K. He, Tightly bound excitons in monolayer WSe 2, Phys. Rev. Lett, vol.113, p.26803, 2014.

A. Chernikov, Exciton binding energy and nonhydrogenic rydberg series in monolayer WS 2, Phys. Rev. Lett, vol.113, p.76802, 2014.

Y. Li, Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , MoSe 2 , WS 2 , and WSe 2, Phys. Rev. B, vol.90, p.205422, 2014.

C. Poellmann, Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe 2, Nat. Mater, vol.14, pp.889-893, 2015.

C. Robert, Exciton radiative lifetime in transition metal dichalcogenide monolayers, Phys. Rev. B, vol.93, p.205423, 2016.
DOI : 10.1103/physrevb.93.205423

URL : https://hal.archives-ouvertes.fr/hal-01980741

G. Moody, Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides, Nat. Commun, vol.6, p.8315, 2015.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, Lowtemperature photocarrier dynamics in monolayer MoS 2, Appl. Phys. Lett, vol.99, p.102109, 2011.
DOI : 10.1063/1.3636402

URL : https://epub.uni-regensburg.de/26514/1/Pacs39.pdf

T. Cao, Valley-selective circular dichroism in MoS 2, Nat. Commun, vol.3, p.887, 2012.

D. Xiao, G. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides, Phys. Rev. Lett, vol.108, p.196802, 2012.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of valley polarization in monolayer MoS 2 by optical helicity, Nat. Nanotechnol, vol.7, pp.494-498, 2012.

G. Sallen, Robust optical emission polarization in MoS 2 monolayers through selective valley excitation, Phys. Rev. B, vol.86, p.81301, 2012.

H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley polarization in MoS 2 monolayers by optical pumping, Nat. Nanotechnol, vol.7, pp.490-493, 2012.

G. Plechinger, Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide, Nat. Commun, vol.7, p.12715, 2016.

G. Wang, Valley dynamics probed through charged and neutral exciton emission in monolayer WSe 2, Phys. Rev. B, vol.90, p.75413, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02052132

L. Yang, Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS 2 and WS 2, Nat. Phys, vol.11, pp.830-834, 2015.

A. K. Geim and I. V. Grigorieva, Van der waals heterostructures, Nature, vol.499, pp.419-425, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01986052

F. Withers, WSe 2 light-emitting tunneling transistors with enhanced brightness at room temperature, Nano Lett, vol.15, pp.8223-8228, 2015.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett, vol.69, pp.3314-3317, 1992.

A. Kavokin, J. Baumberg, G. Malpuech, F. Laussy, and . Microcavities, , 2011.

D. Sanvitto and V. Timofeev, Exciton Polaritons in Microcavities: New Frontiers, vol.172, 2012.

A. Kavokin, G. Malpuech, and B. Gil, Semiconductor microcavities: towards polariton lasers, Mater. Res. Soc. Internet J. Nitride Semicond. Res, vol.8, p.3, 2003.

N. Lundt, Monolayered MoSe 2 : a candidate for room temperature polaritonics. 2D Mater, vol.4, p.15006, 2016.

K. S. Novoselov, Electric field effect in atomically thin carbon films, Science, vol.306, pp.666-669, 2004.

K. S. Novoselov, Two-dimensional atomic crystals, Proc. Natl Acad. Sci. USA, vol.102, p.10451, 2005.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS 2 : a new direct-gap semiconductor, Phys. Rev. Lett, vol.105, p.136805, 2010.

A. Splendiani, Emerging photoluminescence in monolayer MoS 2, Nano Lett, vol.10, pp.1271-1275, 2010.

R. G. Dickinson and L. Pauling, The crystal structure of molybdenite, J. Am. Chem. Soc, vol.45, pp.1466-1471, 1923.

J. Wilson and A. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys, vol.18, pp.193-335, 1969.

T. Li and G. Galli, Electronic properties of MoS 2 nanoparticles, J. Phys. Chem. C, vol.111, pp.16192-16196, 2007.

A. Kuc, N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS 2, Phys. Rev. B, vol.83, p.245213, 2011.

A. Ramasubramaniam, Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides, Phys. Rev. B, vol.86, p.115409, 2012.

Y. Song and H. Dery, Transport theory of monolayer transition-metal dichalcogenides through symmetry, Phys. Rev. Lett, vol.111, p.26601, 2013.

A. Kormanyos, p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater, vol.2, p.22001, 2015.

M. M. Ugeda, Observation of giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor, Nat. Mater, vol.13, pp.1091-1095, 2014.

G. Wang, Colloquium: excitons in atomically thin transition metal dichalcogenides, Rev. Mod. Phys, vol.90, p.21001, 2018.

N. S. Rytova, Screened potential of a point charge in a thin film, Proc. MSU, Phys., Astron, vol.3, p.30, 1967.

L. V. Keldysh, Coulomb interaction in thin semiconductor and semimetal films, Sov. J. Exp. Theor. Phys. Lett, vol.29, p.658, 1979.

A. Raja, Coulomb engineering of the bandgap and excitons in twodimensional materials, Nat. Commun, vol.8, p.15251, 2017.

A. V. Stier, N. P. Wilson, G. Clark, X. Xu, and S. A. Crooker, Probing the influence of dielectric environment on excitons in monolayer WSe 2 : insight from high magnetic fields, Nano Lett, vol.16, pp.7054-7060, 2016.

T. Jakubczyk, Radiatively limited dephasing and exciton dynamics in MoSe 2 monolayers revealed with four-wave mixing microscopy, Nano Lett, vol.16, pp.5333-5339, 2016.
DOI : 10.1021/acs.nanolett.6b01060

URL : https://hal.archives-ouvertes.fr/hal-01357636

E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures, 2005.

M. Selig, Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides, Nat. Commun, vol.7, p.13279, 2016.
DOI : 10.1117/12.2252486

URL : http://europepmc.org/articles/pmc5103057?pdf=render

V. Savona, L. Andreani, P. Schwendimann, and A. Quattropani, Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes, Solid State Commun, vol.93, pp.733-739, 1995.

Z. Ye, Probing excitonic dark states in single-layer tungsten disulfide, Nature, vol.513, pp.214-218, 2014.
DOI : 10.1038/nature13734

URL : https://zenodo.org/record/1233333/files/article.pdf

F. Cadiz, Excitonic linewidth approaching the homogeneous limit in MoS 2 -based van der waals heterostructures, Phys. Rev. X, vol.7, p.21026, 2017.
DOI : 10.1103/physrevx.7.021026

URL : https://hal.archives-ouvertes.fr/hal-02053910

J. Wierzbowski, Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit, Sci. Rep, vol.7, p.12383, 2017.

O. A. Ajayi, Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater, vol.4, p.31011, 2017.
DOI : 10.1088/2053-1583/aa6aa1

URL : http://arxiv.org/pdf/1702.05857

H. Dery and Y. Song, Polarization analysis of excitons in monolayer and bilayer transition-metal dichalcogenides, Phys. Rev. B, vol.92, p.125431, 2015.

J. P. Echeverry, B. Urbaszek, T. Amand, X. Marie, and I. C. Gerber, Splitting between bright and dark excitons in transition metal dichalcogenide monolayers, Phys. Rev. B, vol.93, p.121107, 2016.
DOI : 10.1103/physrevb.93.121107

URL : https://hal.archives-ouvertes.fr/hal-01868569

X. Zhang, Y. You, S. Y. Zhao, and T. F. Heinz, Experimental evidence for dark excitons in monolayer WSe 2, Phys. Rev. Lett, vol.115, p.257403, 2015.
DOI : 10.1103/physrevlett.115.257403

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.115.257403

A. Arora, Excitonic resonances in thin films of WSe 2 : from monolayer to bulk material, Nanoscale, vol.7, pp.10421-10429, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01539975

T. Godde, Exciton and trion dynamics in atomically thin MoSe 2 and WSe 2 : effect of localization, Phys. Rev. B, vol.94, p.165301, 2016.

X. Zhang, Magnetic brightening and control of dark excitons in monolayer WSe 2, Nat. Nanotechnol, vol.12, pp.883-888, 2017.

M. Molas, Brightening of dark excitons in monolayers of semiconducting transition metal dichalcogenides. 2D Mater, vol.4, p.21003, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01992291

G. Wang, In-plane propagation of light in transition metal dichalcogenide monolayers: optical selection rules, Phys. Rev. Lett, vol.119, p.47401, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02056600

Y. Zhou, Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons, Nat. Nanotechnol, vol.12, pp.856-860, 2017.

K. Park, T. Jiang, G. Clark, X. Xu, and M. B. Raschke, Radiative control of dark excitons at room temperature by nano-optical antenna-tip purcell effect, Nat. Nanotechnol, vol.13, pp.59-64, 2018.

K. F. Mak, Tightly bound trions in monolayer MoS 2, Nat. Mater, vol.12, pp.207-211, 2013.

H. Yu, G. Liu, P. Gong, X. Xu, and W. Yao, Bright excitons in monolayer transition metal dichalcogenides: from Dirac cones to Dirac saddle points, Nat. Comms, vol.5, p.3876, 2014.

A. M. Jones, Excitonic luminescence upconversion in a two-dimensional semiconductor, Nat. Phys, vol.12, pp.323-327, 2016.

E. Courtade, Charged excitons in monolayer WSe 2 : experiment and theory, Phys. Rev. B, vol.96, p.85302, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02054025

Y. You, Observation of biexcitons in monolayer WSe 2, Nat. Phys, vol.11, pp.477-481, 2015.

G. Plechinger, Identification of excitons, trions and biexcitons in singlelayer WS 2 . Phys. Status Solid, vol.9, pp.457-461, 2015.

Z. He, Biexciton formation in bilayer tungsten disulfide, ACS Nano, vol.10, pp.2176-2183, 2016.

M. Baranowski, Dark excitons and the elusive valley polarization in transition metal dichalcogenides. 2D Mater, vol.4, p.25016, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01727014

J. R. Schaibley, Valley depolarization dynamics and valley hall effect of excitons in monolayer and bilayer MoS 2, Nat. Rev. Mater, vol.1, p.16055, 2016.

M. M. Glazov, Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides, Phys. Rev. B, vol.89, p.201302, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02050943

T. Yu and M. W. Wu, Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS 2, Phys. Rev. B, vol.89, p.205303, 2014.

F. Volmer, Intervalley dark trion states with spin lifetimes of 150 ns in WSe 2, Phys. Rev. B, vol.95, p.235408, 2017.

P. Rivera, Valley-polarized exciton dynamics in a 2d semiconductor heterostructure, Science, vol.351, pp.688-691, 2016.

P. Dey, Gate-controlled spin-valley locking of resident carriers in WSe 2 monolayers, Phys. Rev. Lett, vol.119, p.137401, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02054066

L. C. Andreani, F. Tassone, and F. Bassani, Radiative lifetime of free excitons in quantum wells, Solid State Commun, vol.77, pp.641-645, 1991.

E. L. Ivchenko, M. A. Kaliteevski, A. V. Kavokin, and A. I. Nesvizhskii, Reflection and absorption spectra from microcavities with resonant bragg quantum wells, J. Opt. Soc. Am. B, vol.13, pp.1061-1068, 1996.

D. F. Walls and G. J. Milburn, Quantum Optics, 2008.

C. Schneider, Exciton-polariton trapping and potential landscape engineering, Rep. Progress. Phys, vol.80, p.16503, 2016.

E. M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev, vol.69, p.681, 1946.

M. M. Glazov, E. L. Ivchenko, A. N. Poddubny, and G. Khitrova, Purcell factor in small metallic cavities, Phys. Solid. State, vol.53, p.1753, 2011.

X. Liu, Strong light-matter coupling in two-dimensional atomic crystals, Nat. Photonics, vol.9, pp.30-34, 2015.

S. Dufferwiel, Exciton-polaritons in van der waals heterostructures embedded in tunable microcavities, Nat. Commun, vol.6, p.8579, 2015.

M. Sidler, Fermi polaron-polaritons in charge-tunable atomically thin semiconductors, Nat. Phys, vol.13, pp.255-261, 2017.

X. Liu, Control of coherently coupled exciton polaritons in monolayer tungsten disulphide, Phys. Rev. Lett, vol.119, p.27403, 2017.

L. Zhang, R. Gogna, W. Burg, E. Tutuc, and H. Deng, Photonic-crystal exciton-polaritons in monolayer semiconductors, Nat. Commun, vol.9, p.713, 2018.

M. Kaliteevski, Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric bragg mirror, Phys. Rev. B, vol.76, p.165415, 2007.

M. Sasin, Tamm plasmon polaritons: slow and spatially compact light, Appl. Phys. Lett, vol.92, p.251112, 2008.

N. Lundt, Room-temperature Tamm-plasmon exciton-polaritons with a WSe 2 monolayer, Nat. Commun, vol.7, p.13328, 2016.

T. Hu, Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons, Appl. Phys. Lett, vol.110, p.51101, 2017.

L. C. Flatten, Room-temperature exciton-polaritons with twodimensional WS 2, Sci. Rep, vol.6, p.33134, 2016.

S. Wang, Coherent coupling of WS 2 monolayers with metallic photonic nanostructures at room temperature, Nano Lett, vol.16, pp.4368-4374, 2016.

J. Cuadra, Observation of tunable charged exciton polaritons in hybrid monolayer ws 2 -plasmonic nanoantenna system, Nano Lett, vol.18, pp.1777-1785, 2018.

W. Liu, Strong exciton-plasmon coupling in MoS 2 -coupled with plasmonic lattice, Nano Lett, vol.16, pp.1262-1269, 2016.

D. Zheng, Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe 2, Nano Lett, vol.17, pp.3809-3814, 2017.

J. Wen, Room-temperature strong light-matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals, Nano Lett, vol.17, pp.4689-4697, 2017.

M. E. Kleemann, Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature, Nat. Comms, vol.8, p.1296, 2017.

J. Kern, Nanoantenna-enhanced light-matter interaction in atomically thin WS 2, ACS Photonics, vol.2, pp.1260-1265, 2015.

A. M. Jones, Optical generation of excitonic valley coherence in monolayer WSe 2, Nat. Nanotechnol, vol.8, pp.634-638, 2013.

G. Wang, Polarization and time-resolved photoluminescence spectroscopy of excitons in MoSe 2 monolayers, Appl. Phys. Lett, vol.106, p.112101, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02049146

N. Lundt, Valley polarized relaxation and upconversion luminescence from Tamm-plasmon trion-polaritons with a MoSe 2 monolayer. 2D Mater, vol.4, p.25096, 2017.

S. Dufferwiel, Valley-addressable polaritons in atomically thin semiconductors, Nat. Photonics, vol.11, pp.497-501, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01658350

Z. Sun, Optical control of room-temperature valley polaritons, Nat. Photonics, vol.11, pp.491-496, 2017.

Y. Chen, J. D. Cain, T. K. Stanev, V. P. Dravid, and N. P. Stern, Valleypolarized exciton-polaritons in a monolayer semiconductor, Nat. Photonics, vol.11, pp.431-435, 2017.

N. Lundt, Observation of macroscopic valley-polarized monolayer exciton-polaritons at room temperature, Phys. Rev. B, vol.96, p.241403, 2017.

M. Slootsky, X. Liu, V. M. Menon, and S. R. Forrest, Room temperature Frenkel-Wannier-Mott hybridization of degenerate excitons in a strongly coupled microcavity, Phys. Rev. Lett, vol.112, p.76401, 2014.

M. Wurdack, Observation of hybrid Tamm-plasmon exciton-polaritons with gaas quantum wells and a MoSe 2 monolayer, Nat. Commun, vol.8, p.259, 2017.

V. Shahnazaryan, I. Iorsh, I. A. Shelykh, and O. Kyriienko, Exciton-exciton interaction in transition-metal dichalcogenide monolayers, Phys. Rev. B, vol.96, p.115409, 2017.

F. Tassone and Y. Yamamoto, Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons, Phys. Rev. B, vol.59, p.10830, 1999.

M. Waldherr, Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity, 2018.

L. C. Flatten, Electrically tunable organic-inorganic hybrid polaritons with monolayer WS 2, Nat. Commun, vol.8, p.14097, 2017.

G. Paschos, Hybrid organic-inorganic polariton laser, Sci. Rep, vol.7, p.11377, 2017.

F. J. García-de-abajo, Special issue "2d materials for nanophotonics, ACS Photonics, vol.4, pp.2959-2961, 2017.

A. V. Poshakinskiy, D. R. Kazanov, T. V. Shubina, and S. A. Tarasenko, Optical activity in chiral stacks of 2d semiconductors, Nanophotonics, vol.7, pp.753-762, 2018.

A. A. Demenev, Circularly polarized lasing in chiral modulated semiconductor microcavity with GaAs quantum wells, Appl. Phys. Lett, vol.109, p.171106, 2016.