for prospective studies**

# OBJECTIVES

**STEP 1 : Transform existing maps of Paris and Toulouse into archetypical maps** Archetypical maps are grids of 250 m x 250 m in which the urban form is composed of "typical blocks" i.e. archetypes of urban blocks that can be found in most European cities.

# About 50 morphological indicators calculated on Paris and Toulouse...

- ... in order to identify those "typical blocks" :
  - Height
  - Standard deviation of height
  - Built-up density
  - Population density
  - Compactness
  - Contiguity,
  - Road surface,
  - ...

Tree of indicators:

# A statistical analysis of those indicators allowed us to identify 7 typical blocks

We ran a principal components analysis to select relevant indicators. Then, the clustering method K-mean is used to identify 7 types of blocks in the city.

# A GIS BASED METHOD





Μ

Η

O

D

С

0

Ν

Ε

X

# **STEP 2 : Set rules to predict urban evolutions**

SLEDUM, simulates the city sprawl year after year until 2100 as well as the evolutions in built-up density. GENIUS predicts the evolution of morphologies based on SLEDUM outputs and on previous maps.



# COUPLING

# **STEP 3 : Set rules to predict the architectural evolutions**

# **First set of rules : Typology**

For different prospective scenarios, we make a correspondence between built-up density and typologies.

# **Second set of rules : Morphology**

For a given scenario, we make a correspondence between built-up density and morphological indicators : height, area of road, area of vegetation, compactness, ...

# **Technical parameterization**

According to its age and type, we attribute technical properties to the buildings (thermal insulation, H&V systems, ...)

# Image: Constraint of the second s

Correspondence between density and typologies « Compact morphology » scenario

# **EVOLUTION**

R E

J

U

S



# A multi-scaled urban database for multidisciplinary research

The maps are used for microclimate simulations as well as building energy balance simulations.

# A tool to compare different scenarios

GENIUS allows to compare different scenarios of

The map is validated with 91% of correlation

# A VALIDATED URBAN DATABASE

socioeconomic development and town planning governance. For instance, we compared the evolution of Toulouse for different scenarios : business as usual, compact morphology, vertical morphology, ...

We can now assess which city has the best compactness, the smallest sprawl, the largest space for green areas ...



Toulouse in 2100 « Business as usual »

Toulouse in 2100 « Vertical morphology »

# AN EVOLUTIONARY URBAN DATABASE

### GENerator of Interactive Urban blockS - GENérateur d'Ilots UrbainS