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REVIEW ARTICLE

Two-dimensional semiconductors in the regime of
strong light-matter coupling
Christian Schneider1, Mikhail M. Glazov 2, Tobias Korn3, Sven Höfling1,4 & Bernhard Urbaszek 5

The optical properties of transition metal dichalcogenide monolayers are widely dominated

by excitons, Coulomb-bound electron–hole pairs. These quasi-particles exhibit giant oscillator

strength and give rise to narrow-band, well-pronounced optical transitions, which can be

brought into resonance with electromagnetic fields in microcavities and plasmonic nanos-

tructures. Due to the atomic thinness and robustness of the monolayers, their integration in

van der Waals heterostructures provides unique opportunities for engineering strong light-

matter coupling. We review first results in this emerging field and outline future opportunities

and challenges.

Transition metal dichalcogenides (TMDCs) are ideally suited as the active material in cavity
quantum electrodynamics, as they interact strongly with light at the ultimate monolayer
limit. They exhibit pronounced exciton resonances even at room temperature owing to the

exceptionally high exciton binding energies of a few 100meV1,2.
The high exciton oscillator strength leads to absorption of up to 20% per monolayer3,

and radiative exciton lifetimes on the order of few 100 fs to several ps4–7. In TMDC monolayers
(MLs), the dipole selection rules are valley-selective, i.e., distinct valleys in momentum space can
be addressed by photons with left- or right-handed helicity8–12. In combination with strong
spin–orbit splitting, this allows studying intertwined spin-valley dynamics of excitons13–15.
These unique optical properties make monolayer TMDCs, which can readily be embedded in the
van der Waals heterostructures containing multiple active layers16,17, ideal systems for investi-
gating excitons, and their interactions with other electromagnetic excitations.

This review paper is structured as follows. First, we provide a concise description of the optical
properties of excitons in TMDC MLs. We then present the generic concept of strong light-matter
coupling which arises for excitons confined in the TMDC monolayer interacting with photons
trapped inside a cavity or plasmons localized in a metallic nanosystem. Strong light-matter
coupling gives rise to half-light–half-matter quasi-particles, which are also known as exciton-
polaritons18–20. This generally results in a substantial modification of the emission properties
yielding an oscillatory behavior between light- and matter excitations in the temporal, and the
emergence of the characteristic Rabi splitting in the spectral domain, for comparison with light-
matter coupling in conventional semiconductors see Box 1 and refs. 21,22. We review recent
experimental advances of strong light-matter coupling in TMDC MLs and discuss com-
plementary system implementations which were designed to study the formation of exciton-
polaritons with atomic MLs.
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Excitonic and optical properties of TMDC MLs
Semiconducting TMDCs are part of the large group of layered
materials widely investigated for fundamental research and
applications following the discovery of graphene23. The remark-
ably simple mechanical exfoliation techniques give access to
rather large-area monolayer samples. While exfoliation of TMDC

MLs was already demonstrated in a seminal work by Novoselov
et al.24 in 2005, the observation of pronounced photo-
luminescence in MoS2 MLs, reported by two groups25,26 in 2010,
triggered intense research activities regarding the optical and
electronic properties of atomically thin TMDCs. MLs of MoS2
and related TMDCs consist of a hexagonally coordinated

Box 1 | Exciton-polaritons in cavity structures with atomic monolayers vs. conventional quasi-two-dimensional semiconductors

A field of exciton-polariton physics is important discipline of solid-state cavity quantum electronics, which relies on strong light-matter coupling in
microcavities. Exciton-polaritons, or, in short, polaritons emerge in high quality microcavities with embedded active material comprising a sufficiently
large exciton oscillator strength, and a sufficiently small mode volume (conditions for strong coupling are detailed in the main text). Cavity exciton-
polaritons have first been observed in a GaAs-quantum well microcavity where a quasi-two-dimensional quantum well served as an active medium, and
ever since, this material platform has remained the workhorse implementation to study linear, non-linear and collective polaritonic effects. By now
exciton-polaritons have been observed in photonic structures hosting a large variety of active materials. Apart from GaAs, extensive investigations have
been carried out to study polaritons in GaN, ZnO and other II-VI-based structures, organic polymers, carbon nanotubes, and more recently TMDC
monolayers. Key prerequisites for an ideal material system in polariton research involve:

Large exciton binding energy: The limitation in exci-ton binding energies in most III-V materials set an upper temperature and density limit to the
presence of the polariton condensate phase, which significantly limits their applicability to cryogenic temperatures. With the exception of GaN- and
ZnO-based structures, which, however, frequently suffer from severe issues related to electrical injection in DBR structures, organic materials have
moved to the focus, supporting the formation of polariton condensates at room-temperature. However, it remains very challenging to overcome strong
excitonic localization and the notorious bleaching effects in organic materials in the near future. TMDC polaritons certainly have a potential to
outperform most materials in this regard, thanks to their enormous binding energies and giant oscillator strength.

Electrical injection is highly desirable for any practical optoelectronic device. While electrically injected polariton condensation in GaAs microcavities
has been addressed in the past, a realization of a high quality, microcavity-based roomtemperature prototype will still constitute a major breakthrough
in the field. Unlike most traditional material platforms for high temperature polaritonics, current injection into atomic monolayers is proven feasible.
Low disorder: Exciton localization and disorder represent a major obstacle for the generation of clean, spatially nonfragmented condensates and polariton
devices relying on a rapid expansion of coherent states, such as polariton circuits. Thus far, GaAs represents the sole material platform where effects of
macroscopic expansion and propagation of polaritonic condensates are reliably observed. With the recent development on reduced excitonic disorder in
encapsulated monolayers, TMDC polaritons have the potential to become a serious com-petitor.

Spin Textures: The polariton system is a prime candidate to study spin-physics in coherent condensates. However, those studies have been restricted
to polaritons in GaAs-based structure. TMDC monolayers benefit from having, in addition to the spin degree of freedom, the valley degree of freedom. It
opens up a new field of spin and valley physics in cavity electrodynamics.
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Fig. 1. (a) schematics of a microcavity with embedded active media supporting excitons. (b) phase diagrams of equilibrium exciton-polaritons in
conventional GaAs-based structure from Ref. [21], adapted from Kavokin et al, 2003. c 2003 Materials Research Society (c) phase diagrams of
equilibrium exciton-polaritons in the structure containing TMDC monolayers from Ref. [22] . BEC is Bose-Einstein condensate. reproduced from Lundt,
N et al, Monolayered MoSe2: a candidate for room temperature polaritonics, 2D Materials Volume 4, Number 1, 2016. Published under a Creative
Commons CC BY 3.0 license
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transition metal atom layer sandwiched between top and bottom
chalcogen layers, which are also hexagonally coordinated, leading
to a trigonal prismatic crystal structure27,28 (see Fig. 1a) described
by the D3h point symmetry group. Correspondingly, the mono-
layer does not have inversion symmetry. The bulk TMDC crystal
is formed by van der-Waals-mediated stacking the monolayer
units. In the 2H stacking sequence, which is the most prevalent
polytype, inversion symmetry is recovered for even numbers of
layers and eventually in the bulk crystal.

Bulk MoS2 is an indirect-gap semiconductor with a valence
band maximum at the Γ point, the center of its hexagonal Bril-
louin zone, and conduction-band minima located in between the
Γ and the K points at the corners of the Brillouin zone. In the
monolayer limit, however, the character of the band-gap changes
to a direct gap at the K points (see Fig. 1b)25,26,29,30. A similar
transition of the band structure from indirect to direct also occurs
in the related TMDCs WS2, MoSe2, WSe2, MoTe2, and their
alloys. In the TMDC MLs, the band structure at the K valleys is
characterized by a very large, valley-contrasting spin splitting in
the valence bands, whose magnitude ranges from about 150 meV
(MoS2) to more than 450 meV (WSe2), and a smaller, yet still
substantial spin splitting in the conduction band31–33. As the
optical transitions between the valence and conduction band are
spin-conserving, this splitting gives rise to two, spectrally well-

separated interband optical transitions identified as A (transition
from the upper valence band) and B (transition from the lower
valence band), see Fig. 1c.

The optical properties of TMDCs are determined by the for-
mation of tightly bound exciton states, which have binding
energies on the order of several hundred meVs1,2,34,35, making
them stable well beyond room temperature. The large binding
energies arise due to a combination of several effects: electrons
and holes at the K points of the Brillouin zone have rather large
effective masses (ranging from about 0.25 me to 0.6 me depending
on the specific TMDC33 where me is the free-electron mass) and
are strictly confined to the two-dimensional plane of the mono-
layer. Additionally, their Coulomb interaction is only weakly
screened, and this screening typically is anisotropic due to the
anisotropic dielectric environment36,37. This leads to a strong
deviation of excited exciton state energies from a hydrogen-like
Rydberg series, illustrated in Fig. 1d1,2. It is worth noting, that
engineering the dielectric environment of the monolayer, e.g., by
encapsulating the TMDC between other layered materials, or
modifying the substrate, allow for a controlled tuning both of the
band gap and the exciton binding energy38,39. The large radiative
decay rate of excitons Γ0≳ 1 ps−1 and, correspondingly, high
oscillator strength f= Γ0/ω0≳ 10−3, with ω0 being the exciton
resonance frequency, results in efficient light-matter interactions
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Fig. 1 Crystal and band structure of semiconducting TMDCs. a Schematic view of TMDC monolayer crystal structure. b Band structure of TMDC
monolayer with direct optical band gap at K points. c Valley-specific selection rules for molybdenum-based (MoX2 and tungsten-based (WX2))
compounds. d Evolution of exciton states for WS2 monolayer on SiO2

2, reproduced from Chernikov et al.2 © American Physical Society. e Optical valley
initilization and valley coherence generation for a MoS2 monolayer encapsulated in hBN45 reproduced from Cadiz et al.45

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04866-6 REVIEW ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2695 | DOI: 10.1038/s41467-018-04866-6 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


in TMDC MLs. The exact values of f and Γ0 will also depend on
the dielectric environment4–7,40,41. The short radiative lifetime
yields a significant homogeneous spectral broadening of the
excitonic transitions42. It also leads to a large coupling constant g
with photonic modes in microcavity structures, as detailed
below43. The high oscillator strength of the excitonic transitions
gives rise to a very large absorption for the TMDC monolayer,
reaching 20% for resonant excitation of the A-exciton transition
in the tungsten-based TMDCs1,44. Theoretically, the maximal
absorbance of a monolayer Amax at resonance is controlled by the
ratio of the radiative to the non-radiative, γ, decay rate of the
excitons, Amax= 2Γ0γ/(Γ0+ γ)2 and may reach 50% under opti-
mal conditions of Γ0= γ. While the emission from typical TMDC
samples deposited on SiO2 is strongly inhomogeneously broa-
dened by adsorbates and substrate-induced effects, recent
advances in sample fabrication (encapsulation in hexagonal BN)
yield linewidths indeed approaching the homogeneous limit, see
Fig. 1e45–47.

The transition metal atoms of the TMDCs strongly influence
not only the magnitude of the spin splitting, but also the ordering
of the spin-split conduction bands (see Fig. 1c). While for MoX2,
the optically bright A-exciton transition connects the upper
valence band with the lower conduction band, the band order is
opposite in the tungsten-based materials, so that the A-exciton
transition addresses the upper conduction band33,48. Thus, for
WX2 MLs, the exciton state lowest in energy with the electron
residing in the lower spin-split conduction band is forbidden in
optical transitions for normal light incidence. The splitting
between the optically bright and dark states is given by a com-
bination of the conduction-band spin splitting and electron–hole
Coulomb exchange interaction49. The lower-energy dark A-
exciton state in the tungsten-based materials was indirectly
inferred from temperature-dependent PL measurements50–52.
More recently, PL emission from the dark state was directly
observed using applied in-plane magnetic fields53,54 and in-plane
excitation and detection geometry55–57. In addition to neutral
excitons, charged excitons (trions)58 with binding energies of
about 25 meV are observable in optical spectroscopy, and the
multi-valley band structure allows for different trion species13,59–
61. Four-particle complexes, biexcitons, i.e., excitonic molecules
have also been observed62–64.

The optical selection rules for interband transitions9 allow for
valley-selective excitation at the K+ or K− valleys using σ+ or σ
−-polarized light, respectively. Thus, near-resonant, circularly
polarized excitation generates a valley polarization of excitons,
which can be read out directly in helicity-resolved photo-
luminescence. Even in time-integrated (cw) photoluminescence
measurements, large valley polarization degrees are observable for
most TMDC MLs8–12,65. These initial observations motivate the
use of the valley pseudospin in potential device applications
(valleytronics)66. However, the large cw valley polarization values
are, in part, a consequence of the ultrashort exciton radiative
lifetime limiting the time window for valley polarization decay.
The dominant decay mechanism for excitonic valley polarization
is long-range electron–hole exchange interaction67,68. Its effi-
ciency scales with the exciton center-of-mass momentum and the
resulting decay rate can rival the exciton radiative lifetime,
dependant on excitation conditions. In contrast, valley polariza-
tion lifetimes are orders of magnitude longer for dark exci-
tons13,69, interlayer excitons in TMDC heterostructures70 and
resident carriers in doped TMDC MLs15,71.

General framework of strong light-matter coupling
An optically active exciton in an isolated TMDC ML emits
photons into the free space. In addition to the symmetry-imposed

valley selection rules described above, the photon emission pro-
cess obeys energy and momentum conservation laws, making
only excitons with small in-plane wavevectors, |K| < ωx/c, i.e.,
within the light cone, subject to the radiative processes. Here, c is
the speed of light and ωx is the exciton resonance frequency,
largely determined by the difference between the free carrier band
gap and the exciton binding energy. As emitted light propagates
away from the ML carrying away the energy67,72, the exciton
experiences radiative damping. Note that excitons with |K| > ωx/c
are optically inactive and can contribute to the PL only after
relaxation towards the radiative cone. The situation becomes
qualitatively different if the emitted light cannot leave the vicinity
of the ML, e.g., if the ML is placed between two mirrors which
form an optical cavity, Fig. 2a, or if a ML is placed in the vicinity
of a metallic or dielectric nanoparticle supporting plasmonic or
Mie resonances. In such situations, the exciton effectively inter-
acts with a localized mode of electromagnetic radiation (or a
plasmon) with the frequency ωc. Hence, the emitted photon can
be reabsorbed by the TMDC ML and reemitted again. This
emission-absorption process repeats until either the exciton in the
ML vanishes due to scattering or non-radiative processes or the
photon leaves the cavity, e.g., as a result of the tunneling through
the mirrors. If these decay processes are weak enough the exci-
tation energy is coherently transferred between the exciton and
the photon (or plasmon) resulting in the strong-coupling regime
of the light-matter interaction and giving rise to a qualitative

Metal

1 ML
TMDC

Bragg
reflector

r 1 

t
�c

photon
�x

exciton

1.0

0.8

0.6

0.4

0.2

0.0

Frequency (� – �c) /g

R
,T

, A

–3 –2 –1 0 1 2 3

a b

c

Fig. 2 Basic concept of strong coupling. a Sketch of the TMDC ML in an
optical microcavity fabricated using a distributed Bragg reflector (bottom
layers) and a metallic layer on top. b Illustration of the coupled-oscillators
model describing the coherent energy transfer between the cavity photon
and exciton. c Reflection (R= |r|2, red curve), transmission (T= |t|2, blue
curve) and absorption (A= 1− R− T, black curve) coefficients calculated
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κ ¼ γ ¼ 0:8g
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change of the energy spectrum in the system: instead of inde-
pendent exciton and photon states new eigenmodes of the system,
the exciton-polaritons, are formed18,19.

There are several approaches to describe theoretically the
strong-coupling effects. It is instructive to consider here the
coupled-oscillators model where the excitonic contribution to the
dielectric polarization in the TMDC ML, P, and the electric field
of the cavity mode, E, are treated on a semi-classical level and are
assumed to obey the oscillator like equations of motion:

i _P ¼ ωx � iγð ÞP þ gE; ð1Þ

i _E ¼ ωc � iκð ÞE þ gP: ð2Þ

Here, a dot on top denotes the time derivative, γ and ϰ are the
dampings, respectively, of the exciton and cavity mode unrelated
to the light-matter coupling (which determine half-width at half
maximum of the resonances), and g is the coupling constant
which is determined by the system geometry and exciton oscil-
lator strength. For a planar microcavity, it can be roughly esti-
mated as g � ffiffiffiffiffiffiffiffiffiffi

ωcΓ0
p

, where the proportionality constant depends
on the cavity geometry and structure of the Bragg mirrors, Γ0 is
the exciton radiative decay rate into empty space. Here the large
exciton oscillator strength resulting in large Γ0 allowing to esti-
mate values of ℏg ~ 10…50 meV depending on the system para-
meters. These high values for g present one of the intrinsic
advantages for studying light-matter coupling in TMDC MLs as
compared to nanostructures with transitions with lower oscillator
strength. Equation (1) can be formally derived from Maxwell
equations for the electromagnetic field in the cavity and the
Schödinger equation for the exciton wavefunction in the resonant
approximation assuming that γ; κ; g � ωx;ωc

41. It follows from
Eq. (1) that for the harmonic time-dependence of the polarization
and field P, E∝ e−iωt the eigenfrequency ω can be found from the
simple quadratic equation:

ω� ωx þ iγð Þ ω� ωc þ iκð Þ ¼ g2; ð3Þ

which indeed describes eigenfrequencies of two damped oscilla-
tors coupled with the constant g. Equation (3) can be also derived
from the transfer matrix method, which describes propagation of
electromagnetic waves in a planar structure or by the procedure
of the excitonic and electromagnetic field quantization41,43,73,74.

The general solution of Eq. (3) is found in many references,
e.g.,19,41,75, here we consider the simplest but already instructive
case at resonance ωx= ωc≡ ω0, which already allows one to
identify the strong and weak-coupling regimes. In this case the
solutions of Eq. (3) read

ω± ¼ ω0 � i
γþ κ

2
±
ΩR

2
; ΩR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4g2 � ðγ� κÞ2
q

: ð4Þ

Here ΩR is the Rabi frequency related to the so-called vacuum-
Rabi splitting, ℏΩR, of polariton modes in quantum electro-
dynamics. In the strong-coupling regime the Rabi frequency is
real, i.e.,

Strong coupling : g> γ� κj j=2; ð5Þ

In contrast, for g γ� κj j=2 the light-matter interaction is in the
weak-coupling regime. The strong coupling means that the real
parts of the eigenfrequencies are split by ΩR, while their ima-
ginary parts responsible for the damping are equalized. In the
weak coupling, by contrast, the light-matter coupling affects the
damping rates giving rise to the Purcell-like enhancement of
suppression of the exciton radiative decay76,77. Hence, in the
strong-coupling regime an anticrossing between the photon and
exciton modes should be observed, while in the weak coupling the

photon and exciton modes in optical spectra cross each other at
the variation of the cavity resonance ωc (e.g., via the incidence
angle) or the exciton resonance ωx (e.g., via the sample
temperature).

Equation (5) provides a formal criterion of the strong-coupling
regime. In realistic systems, however, the damping of polariton
modes ðγþ κÞ=2 can be comparable to ΩR, making identification
of the Rabi splitting difficult. Moreover, the splitting of peaks in
different experiments has different amplitudes43: In Fig. 2c, we
compare the cavity reflection coefficient R, transmission coeffi-
cient, T, and absorbance A= 1− R− T for γ; κ≲ΩR where these
quantities are found within the input–output formalism74.
Therefore different experiments, also including PL, on the same
sample will give different splittings due to strong coupling that
are not directly the Rabi splitting, but are related to it, as detailed
in ref. 43

The model discussion above disregards the nonlinear effects
related with the exciton–exciton interactions and the oscillator
strength saturation. Since excitons are tightly bound in TMDC
MLs, these effects are somewhat weaker compared with con-
ventional semiconductor quantum wells, particularly, the exciton
oscillator strength saturation is controlled by the parameter
nexca

2
B, where nexc is the exciton density and aB is the Bohr radius.

Strong coupling in nanostructures with semiconducting 2D
active layers
Strong coupling of MLs in all-dielectric microcavities. As
described above, the combination of high exciton binding ener-
gies, large oscillator strength and the possibility to strongly reduce
structural disorder naturally puts sheets of TMDCs in the focus of
polaritonic research. In most III–V, and specifically GaAs-based
implementations of polaritonic devices, the cavity design of
choice is a high-quality-factor Fabry–Perot resonator based on
highly reflecting distributed Bragg reflectors (DBRs), which
sandwich the active layer. While, in principle, the transfer of a
single, or multiple TMDC layers on top of a DBR mirror is
straight forward, optimal methods to sandwich layers in high-Q
DBR-resonators are currently still being developed. This task is
closely related to designing and integrating high-quality van der
Waals heterostructures (such as MLs encapsulated by hBN lay-
ers), which reduce inhomogeneous and non-radiative broadening
effects dramatically, in more complex devices. Nevertheless, in a
first experimental effort, signatures of the strong-coupling regime
have been found in a device featuring a single flake of MoS2,
synthesized via chemical vapor deposition, that was embedded in
a dielectric DBR cavity78. There, the authors studied both the
reflection spectra as well as the photoluminescence as a function
of the in-plane momentum at room temperature. While in this
initial experiment, the anticrossing of the normal modes could
not be fully mapped out, various groups later on implemented
new generations of devices to scrutinize the coupling conditions
between confined light-fields and monolayer excitons: a clear cut
proof of strong-coupling conditions at cryogenic temperatures
has been reported by Dufferwiel et al.79, for the case of single and
double layers of MoSe2, which were embedded in a so-called open
cavity based on two separated DBR mirrors, see Fig. 3a and b. In
this work, the authors established the formation of exciton-
polaritons by fully mapping out the anticrossing of the two
resonances in a cavity detuning experiment. A similar imple-
mentation, based on an open fiber cavity was reported more
recently in ref. 80, where strong-coupling conditions were mani-
fested in charge-tunable studies both at the characteristic exciton
as well as the trion resonance energies, and the results were
interpreted in the framework of coupling to attractive and
repulsive polaron resonances. For a monolayer of WS2, the
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formation of exciton-polaritons was more recently convincingly
demonstrated in a fully monolithic cavity in an intermediate
temperature regime between 110 and 230 K81. Interestingly,
strong light-matter coupling conditions in lithographically
defined grating structures with a single WS2 monolayer have also
been established at room temperature. This approach completely
bypasses the difficulties related to capping the atomic monolayer
for the integration into microcavities82, see Fig. 3e and f.

Strong coupling of MLs in metal-based microcavities. In order
to clearly manifest strong-coupling conditions at room tem-
perature with single MLs, one strategy involves to replace either
one, or both of the DBR mirrors by thin metal layers. In
appropriate designs comprising a metal-capped DBR layer, this
approach can give rise to so-called Tamm plasmon states, which
have significantly reduced mode volumes and thus can be
expected to yield increased Rabi splitting83,84. Strong-coupling
conditions with a single monolayer of WSe2 as well as MoS2 in
such structures have been reported based on angle-resolved stu-
dies. Interestingly, in both efforts, the authors succeeded to map
out the full dispersion relation of both the upper and lower
polariton branch, as well as the characteristic anticrossing of the
normal mode of the system85,86, see Fig. 3c and d. In order to
further reduce the effective cavity length and thus increase the
coupling strength, approaches involving purely metal-based
Fabry–Perot cavities were reported in refs. 87,88 While these
approaches intrinsically suffer from rather low cavity quality
factors (typically < 100), the observed Rabi-splittings were very
large, on the scale of 100 meV.

Strong coupling with plasmonic structures. One route towards
further enhancement of the light-matter coupling strength is
based on plasmonic resonant structures89. They also allow to

develop truly nanophotonic approaches to confine the light field
below the optical diffraction limit. Such devices have been shown
to be well compatible with the standard exfoliation and transfer
technologies commonly applied in TMDC research. Among the
various kinds of available structures, two species of devices have
been mostly investigated thus far: the first involves a periodic
arrangement (lattices) of metallic nanostructures. Such structures
can, e.g., consist of a planar metal layer with holes, or an array of
metal disks supporting localized surface plasmon resonances.
Here, effects of light-matter coupling have been studied88,90, and
polaritonic behavior was observed. Nevertheless, while the
observed coupling strengths were significant, a clearly resolved
split doublet of normal modes was mostly screened by strong
broadening effects associated by optical losses in the metal
structures.

The situation becomes even more delicate for systems
comprising a single plasmonic resonator coupled to a monolayer:
there, it is no longer possible to study the dispersion relation of
quasi-particles via angle-resolved luminescence or reflection
spectroscopy due to full mode quantization, and the signal
strength in standard reflectivity spectra is low. Therefore, a
method of choice to investigate light-matter coupling in such
systems is so-called darkfield scattering. Thus far, there are a
series of reports investigating strong-coupling conditions in
TMDC-nanocavity hybrid systems. This includes a demonstra-
tion of a two peaked scattering spectrum from a single silver
nanorod and a monolayer of WSe291, respectively a gold rod and
a WS2 layer92 and an ultra-compact gold nanogap resonator93.
Both reports base their claim primarily on the observation of an
anticrossing mode doublet in darkfield scattering spectra, which
were acquired by studying a variety of nanorod lengths to
facilitate tuning of the optical resonance frequency. However, it is
important to note, that split-peak spectra acquired in darkfield
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scattering measurements in closely related structures have been
priorly interpreted in the framework of weak coupling: Here, the
observed anticrossing is merely a result of enhanced absorption
by the excitonic resonance in the presence of a broad optical
resonance94. These ongoing developments indicate the need for
complementary experimental evidence to better establish the
conditions for observation of strong coupling in these systems.
Possible experiments include micro-PL measurements or studies
in the time domain.

Polaritons and valley selectivity. A unique feature in TMDC-
based microcavity systems is the possibility to optically address the
valley degree of freedom, i.e., optical transitions in distinct valleys in
momentum space66. Valley polarization of excitons in WS2, WSe2,
and MoS2 is now routinely observed in high-quality samples even
under non-resonant excitation conditions10,11,95. In contrast,
similar experiments in MoSe2 MLs only resulted in very low circular
polarization of the exciton PL of the order of 5%96. The dynamic
process of valley polarization and depolarization strongly depends
on the carrier redistribution, scattering and emission lifetime, and
thus it is reasonable to assume that it can be tailored by coupling the
excitonic resonances to microcavity modes.

In order to scrutinize whether the effects of valley polarization
become more pronounced in strongly coupled microcavities,
a variety of experiments have been designed very recently: in
refs. 97,98, the authors have studied a system composed of a single
MoSe2 monolayer in the strong-coupling regime with a micro-
cavity mode. Both works independently confirmed, that strong-
coupling conditions can retain the valley polarization of the
excitations in MoSe2 at cryogenic temperatures, by an amplifica-
tion of the scattering dynamics. In addition, it was also
demonstrated, that the valley index can be directly addressed in
the strong-coupling regime by a resonant laser in a Raman-
scattering experiment97. The great interest to manipulate and
enhance spin- and spin-valley-related phenomena in the strong-
coupling regime, even up to ambient conditions, is further
reflected by a series of papers from different groups, which
demonstrated the valley-tagged exciton-polaritons at ambient
conditions99–101 based on MLs of MoS2 and WS2. These results
confirm the great potential of strongly coupled systems to play a
crucial role in future valleytronic architectures, where the valley
index of monolayer excitons can be married with ultra-fast
propagation and low power switching inherited by the polariton
nature.

Hybrid polaritonics. In principle, it is possible to generate hybrid
states of various excitonic transitions which are coherently coupled
to the same photonic mode. These so-called hybrid polaritons have
raised considerable interest recently, as they can provide a pathway
to combine the advantages of various material systems in one
device102. One example, for instance, involves the case of hybrid
structures with embedded semiconductor quantum wells and
atomic MLs. Here, electric current can be injected into one or
multiple semiconductor quantum wells which are embedded in a
conventional p–i–n heterostructure. This QW-light-emitting diode
(LED) can be integrated in the bottom DBR section or into the
microcavity. There are two possible processes of coupling between
the semiconductor QW and the excitons in the two-dimensional
crystals. If coupling between the two excitations is negligible or
resonance conditions cannot be established, the semiconductor
LED will simply act as an internal light source to excite the excitons
in the two-dimensional crystals. However, if strong-coupling con-
ditions can simultaneously be established in the quantum wells and
the monolayer crystal with the same photonic resonance, hybrid

polaritons composed of excitons in dielectric quantum wells and
MLs can evolve in the system. Such excitations have been observed
in ref. 103 based on a microcavity with four embedded GaAs
quantum wells and a single monolayer of MoSe2.

Light-matter hybridization in the collective strong-coupling
regime between monolayer excitons and III–V excitons is also a
viable tool to directly influence interactions in the polariton
system. It is widely believed, that polariton condensation is
strongly facilitated by exciton–exciton exchange interactions,
which can yield a stimulated scattering mechanism into a
polariton ground state and thus lead to its macroscopic
population. This interaction matrix element is given by
M ¼ CEBa

2
B � e2aB=ϵeff , where EB ~ e2/(ϵeffaB) is the exciton

binding energy evaluated in the hydrogenic model with the
effective screening constant ϵeff and C is a constant. M scales
with the excitonic Bohr radius104,105, which is rather small (on
the order of 1 … 2 nm) in most TMDC materials. Despite
somewhat weak dielectric screening in TMDC MLs,
exciton–exciton interaction turns out to be less efficient as
compared with III–V semiconductors (the expression for M can
be also recast via the reduced mass μ of the electron–hole pair as
M ~ ℏ2/μ. Due to larger effective masses in TMDCs, the
interactions are weaker here that in III–V semiconductor
nanosystems). By admixing the properties of strongly interacting
excitons in III–V materials and strongly bound valley excitons in
TMDCs, it is reasonable to believe that a good compromise can
be found to facilitate stimulated Bose condensation at elevated
temperatures in optimized devices106.

Hybrid polariton states were furthermore identified in
structures involving organic as well as two-dimensional materials
embedded in a fully metallic open cavity107. Such
Frenkel–Wannier polaritons should be extraordinarily stable,
and represent one promising candidate to observe Bosonic
condensation phenomena at strongly elevated temperatures,
similar to recent reports on organic-III–V hybrid excitations108.

Outlook
Studies of strong light-matter coupling in two-dimensional
semiconductors demonstrate outstanding progress109. By now,
the strong coupling has been already demonstrated in a number
of systems including TMDC MLs in planar microcavities, hybrid
organic–inorganic systems, structures with metallic components.

First, from a fundamental point of view studies of various col-
lective phenomena and nonlinear phenomena, including possible
Bose–Einstein condensation and superfluidity of polaritons19,20 in
atomically thin semiconductors are very exciting. Since in these
systems a truly two-dimensional limit can be realized for excitons,
one may expect realizations of novel and previously unexplored
facets of complex collective effects in polaritonic systems.

Second, both from fundamental and practical viewpoints stu-
dies of chirality effects for excitons in two-dimensional materials
interacting with light are very promising in view of recent pre-
dictions of substantial natural optical activity in TMDC MLs
stacks110. Furthermore, realizations of combined systems with
TMDC MLs embedded in chiral cavities open up possibilities of
realizing room temperature circularly polarized lasing111.

Finally, various applications of strong light-matter coupling for
ultra-fast optical switching, photon routing and other optoelec-
tronic devices, and, possibly, even for information processing, will
naturally appear in the course of further studies of these pro-
mising material systems.
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