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Abstract

Non-linear finite element modelling of complex structures made of compos-
ites, such as reinforced concrete, remains a challenge because, until now, the
only way to consider the important phenomenon of sliding between the re-
inforcements and the brittle matrix of the composite has been to mesh the
reinforcements and their interfaces explicitly . This method is accurate but
so expensive in terms of computational resources that only critical small el-
ements of composites structures are modelled using it. To get around this
limit, a method avoiding the meshing of composite reinforcements is pro-
posed. It consists in treating the sliding between reinforcements and matrix
with a differential formulation that provides the deformation of reinforce-
ments directly as a continuous field superimposed to the displacement field
of the matrix. The method needs a minor modification of the finite element
code, which can take advantage of its analogy with the anisotropic thermal
formulation. After the analytical presentation of the method, two theoretical
cases of study are given to confront the results obtained with this method
without meshing of reinforcements, with reference results obtained using a
complete mesh of the matrix, reinforcements and interfaces.
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1. Introduction1

Context. In civil engineering applications, crack opening in reinforced ele-2

ments is a limit state to be controlled [44], because cracks are privileged3

ways for the ingress of deleterious agents. For instance, water and carbonic4

gas ingress rapidly in cracks and cause corrosion of the reinforcements. In5

other structures, such as water tanks and nuclear containment vessels, cracks6

opening is forbidden in normal conditions of exploitation, and when cracks7

occur in accidental conditions, the leakage flow must be limited to avoid8

dissemination of dangerous elements into the environment. So, predicting9

the crack opening and permeability of such structures is an objective for en-10

gineers dealing with these problems. Although progress has been made in11

recent decades to link crack opening and leakage flow [12, 31, 32, 30], the12

problem of crack opening assessment is still a major concern [36, 24].13

Problem to solve. This problem is difficult to solve for two main reasons:14

the concrete has weak and relatively random tensile strength [35, 3] , and15

the reinforcements slide relatively to the concrete matrix during the forma-16

tion of cracks [2, 13, 25]. The randomness of concrete tensile strength can17

be treated using various methods that are usable at different scales of mod-18

elling [43, 39, 4] but the sliding between reinforcements and the matrix can19

be treated only at the scale of the reinforcements, meshing them and their20

interfaces with the matrix explicitly [13, 6, 17, 22, 23] in order to consider21

the behavior law of the interface in the structural model. The consequence,22

in terms of computational resources, is problematic because, in the context23

of finite element modelling, the mesh size becomes controlled by the size of,24

and the spacing between, reinforcements, which leads to a number of nodes25

proportional to the size of the structure and prevents the use of large ele-26

ments for large structures. For instance, the most complex numerical models27

currently used for a nuclear power plant containment vessel of more than28

30 m diameter need to mesh all the reinforcements and pre-stressed wires.29

The spacing between reinforcements and wires being only a few decimeters,30

the finite element dimensions should be constrained to this size and, conse-31

quently, the number of finite elements will be far too high for engineering32

applications. So, to simplify the problem, the mesh is generally composed33

of larger finite elements, and kinematic relations between nodes of massive34

finite elements and nodes of segments used to mesh reinforcements are used.35

These kinematic relations assume a perfect bond between the reinforcements36
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and the concrete, so, even if all the reinforcements are meshed [1, 5], the37

crack prediction is still not accurate because possible sliding between the38

two components is neglected. Until a method is found to consider the inter-39

action between reinforcements and matrix in a very simple way, it will be40

difficult to improve the realism of models. That is our reason for proposing41

the present method.42

Principle of the proposed method. This method is able to consider the slid-43

ing between reinforcements and the brittle matrix without meshing the rein-44

forcements and their interfaces. It is based on the classic principle that the45

reinforced matrix can be modelled at large scales by a homogenized behavior46

law mixing the contributions of matrix and reinforcements. However, unlike47

classic homogenization methods, which consider reinforcements as inclusions48

in a representative elementary volume, the present method takes advantage49

of the finite element context to use a non-local formulation to assess rein-50

forcements deformations, taking not only the sliding within but also outside51

the representative elementary volume into account. That is its main speci-52

ficity. Finally, the strains in reinforcements are modelled using a continuous53

field that does not need the reinforcements to be meshed. Only their local54

volumetric fractions and their orientations are needed. These can be sup-55

plied to the finite element code as material parameter fields, independently56

of the underlying mesh. The paper first presents the theory of this method,57

then two virtual applications allow the method solution (coarse mesh with-58

out meshing of reinforcements) to be confronted with a reference solution59

obtained with a fine mesh including reinforcements and their interfaces.60

2. Theoretical background61

2.1. Equilibrium equation of a reinforcement62

The local equilibrium of a cylindrical reinforcement section illustrated in63

Figure 1, along the local x axis, can be written:64

∂σr

∂x

π(Dr)2

4
+ τm/rπDr = 0 (1)

with σr the axial stress in the reinforcement, Dr its diameter and τm/r the65

shear stress applied by the matrix on the reinforcement along the interface.66
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Figure 1: Axial and shear stresses applied to a reinforcement imbedded in a matrix

2.2. Behavior law of the reinforcement67

The stress in the reinforcement is assumed to be coaxial with x, so its68

behavior law can be summed up in (2).69

σr = Er (εr − εra)︸ ︷︷ ︸
εre

(2)

with Er the Young’s modulus of the reinforcement, εre its elastic strain, εr its70

axial strain and εra its an-elastic axial strain including plastic, visco-plastic71

[10] and thermal strain.72

2.3. Bahavior law of the interface73

In (1), the shear stress τm/r along the interface is assumed to depend74

only on the relative axial displacement gm/r between the matrix and the75

reinforcement (3).76

τm/r = Ki(gm/r − gm/r a) (3)

with Ki the stiffness of the interface, gm/r the relative axial displacement77

between matrix and reinforcement, and gm/r a the an-elastic relative dis-78

placement. The behavior law of interface (3) is usually identified with a79

”pull-out” test [15] such as that illustrated in Figure 2.3. This figure is an il-80

lustration of a typical pull-out test obtained with a notched bar. Practically,81

the shape of the curve can be modified according to the material character-82

istics, bar diameter or notch height. The behavior law can also be expressed83

incrementally using the tangent stiffness H i:84

dτm/r = H idgm/r (4)
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Figure 2: Interface behavior law identified with a pull-out test performed by N.Handika
on steel rebar diameter 8 mm with lugs imbedded of 40 mm in a concrete block of 200 mm
edges. The concrete characteristic were Rc = 56MPa,Rt = 3.9MPa,E = 38500MPa,
[18]

2.4. Application domain85

For the case of steel bars for reinforced concrete with lugs, according to86

experimental results shown in Figure 2.3, the initial tangent stiffness H i can87

be kept constant until sliding reaches around 500 µm. This approximation88

can be exploited to simplify the numerical implementation of the non-local89

behavior law as explained below, but can also be avoided using an updating90

process of H i in the numerical model. However, for the sake of simplicity,91

the non-local formulation is clarified below with the assumption of a constant92

tangent stiffness, H i, that limits its current application domain to the sliding93

range [0− 500 µm] in case of application to reinforced concrete. It is worth94

noting that a sliding of [0 − 500 µm] corresponds to the half crack opening95

(cf. Figure 3), the maximal crack opening conceivable with the simplified96

formulation is then 1 mm. This is sufficient for most reinforced concrete97

applications because the serviceability limit state is usually below 300 µm98

[11], and the ultimate state corresponds to the reinforcement plasticity, which99

generally occurs under 1 mm of crack opening. For other materials, such as100

carbon fiber composites or fiber concrete, the validity domain of this approx-101

imation will have to be defined before any application.102
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2.5. Kinematic equation103

In a multi-cracked matrix, the sliding is maximal at the crack location104

and decreases with the distance from the crack until the symmetry plane as105

shown schematically in Figure 3. So, the sliding at the location of the crack106

can then be computed as the integral of difference in axial strains between107

reinforcement and matrix (5) from a symmetry plane between two cracks108

(x = 0).109

gm/r(x) =

∫ x

ξ=0

(εm − εr)dξ (5)

with x = 0 at the symmetry plane in Figure 3, and x = xc at the crack110

location relative to the symmetry plane.111

2.6. Resulting differential formulation112

In order to obtain a simple formulation combining the equilibrium equa-113

tion (1), the behavior equations of the reinforcement (2) and of the interface114

(4), and the kinematic relation of sliding (5) in its derivative form, the equi-115

librium equation can be derived with respect to x and combined with the116

differential formulations of the behavior laws (6).117 

∂2σr

∂x2

Dr

4
+
∂τm/r

∂x
= 0

∂2σr

∂x2
= Er ∂

2εre

∂x2

∂τm/r

∂x
= H i∂g

m/r

∂x
∂gm/r

∂x
= εm − (εre + εra)

(6)

Once combined, the set of equations (6) leads to the resulting form (7).118

εre − ErDr

4H i

∂2εre

∂x2
= εm − εra (7)

In (7), the elastic strain in the reinforcement (εre) appears to be the result119

of a second order differential equation in space analogous to the classical120

Helmholtz equation form (8). This type of equation is sometimes also used121

in mechanics to regularize finite element problems for which the material be-122

havior law presents a softening leading to a crack localization [28, 26]. In this123

case, the Helmholtz form, also known as ”second gradient formulation” or124
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Figure 3: Crack periodicity, symmetry plane and maximal sliding at the crack tips

”phase field formulation” of the ”non local theory”, allows the internal vari-125

ables controlling the softening to be spread over a zone that is independent126

of the finite element sizes. Another application of the Helmholtz equation127

is proposed in [39] to consider the Weibull scale effect in a simplified way.128

Equation (7) then constitutes the third application of this type of equation129

in solid mechanics.130

εre − lr
2

c

2

∂2εre

∂x2
= S (8)

In (8), lrc is a characteristic diffusion length and S is a source term. The131

analogy between (7) and (8) leads to the identification of these terms. The132

characteristic lenght lrc is given by (9), and the source term by (10).133

lrc =

√
ErDr

2H i
(9)

134

S = εm − εra (10)

With this formulation the elastic strain in the reinforcement appears analo-135

gous to the diffusion of the term (εm− εra). It is worth noting that as long as136

εra = 0, the over-tension in the reinforcement due to the sliding is analogous137

to the diffusion of the strain εm in the finite element where the crack occurs.138

In other words, the sliding displacement along the rebar can be seen as a139

”diffusion” of the crack displacement jump over a length controlled by lrc .140

2.7. Boundary conditions141

Concerning the boundary conditions, if there is no sliding on the edges142

∂Ω of the integration domain Ω (perfect anchorage at the edges), a Neumann143
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condition can be used for the state variable εre (11).144

∂εre

∂x
= 0 if x ∈ ∂Ω (11)

In fact putting this condition into (8) leads to (12).145

εr = εm if x ∈ ∂Ω (12)

If (12) is true, it means that strains are the same in the matrix and the146

rebar, and there is then no sliding. Other types of boundary conditions may147

be used. For instance, to simulate a pull out, a Dirichlet condition could be148

used for εre, but, for the sake of simplicity, the applications below use only149

condition (12). In fact, the null Neumann boundary condition is the default150

condition of any formulation in the finite element codes, so this condition151

does not need to be specified in the code. This condition is realistic for152

some problems where sliding does not occurs perpendicularly to the edges.153

Specifically if the edges are free of stresses or weakly loaded, or subjected to154

imposed displacements.155

3. Implementation in a finite element code to model reinforced156

brittle matrix157

The interest of the differential form of the sliding reinforcement problem158

lies in its ability to be used in homogenized behavior laws of composites.159

Instead of meshing all the reinforcements, the interfaces and the matrix, the160

reinforcement elastic strain is treated as a diffuse field superimposed on the161

displacement field. To take advantage of this method, the finite elements code162

must be modified to be able to treat the two fields simultaneously. On the163

one hand, the equilibrium of the homogenized material has to be considered,164

and, on the other hand, the Helmholtz formulation provides the elastic strain165

of reinforcements. Once the two fields are known, the displacement field166

provides the matrix strains εm and the stresses in the matrix, while the field167

of εre enables the stresses field in the reinforcements to be computed.168

3.1. Equations to be solved169

The main balance equations to be solved are summarized below. The170

main state variables are the displacement ~U and the elastic strains in rein-171

forcements εren , with ’n the reinforcement number. They are solved by the172
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balance equations. Next, the state laws (behavior laws and evolution laws to173

account for non-linearities) can be used to assess the internal variables and174

stresses.175

3.1.1. Balance equations176

Two types of equilibrium equations have to be solved simultaneously:177

• The classical stresses balance at the scale of the homogenized material178

(13). At this scale, the stresses are σij, with i, j the subscripts corre-179

sponding to the global system coordinates and fi the volume force in180

direction xi.181

• The shear stress balance at each interface between the matrix and a182

given reinforcement considered by (8).183

These two sets of equations are summarized in (13).184 
3∑
j=1

∂σij
∂xj

+ fi = 0 for i ∈ [1, 2, 3]

εern −
lr

2

cn

2

∂2εern
∂x2

n

= Sn for n ∈ [1..N r]

(13)

In (13) N r is the number of reinforcement types considered in the homoge-185

nized behavior law clarified below, xn is the local coordinate along the rein-186

forcement number n, and εern is the axial elastic deformation of a reinforce-187

ment.188

3.1.2. State laws for each phase of composite189

The state laws include the behavior law of the matrix, the behavior law of190

the reinforcements and the method for combining the stresses deduced from191

these two. A brief presentation of these three aspects of the homogenized192

behavior law is given below for reinforced concrete.193

Homogenized stresses in the composite. The homogenized behavior law can194

be obtained using different homogenization methods, but, for the sake of195

simplicity, the simplest combination is used in the following. The homoge-196

nized stress σij is simply obtained by summing of the matrix contribution197

and reinforcements contributions (14).198

σij = (1−
Nr∑
n=1

ρn)σmij +
Nr∑
n=1

ρnσrnij (14)
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In (14), ρn is the volumetric fraction of reinforcement number n, σmij the stress199

in the matrix and σrnij the tensor component obtained with the reinforcement200

stresses (2) multiplied by the orientation tensors ¯̄P rn (15).201

P rn
ij = erni e

rn
j (15)

In (15), erni is a component of the unit vector ~ern giving the orientation202

of the reinforcement in the matrix. Equation (15) does not not consider203

the reorientation of the force in the reinforcement due to the dowel effect204

occurring when a crack opens in a direction different than the reinforcements205

ones. This dowel effect could be added using a method to compute the real206

directions of the forces in the reinforcements crossing the cracks.[38]207

Stresses in the matrix. For the matrix (stresses σmij in (14)), the behavior208

law is derived from a model already described in [37]. It is a law based on209

plasticity and anisotropic damage. This law allows the softening behavior of210

the matrix to be considered. The fracture energy is managed using a local211

method derived from the Hillerborg principle [19]: in each principal direction212

of stresses in the matrix ~eI , the dimension lI of the finite element is assessed213

using coordinates of the finite element nodes and their interpolation functions214

[41], and the softening branch of the behavior law is automatically adjusted215

to ensure the energy dissipated will be equal to the imposed fracture energy216

Gf . As the model is anisotropic, the principal stresses are assessed in the217

principal directions of effective stresses (σ̃) (16).218

σmI = (1−Dc)(σ̃m−I Cc
I + (1−Dt

I)σ̃
m+
I ) (16)

In (16), σ̃m−I stands for the negative principal effective stresses and σ̃m+
I219

for the positive principal effective stresses. The damage Dc stands for the220

micro-cracking effect on the concrete stiffness: Dc → 1 if the matrix is totally221

crushed and Dc = 0 for the undamaged matrix. This damage is driven by the222

plastic strains εmpcij induced by the yielding of a Drucker Prager criterion [14].223

In (16) Dt
I is the tensile localized damage in the principal direction I. This224

damage depends on the maximum values reached by principal values of the225

plastic strains εmptij induced by the yielding of principal stress criteria in each226

principal direction of σ̃m. The decomposition of the effective stress tensor227

or strain tensor into positive and negative parts is a classic way to properly228

consider the two types of cracking possible in concrete but other decompo-229

sitions could be used [34, 9]. Cc
I is a crack re-closure function, which also230
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depends on the plastic strain εmptij . This function allows us, for an existing231

localized crack already re-closed, to consider that if the crack re-opens, the232

contacts disappear between its edges (Cc
I → 0), while the contacts reappear233

progressively when the crack re-closes (Cc
I → 1). This is due to the roughness234

of the crack faces, which induce a progressive recovery of stiffness under neg-235

ative stresses [21]. The crack re-closure is controlled with a principal stress236

criterion while the corresponding principal plastic strain εmptI stays positive,237

but, when this strain becomes zero, the criterion is deactivated in this di-238

rection and only the Drucker-Prager criterion controls the negative principal239

stresses. The Drucker-Prager criterion is a shear criterion sensitive to hydro-240

static pressure: it considers the effect of the tri-axiality of the stress state on241

the compressive strength. An example of a cyclic test including damage in242

tension, damage and plasticity in compression, and tensile crack re-closures is243

given in Figure 4. In this model, used to manage the cracking of the matrix,244

the crack opening (wI) is included in the finite element displacement field245

[30]. This feature allows εm to be used directly in (10) as explained above .246

If the interpolation functions used in the finite element for the displacement247

are linear, the relationship between the crack opening and the strain in the248

finite element is approximated using the plastic strain εmptI (17).249

wI = εmptI lI (17)

The link between the crack opening and the tensile damage is given by equa-250

tion (18).251

Dt
I = 1−

(
wkI

wkI + max(wI)

)2

(18)

In (18), wkI is a parameter linked to the fracture energy Gf . The link between252

wkI and and the fracture energy depends on the finite element size lI in the253

principal direction of tension. The relationship between wkI , the fracture254

energy Gf , and the finite element length lI , is given by equation (19).255

Gf = lIR
t

(
Rt

2Em
+ wkI

)
(19)

In (19), Em is the Young’s modulus of the matrix and Rt its tensile strength.256

This relationship is the consequence of the Hillerborg principle: the energy257

consumed by a crack propagation is surfacic [19], while the energy computed258

by the program is proportional to the volume of the damaged finite element,259
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Figure 4: Matrix model response to a uniaxial cyclic test, for Em = 30GPa, Rm
c =

30MPa, Rm
t = 3MPa, Gf = 100J/m2, the finite element is a single cube having 10 cm

edges.

so the volumetric energy has to be adapted (19) to satisfy the condition of260

equation (20).261

Gf = lI

∫ ∞
0

σmI dε
mpt
I (20)

Equation (20) shows that the element length (lI) has to be assessed in the262

principal direction of the stresses in the matrix.263

Stresses in the reinforcements. The behavior law for the reinforcements is264

elasto-plastic, with a kinematic linear hardening. The unixial behavior law265

is given by equation (2). It is also possible to take account of visco-plastic266

strain as explained in [10]. This feature is needed when dealing with pre-267

stressed wires, for example. For the sake of simplicity, this is not the case in268

the following applications.269

3.2. Finite Element Formulation270

As explained in the introduction, the objective is to avoid meshing the re-271

inforcements with bars, interfaces, and so on. So the massive finite elements,272

used for the homogenized material, support both the displacement field and273

the elastic strain field of ”distributed” reinforcements. For instance, in 3 di-274

mensions, each node of the finite element model supports the state variables275
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vector (21).276 

uv
w


εer1...
εern




(21)

In (21), the first three variables are the displacements solved by the bal-277

ance equations applied to the homogenized material, the last ones are the278

elastic strains of reinforcements, each one being solved by a Helmholtz equa-279

tion corresponding to the condition of local equilibrium between matrix and280

reinforcements as explained above.281

3.2.1. Variational form of Helmholtz equation282

For a reinforcement oriented in a given direction xn, the variational form283

of the Helmholtz equation (8) is written (22).284 ∫
Ω

ψnε
er
n dxn −

∫
Ω

ψn
lr

2

cn

2

∂2εern
∂x2

n

dxn −
∫

Ω

ψnSndxn = 0 ∀ ψn (22)

In (22), ψn is the test function. Using an integral transformation, this equa-285

tion leads to the second variational form (23).286 ∫
Ω

ψnε
er
n dxn−

[
ψn
lr

2

cn

2

∂εern
∂xn

]
∂Ω

+

∫
Ω

∂ψn
∂xn

lr
2

cn

2

∂εern
∂xn

dxn =

∫
Ω

ψnSndxn ∀ ψn (23)

with ∂Ω the edges of the meshed domain Ω.287

3.2.2. Finite Element formulation288

Taking the boundary conditions (11) into account, once discretized on the289

mesh and integrated over the whole structure by taking advantage of the finite290

element interpolation functions, the second form (23) becomes equivalent to291

the linear problem (24).292 [
¯̄C + ¯̄Kn

]
︸ ︷︷ ︸

¯̄Kr
n

ε̄ern = S̄rn ∀ n (24)
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In (24) ¯̄C is a capacity matrix obtained by assuming a homogeneous unit293

capacity in the material, ¯̄Kn is an anisotropic conductivity matrix deduced294

from the equivalent material conductivity (25), and S̄n is the source term re-295

assessed at each step of loading with (10). ¯̄Kr
n is the linear system resulting296

assembly of ¯̄C and ¯̄Kn.297

¯̄Kn =
lr

2

cn

2
~ern ⊗ ~ern (25)

In (25) ~ern is the local orientation of reinforcement number n. As the source298

term must be updated for each step of loading, the solving of (24) can be299

inserted in the global loop of non-linear-resolution of the finite element soft-300

ware: First the resolution of the equilibrium supplies the displacement incre-301

ment field (∆u,∆v,∆w), which is used to compute the strain increment in302

the matrix ∆εm, and the anelastic strain in the reinforcement εarn is initialized303

with the solution of the last converged step. These two terms are used to304

update the source term of (24). Once (24) is solved, the new elastic strain in305

the reinforcement (εern ) is known and can be used to compute the stress in the306

reinforcement using (2). If plastic yielding occurs in the reinforcement, the307

source term is updated until convergence. Otherwise, the stress is directly308

used to compute the homogenized response of the material using equation309

(14). Finally at each sub-step of the non-linear procedure, the linear system310

to be solved is summarized in (26).311 
¯̄K∆Ū = ∆F̄

∆S̄rn = sym(5(∆Ū))−∆ε̄ran ∀ n
¯̄Kr
n∆ε̄ern = ∆S̄rn ∀ n

(26)

with ¯̄K the stiffness matrix of the structure, ∆Ū the nodal increments of312

displacement, ∆F̄ the applied forces to be balanced (real forces increment313

for the first sub-step, or unbalanced internal forces during the iterative solv-314

ing), sym(5(∆Ū)) the symmetric part of the displacement increment gra-315

dient, and ∆ε̄ran the an-elastic strain increment projected from the Gauss316

points to the nodes of the finite elements. This resolution method has been317

implemented in the finite element code Cast3m [7], in two steps at each it-318

eration: first the equilibrium is solved to assess the displacement increments319

and strains, then the source term of the Helmholtz equation is deduced from320

the deformations and used to assess the elastic strain in the reinforcements.321

Once known, the stresses in the reinforcements and matrix are combined and322
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the global equilibrium is tested. The procedure is iterated until the global323

equilibrium is verified.324

4. Applications325

First, two theoretical cases are treated in order to show the aptitude of326

the proposed method to consider correctly the linear de-bonding of a rein-327

forcement in a simple reinforced concrete tie. Secondly a case of study is328

provided to illustrate the applicability of the method to a real structure with329

a more complex reinforcement system.330

4.1. Theoritical cases331

The objective of this section is to provide two elementary applications332

intended to test the numerical implementation of the method. First a simple333

reinforced concrete tie beam with a single crack is analyzed, then a second,334

longer tie with three cracks is studied.335

4.1.1. Theoretical case with a single crack in a reinforced concrete tie beam336

The first application concerns a theoretical reinforced concrete tie beam337

for which the homogenized finite element solution obtained with mesh (b) in338

Figure 5, is compared to a reference finite element solution obtained with the339

detailed mesh (a) in Figure 5. As can be observed in the Figure, the mesh (b)340

is simpler than (a) and number of nodes is considerably reduced. Even if each341

node of (b) supports the full state variables vector (21) instead of only the342

displacements, the computational duration is divided by 5, especially because343

the number of Gauss points where the behavior laws are integrated is reduced.344

And, in non-linear numerical models, more computational time is consumed345

for local non-linear behavior law solving (14) than for the linear resolution346

of the global system (24). The material characteristics of the reinforced347

concrete tie beam are given in Table 1. The tensile strength given in table 1348

corresponds to the weakest zone. In the other zones of the tie the strength is349

three times higher to avoid any damage out of the predefined weakest zone.350

The interface stiffness given in table 1 is 40GPa, it corresponds to a secant351

modulus of 300GPa in an interface zone 3mm thick with a Poisson coefficient352

ν = 0.25. The reference solution is given in figure 6. It is Worth noting353

that this reference solution is based on two important assumptions: first354

the interface behavior is linear, secondly the concrete cracking is controlled355

using a Hillerborh method which considers the crack included in the finite356
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Figure 5: Complete mesh (a) and simplified mesh (b) for the single crack test

element, so that the strain in the finite element where the crack takes place,357

multiplied by the finite element length in the direction of crack opening,358

gives the crack opening, which is independent of the mesh size thanks to359

the Hillerborgh method. Due to this method, the finite element size where360

the crack takes place can be chosen freely. An interesting choice consists to361

adopt a dimension, for this finite element, close to the double of the length of362

the local conical failure of concrete occurring just around the crack. In fact,363

along this zone, the bond is damaged and the stress in the reinforcement364

quasi constant, what corresponds to the plateau observed in figure 6. This365

possibility is exploited in the current paper.366

Reference solution compared to homogenized solution without the Helmholtz367

formulation. To show the efficiency of the proposed method, first the Helmholtz368

equation is switched off, so that the homogenized solution (mesh (b) in figure369

5) considers a perfect bond between the reinforcement and the matrix, while370

the reference solution considers the possibility of sliding (mesh a). The ref-371

erence solution is given in Figure 6. The cracking force is reached for point372

A in Figure 6 (a). The crack crosses the matrix section at point B. From373

B to C, the crack opens and sliding occurs. For each increment of imposed374

displacement, the stress profile along the reinforcement is plotted in Figure 6375

(b). The stress concentration at mid length begins just after the crack prop-376

agation (between curves A and B), then the stress concentration increases377

until the end of loading (curve C). The solution obtained using a perfect378
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Table 1: Reinforced concrete tie beam material parameters

Parameter Symbol Value Unit
Concrete parameters

Young’s modulus Em 30 000 MPa
Poisson’s ratio νm 0.2 −
Tensile strength in the weak zone Rm

t 4 MPa
Compressive strength Rm

c 57 MPa
Fracture energy Gm

f 100 J/m2

Reinforcement parameters
Young’s modulus Er 210 000 MPa
Elastic limit f ry 500 MPa
Hardening modulus Hr 1000 MPa

Interface parameters for mesh (a) in Figure 5
Thickness - 3 mm
Young’s modulus Ei 288 MPa
Poisson’s ratio νi 0.2 −

Interface parameters for mesh (b) in Figure 5
Stiffness H i 40000 MPa/mm

Figure 6: Reference solution (obtained with mesh(a) in Figure 5) for the tie beam with
one crack: (a) force - displacement curve, (b) stress profile in reinforcement along the tie
beam.
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Figure 7: Solution with a perfect bond (obtained with mesh(b) in Figure 5) for the tie
beam with one crack, (a) force - displacement curve, (b) stress profile in the reinforcement
with the stress concentration in front of the crack.

bond between reinforcement and matrix is provided in Figure 7. As can be379

observed in 7 (a) the force-displacement curve presents greater stiffness than380

in Figure 6 (a). This can be explained by the greater increase of stress in381

the reinforcement in front of the crack. As, in this case, the reinforcement382

cannot slide, the reinforcement strain is concentrated in the finite element383

damaged by the localized crack. Consequently the strain increases faster and384

the plastic limit of reinforcement is reached at point D, while in the case with385

a possibility of sliding the plasticity of the reinforcement does not occur. This386

simple example shows how large the error on the assessment of a composite387

matrix can be when the sliding of reinforcement is neglected.388

Reference solution compared to homogenized solution with Helmholtz formu-389

lation. A comparison of Figures 6 and 7 highlights the need to consider the390

interface behavior in a finite element analysis of composite material. The391

method used to consider the sliding allowed by the interface behavior led392

to a Helmholtz formulation that avoided meshing the reinforcement and the393

interface. This method, tested in the context of the homogenized formula-394

tion (14) uses the simplified mesh ((b) in Figure 5). The solution obtained395

is presented in Figure 8, where it is confronted with the reference solution.396

It is worth noting that the simplified solution is in good accordance with the397

reference one, showing that, in this case, the method based on the Helmholtz398

formulation is an interesting alternative to complete meshing, because it pro-399

vides a very close solution for a reduced meshing and a reduced computational400
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Figure 8: Comparison of the solution obtained with the simplified Helmholtz formulation
(mesh (b) in Figure 5, dotted lines) with the reference solution (obtained with mesh(a) in
Figure 5, plain lines) for the tie beam with one crack.

cost.401

4.1.2. Theoretical case with several cracks in a reinforced concrete tie beam402

To test the ability of the model to capture the complex phenomenon403

of multi-cracking, a second virtual study was carried out. It concerned a404

reinforced tie beam with the same cross section as in the previous case, but405

longer (1.5 m instead of 0.5 m), and with three prepositioned weak zones as406

represented and numbered in the diagram of Figure 9. All the other matrix407

reinforcement and interface characteristics were the same as specified in Table408

1. The weakest zone is in the middle of the tie, with a strength Rm
t = 4MPa,409

the second weak zone is in the left part of the tie with a strength of 1.25Rm
t ,410

the third in the right part with a strength of 1.5Rm
t . The rest of the tie has411

a strength of 3Rm
t . The responses of the models are compared in Figure 10412

in terms of force displacement and stress profiles along the reinforcement at413

different steps of loading. The Helmholtz results are also in good accordance414

with the reference solution. The cracks appear quasi simultaneously with415

those in the reference solution (for the same imposed displacements), and the416

stress levels in the reinforcement are relatively close. The small differences417

could be the consequences of differences of geometry: in the reference case the418

reinforcement was concentrated in the middle of the tie as shown in Figure419

9(a) while the reinforcements are assumed to be distributed homogeneously420

in the cross section for the homogenization method (9(b)).421

19



Figure 9: Meshes for the reference solution (a) with three cracks, and for the Helmholtz
formulation (b)

Figure 10: Comparison between the reference solution with three cracks, and the
Helmholtz solution: (a) force displacement curves, (b) stresses in the reinforcement along
the beam at different steps of loading.
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Figure 11: Illustration of results obtained with the homogenized model based on the
Helmholtz formulation: (a) crack opening, (b) stress in the reinforcement, (c) stress in the
matrix

To illustrate the fact that, in the case of the Helmholtz solution (homog-422

enized material case), the stresses in the reinforcement are treated as con-423

tinuous fields, like the stress in the matrix, Figure 11 shows the three major424

variables expected by the users for this type of modelling: the crack opening425

field, the stress in the reinforcement and the axial stress in the matrix.426

4.2. Application to a real structure427

The example chosen to illustrate the applicability of the method to a real428

structure is a reinforced concrete beam already widely studied by several429

authors in the framework of the French research project CEOS [8, 20].The430

geometry of the beam is given in Figure 13 and the material parameters in431

table 2. The mesh used is very simple, it is a regular distribution of cu-432

bic elements shown in figure 13, independent of the steel bars position and433

geometry. The reinforcements are not meshed but, in accordance with the434

proposed method, are considered only through their areas ratios and direc-435

tions. In figure 13 the fields of reinforcement’s area ratios are illustrated: the436

longitudinal re-bars are distributed in two zones, at the bottom and the top437

of the beam. The steel stirrups are considered also by this method with two438

other fields: one for the vertical parts of the frame and another one for the439
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horizontal part. The size of these zones can be chosen relatively freely, the440

only condition to respect is that the total amount of reinforcement per zone441

must correspond to the real one. In this example the ratios and the direc-442

tions are defined thank to parametric fields. The parameters of each field443

control the evolution of the fields versus the global coordinate system. So, to444

change the reinforcement’s system, only the parameters of the fields would445

have to be changed. This method could be exploited to optimize positions,446

directions and ratios of reinforcements without changing the mesh. In figure447

14, the computed force displacement curve is compared to the experimental448

one and to the results obtained with other classical models for which the449

reinforcements are explicitly meshed [20]. This comparison allows to verify450

that, despite the fact that reinforcements are not explicitly modelled, the451

stiffness loss due to the progressive cracking of the concrete, and the plateau452

of the curve predicted by the model, are close to the experimental ones and453

perfectly compatible with the other modellings of this beam. Figure 14 gives454

also the evolution of crack opening predicted by the model. It is worth not-455

ing that the beam presents a multi-cracking with numerous localized crack.456

Between 20 mm deflection and 30 mm deflection, the cracks number does not457

evolve but their openings increase due to the sliding of longitudianl and ver-458

tical reinforcements along the concrete. The longitudinal stress in concrete is459

illustrated in figure 15: In figure 15, the field SNC2 is the concrete stress in460

the axial direction. This stress reaches the compressive stress just under the461

point of applied load, leading to a crushing of concrete in this zone, which462

provokes a tensile stress in the upper part of steel stirrups (stress SNR1 in463

Figure 15, in the transverse direction). Despite the localized crack observ-464

able at mid span of the beam at the end of loading in Figure 14, the axial465

stress in the bottom reinforcements (SNR2 in Figure 15)is not localized, this466

is a consequence of sliding of these re-bars along the concrete in the vicinity467

of the localized cracks. Concerning stirrups, as their diameter is four time468

smaller than the longitudinal re-bars ones, their diffusion length (lc in equa-469

tion (9)) is then twofold smaller, and the stress field is less spreaded). It is470

also worth noting that the stress representation in figure 15 allows to control471

easily the stress levels in the different materials and the different directions,472

simply shifting from one internal variable of the model to another one.473
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Figure 12: Reinforced concrete beam geometry

Table 2: Reinforced concrete beam material parameters

Parameter Symbol Value Unit
Concrete parameters

Young’s modulus Em 37 200 MPa
Poisson’s ratio νm 0.27 −
Tensile strength in the weak zone Rm

t 3.45 MPa
Compressive strength Rm

c 36 MPa
Fracture energy Gm

f 100 J/m2

Reinforcement parameters
Young’s modulus Er 195 000 MPa
Elastic limit f ry 466 MPa
Hardening modulus Hr 3245 MPa
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Figure 13: Reinforced concrete beam: Mesh and reinforcement ratio fields

5. Conclusion474

To gain in efficiency and accuracy when calculating complex elements475

consisting of a mixed material combining a brittle matrix and oriented duc-476

tile fibers or reinforcements that may slip into the matrix during cracking,477

a non-local model of homogenized reinforcements has been developed. This478

model leads to the solving of a Helmholtz equation for each type of reinforce-479

ments. Once implemented in a finite element code, the Helmholtz equations480

avoid the need to mesh the reinforcements but enable their possible slid-481

ing to be considered, which plays an important role in the behavior of the482

cracked element. The paper gives the main equations and principles for the483

finite element implementation. It also provides the numerical solution of484

two theoretical tests, in order to verify that the implementation is correct.485

An application to a real reinforced concrete beam shows that this modelling486

method gives realistic responses, close to other classical models for which the487

reinforcement are explicitly meshed. Of course, other confrontations with488

experimental results will have to be done before applying the method to a489

real project. Perspective for continuing this work will be to improve the res-490

olution algorithm and to extend the model to large crack openings, to cyclic491

conditions (for dynamic applications [34, 29]), to short fibers that may be492

totally pulled out during the crack opening [16], to evolutive matrices such493
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Figure 14: Force displacement curves, comparison model versus experiment, and computed
crack opening [m] at different stages of loading: (a) 10 mm deflection, (b) 20 mm deflection,
(c) 30 mm deflection. Min and Max of the other models come from the benchmark
performed in the framework of the CEOS.fr research project [20].
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Figure 15: Computed stresses [MPa] at 30 mm deflection : SNC2 axial stress in concrete,
SNR2 stress in distributed longitudinal reinforcements, SNR3 stress in distributed vertical
reinforcements, SNR1 stress in distributed transversal reinforcements
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as concrete affected by an alkali reaction [27] or delayed ettringite formation494

[42], and to problems of reinforcement corrosion [33]. Another perspective495

will be to consider the possible creep [40] of the interface when the loading496

is maintained for a long period.497
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