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Flower and easy-axis vortex states are well-known magnetic configurations that can be stabilized in small particles. However, <111> vortex (V<111>), i.e. a vortex state with its core axis along the hardaxis direction, has been recently evidenced as a stable configuration in Fe nanocubes of intermediate sizes in the flower/vortex transition. In this context, we present here extensive micromagnetic simulations to determine the different magnetic ground states in ferromagnetic nanocuboids exhibiting cubic magnetocrystalline anisotropy (MCA). Focusing our study in the single-domain / multidomain size range (10-50 nm), we showed that V<111> is only stable in nanocuboids exhibiting peculiar features, such as a specific size, shape and magnetic environment, contrarily to the classical flower and easy-axis vortex states. Thus, to track experimentally these V<111> states, one should focused on i) nanocuboids exhibiting a nearly perfect cubic shape (size distorsion < 12%) made of ii) a material which combines a zero or positive cubic MCA and a high saturation magnetization, such as Fe or FeCo; and iii) a low magnetic field environment, V<111> being only observed in virgin or remanent states.

Introduction

Magnetic nanoparticles attract considerable scientific and technological interests in diverse applications such as biomedicine, magnetic recording, radio-frequency devices, etc. From a technological point of view, manufacturing of magnetic particles are carried out by various methods which allow the control of the shape, size, composition, crystallinity and thus of the magnetic properties.

Among the different particles, rectangular cuboids constitute a large family that can be synthesized by chemical means to act as nanobiological vectors for drug delivery or as heat mediators for magnetic field hyperthermia [1], using Fe [2], iron oxides [3][4], Co ferrite [5], Co oxide [6], FeCo [7], FePt [8] or Ni [9] materials. The understanding and engineering of individual nanomagnets is mandatory to optimize their properties in regards to the targeted applications. Whereas the single-domain magnetic configuration is typically required for applications such as permanent magnets and magnetic recording, more complex magnetic nanostructures such as vortices, domain walls and skyrmions are expected to play key roles in future memory devices. In a different context, vortex states are sought in biological applications to minimize the stray field around the magnetic particle and thus prevent aggregation. The exact description of the magnetic configuration of each nanomagnets within a more complex magnetic system is consequently a key factor driving the final physical properties.

From the modeling point of view, classical micromagnetics refers to uniform magnetization distributions that can only occur in ellipsoidal magnetic nanoelements [10]. Micromagnetic simulations have become essential to investigate spin arrangements in non-ellipsoidal nanomagnets, among which nanocuboids. In the last decades, lots of numerical efforts have been devoted on perfect nanocubes (NCs) with uniaxial anisotropy to determine the critical size separating single-domain and vortex configurations, referred to as the single-domain limit. Schabes and Bertram [11] initially showed that NCs below 50 nm exhibit a quasi-uniform distribution of moments along the [001] uniaxial easy-axis, known as flower state (hereafter named F[001]), while larger ones exhibit a vortex configuration, whose core axis lays along the [001] direction (hereafter named V[001]). Then, the single-domain limit in a cube has been proposed by the NIST's micromagnetic modeling group in the framework of the standard problem [12]. Different studies have addressed the single-domain limit in NCs with various uniaxial anisotropy [13][14][15][16], leading to stable twisted F<001> and V<001>, as well as metastable F<111> and V<111> states.

However, considering cubic anisotropy becomes essential since most of the chemically grown nanocuboids are prepared from materials exhibiting either positive or negative cubic magnetocrystalline anisotropy (MCA). While a positive cubic MCA results in <001> easy-axis, as in Fe, a negative anisotropy imposes <111> preferential directions, as in Ni and Fe3O4. Only few numerical studies have been reported on NCs made of cubic MCA materials. Whereas a F<111> state was determined as the equilibrium state in Fe3O4 NCs over a large size range [17], a transition between F<111> and V<001> states was predicted in Ni NCs [18].

Experimental studies on the single-domain limit are now available thanks to the recent improvement of imaging techniques. Electron holography (EH) performed in a dedicated transmission electron microscope (TEM) allows mapping the magnetic induction with lateral resolution of 1-2 nm [19,20].

Moreover, EH recently became sensitive enough to investigate the flower/vortex transition in individual nanomagnets. A F<111> state has been measured in an isolated single crystal Fe3O4 nanocuboid of 50 nm [21], in good agreement with previous numerical studies [17]. A vortex state has been recorded as a function of temperature in a 200 nm Fe3O4 particle [22]. Recently, we have reported a systematic study of the flower/vortex transition in isolated Fe NCs: F<001>, V<111> and V<001> states were evidenced at room temperature in 25, 26 and 27 nm NCs respectively [19]. Whereas F<001> and V<001> were expected for small and large NCs, respectively, the V<111>, i.e. a vortex state with a vortex axis along the Fe hard-axis direction, was unexpected. Indeed, while V<111> has been previously predicted numerically in Fe nanospheres, for diameters varying between 25 and 40 nm [23], it was only predicted as a metastable state in NCs of uniaxial [11] or cubic MCA [18]. Our recent observations evidenced that V<111> is a stable intermediate state within the flower/vortex transition of Fe NCs. Thus, numerous questions arisen about the effective stability of the V<111> spin arrangement in magnetic nanocuboids.

We report here numerical simulations on nanocuboids with cubic MCA to address the different magnetic ground states at room temperature in a size range between the exchange length lex = (A/µ0MS 2 ) 1/2 and the domain wall width 𝛿 𝑤 = 𝜋(𝐴 𝐾 1 ⁄ ) 1/2 . Our study aims at tracking the V<111> domain of stability at the frontiers between single-domain and multidomain states. The study is first focused on the magnetic nanoparticles measured experimentally [19], i.e. single-crystalline isolated Fe NCs (Section 3). As real nanomagnets usually exhibit a cuboid-like shape rather than a perfect cubic shape, the effect of an axial deviation from the perfect cubic shape is then studied and its influence on the V<111> stability discussed (Section 4). The field dependence of the magnetic states in such cuboids is then addressed, the majority of EH experiments being performed at remanence or under a small in-situ magnetic field due to the pole piece stray field of the objective lens (Section 5). Finally, the variety of magnetic configurations that could be observed in ferromagnetic nanocubes of cubic MCA is studied for both positive and negative MCA NCs (Section 6). Different ferromagnetic materials are simulated such as Fe, FeCo (positive cubic MCA), Fe3O4, Ni (negative cubic MCA) and NiFe (nearly zero MCA). The magnetic parameters required to stabilize the V<111> state are finally summarized.

Ground state calculations in individual nanocuboids

In a ferromagnet, the magnetic state with the lowest energy results from the minimization of the total magnetic energy m E , defined as the sum of

m ex mc d z E E E E E = + + + (1) 
, where ex E is the exchange energy, Emc is the magnetocrystalline energy, Ed is the dipolar energy and Ez is the Zeeman energy. In order to compute the NC energy minima, we performed micromagnetic calculations using OOMMF-3D package [START_REF] Donahue | OOMMF User's Guide, Version 1.0[END_REF] following either (i) the dynamical or (ii) the conjugate-gradient (CG) approaches. The dynamical approach solves the Landau-Lifshitz-Gilbert (LLG) equation of motion and gives a rigorous solution. However, long simulation times are encountered to calculate dipole-dipole interactions. The second CG approach allows reaching a stable magnetic configuration after short computational times using the fast Fourier transform. In this case, the energy is minimized directly without taking into account the magnetization dynamics. Combining both CG-and LLG-algorithms allows to reduce the computing time [START_REF] Muxworthy | [END_REF] : CG-algorithm was first used to obtain a stable magnetic state which was then insert like a seed state for the LLG calculation.

Simulations were done by considering nanocuboids of edges a,b,c along x,y,z respectively. Results presented in sections 3, 4 and 5 were obtained for NCs with <001> crystalline directions along the cube edges (as experimentally encountered in ref. [19]) and magnetic parameters of bulk body-centered-cubic (bcc) Fe at room temperature: saturation magnetization MS = 1.71 MA/m, exchange stiffness A = 21 pJ/m and cubic anisotropy constant K1 = 48 kJ/m 3 [START_REF] Coey | Magnetism and Magnetic Materials[END_REF]. A damping parameter α = 0.5 was used to reach the equilibrium remanent state fairly rapidly. For the meshing, a cubic cell of (0.5×0.5×0.5) nm 3 was used, the lateral dimension being smaller than the exchange length in Fe (lex=(A/µ0MS 2 ) 1/2 = 2.4 nm).

In order to identify the ground state among the different metastable solutions that could be obtained, calculations were performed from various initial configurations of the magnetization. A first approach consisted in introducing a random orientation of the magnetic moments as the initial state. CGsimulations were stopped at convergence (|𝑚 ⃗⃗ ×𝐻 ⃗ ⃗ ×𝑚 ⃗⃗ | < 0.02 A/m) and the obtained configurations introduced as seed states in LLG-algorithms. The energy values were then tracked until the relaxation occurred (d𝑚 ⃗⃗ /dt < 0.002 deg/ns). Depending on the NC size, three different configurations could be reached by this means: flower, <111> and <001> vortices. A second approach consisted in imposing artificially the initial spin configurations following an homogeneous, V<111> or V<001> configurations. After relaxation, the comparison between the energies of these three magnetic configurations for a similar nanocuboid size allows to define unambiguously the ground state.

Note that in the following we use chevrons <uvw> and square brackets [uvw] to describe magnetic configurations. <uvw> is used when the symmetry axis of the considered configuration owns to the family of directions uvw without any distinctions. For example V<100> would mean V[100], V[010],

V[001] or the negative of any of those directions: they all have the same energy.

[uvw] is used when the symmetry axis is defined into a specified direction which cannot be associated with the corresponding family.

Stable magnetic configurations in perfect Fe nanocubes

Figure 1 shows the magnetic phase diagram of perfect Fe NCs (a=b=c) whose size is varied from 10 to 50 nm. The energy densities em=Em/V, eex = Eex/V, Kmc = Emc/V, Kd = Ed/V and ez = Ez/V obtained for each ground states are plotted on Fig. 1(a). Three different regions can be delimited :

(i) for a < 23.5 nm (in blue on Fig. 1(a)), the magnetic moments are mostly aligned along a <001> direction, i.e. along one of the positive MCA easy-axis. The corresponding configuration in Fig. 1(c) revealed the so-called flower state (F<001>) characterized by slightly tilted moments at the vertex.

(ii) for larger sizes i.e. a > 27 nm (in yellow), the magnetic moments tend to curl in the so-called vortex state, the vortex axis around which the moments rotate is along the <001> easy-axis directions (Fig.

1(e)).

(iii) for intermediate sizes, i.e. 23.5 nm ≤ a ≤ 27 nm (in white), the vortex axis is along a <111> direction, which corresponds to the MCA hard-axis direction. The V<111> configuration is clearly identified as the ground state in this size range by comparing the respective energies of the flower, the 

where i represents each cell in the discretized volume of n cells.

(ii) the max-curling, which is the maximum value of the curling field :

(|𝛻 ⃗ × 𝑚 𝑀 𝑠 ⃗⃗⃗ |) 𝑀𝐴𝑋 = 𝑚𝑎𝑥 (‖𝛻 ⃗ × ( 𝑚 𝑖 ⃗⃗⃗⃗⃗ 𝑀 𝑠 )‖) (4) 
The max-curling allows discussing local rotations without facing averaging effects encountered with the mean-curling. For instance, quasi-uniform vector fields, such as the magnetization in a flower state configuration, will present a mean curling ~ 0, but a max-curling which can deviate from 0 due to rotation at vertex.

Flower state (a < 23,5 nm)

If one considers a perfect single-domain, consisting in an homogenous arrangement of moments oriented along one of the MCA easy axis, eex and Kmc are expected to be constant and fairly low. The main energy contribution arises from the Kd term due to the presence of magnetic charges at the surfaces, edges and corners of the NCs [START_REF] Schmidts | [END_REF]28]. A dipolar energy density 𝐾 𝑑 0 = 1 6 ⁄ 𝜇 0 𝑀 𝑠 2 independent of the cube size can be estimated. Even if such a perfect state cannot be rigorously obtained in a cube due to the non-uniform demagnetizing field induced, Kd approaches Kd 0 for NCs with a < lex (Fig. 1(a)). Above this size, the moments tend to partially rotate, as evidenced by a non-zero max-curl parameter (Fig. 1(b)). The curling field reaches a maximum value at the cube's vertex, but is globally compensated over the whole volume, keeping therefore the mean-curl parameter negligible. Flowering thus allows efficiently lowering the dipolar term, but at the expense of the exchange term. Fig. 1(a) evidences the progressive enhancement of the flowering through the increase of the max-curl and eex terms and the decrease of the Kd up to the flower/vortex transition observed for a cube size of ~10 lex.

<111> and <001> vortex states (a ≥ 23.5 nm)

The vortex type configurations lead to a drastic reduction of the dipolar energy Kd but to an increase of the exchange and magnetocrystalline terms. To further describe the different vortex structures, the magnetic configuration in a median plane perpendicular to the vortex axis is represented in V<111> (25 nm NC) and three V<001> (30, 34 and 42 nm NCs) configurations in Fig. 2(c). As the exchange energy imposes a minimal misalignment between neighboring spins, the progressive spin rotation from an out-of-plane direction in the core to a pure inplane direction at peripheries cannot be fully achieved neither in V<111> nor in small V<001> (30 nm NC). For a 34 nm NC (V<001>), in-plane magnetization is only reached at the extreme corners, while in-plane magnetization is fully stabilized on the whole lateral facet for a 42 nm NC. By further increasing the cube size, the moments at the NC's corners tend to be aligned antiparallel to the vortex axis, leading to a reduced remanent magnetization (Fig. 1(b)): above 65 nm, M/MS tends to zero due to the presence of "down" corners surrounding the "up" core, initiating the multidomain configuration observed at larger sizes.

As a conclusion, V<111> is only stable in a limited size range (23.5 -27 nm) as intermediate between F<001> and <001> vortex. The fairly similar exchange and dipolar energy densities, combined with the higher M/MS value and the lateral extend of the iso-M surface, indicates that V<111> is a more homogeneous configuration than V<001>. These results on Fe NCs are in good agreement with the EH measurements which reports a V<111> in a 23.5 nm Fe NC surrounded with a 1 nm Fe3O4 shell [19].

The thin oxide shell did not play any significant role as revealed by previous simulations. 

Deviation from the perfect cubic shape

The experimental syntheses of perfect cubic particles still remains challenging, rectangular cuboids, i.e.

parallelepipeds with rectangular faces, being mostly obtained. The unique experimental evidence of V<111> states has been reported for Fe NCs presenting some shape deviation (c/a ~ 17%) [19]. While a perfect cube do not own any shape anisotropy, deviations from the perfect cubic shape automatically induce preferential magnetization direction(s) imposed by dipolar considerations. Thus one can question the stability of V<111> in real cuboids and the maximum deviation accepted. It should be noted that truncated corners appear in real nanoparticles, as a result of surface energy minimization, but, in a first approach, we did not consider this effect.

A cube belongs to the parallelepiped group and has its edge-sizes a=b=c. We focused our study on square cuboids for which at least two faces are squares, that is 𝑎 = 𝑏 ≠ 𝑐. By fixing a=b we studied in details two types of Fe cuboids, the elongated (c>a) and the flattened (c<a) ones. This situation is particularly relevant to analyze EH results because, as a TEM technique, EH gives only a 2D projection of the sample. Therefore, the thickness c is unknown and has to be assumed from the lateral dimensions. The main dashed diagonal in Figure 3(a) corresponds to the previous case of a perfect Fe NCs (section 3), with the three F<001>, V<111> and V<001> states being stable solutions. Considering now cuboids, the flower configuration appears to be the ground state for small ones, while <001> vortex is stabilized in larger objects (a > 10 lex Fe ). In the intermediate size range, V<111> is only observed in cuboids with effective sizes t corresponding to 10 -11 times lex Fe , as in the case of perfect NCs. Moreover, V<111> is only stable for a limited aspect ratio range, 0.89 < c/a < 1.12, that is, for size deviation (|c-a|/a) smaller than 12%. In other words, the existence of the V<111> intermediate state in cuboids is limited to rather cubic particles. It means that the two measured V<111> in ref. [19] were probably obtained in specific Fe NCs presenting smaller cubic deviations than the averaged 17% deviation determined on the whole batch.

For larger deviations, V<111> is no longer stabilized, flower and easy-axis vortices were the only states observed. These states are no longer degenerated, cuboid asymmetry leading to an effective shape anisotropy. F[100] (or F[010]) are favored for small flattened cubes, while F[001] are observed in elongated ones (Fig. 3(b)). Removing degeneracy is also observed in cuboids presenting <001> vortices.

For large flattened cuboids (under the dashed diagonal in Fig. 3 ). On the other hand, the four possible <111> vortices in a cuboid remain equivalents, due to the limited cubic deviation allowed.

Magnetic field dependence of the magnetic configurations

Previous sections were focused on virgin ground states obtained in absence of any external magnetic field, i.e. ez = 0 in Eq. ( 1). While the magnetization reversal has been numerically studied in NCs of sizes corresponding to quasi-uniform and <001> vortex remanent states [11,18,29], the magnetization reversal of the V<111> state is particularly detailed here. Fig. 4 displays the magnetization reversal of 20, 25 and 30 nm Fe NCs of respective F<001>, V<111> and V<001> virgin states (Section 2). The hysteresis loops were calculated for magnetic field applied along the [001] easy-axis and ranging from µ0Hz = + 5 T to -5 T with 1 mT steps. For the sake of readability, the loops displayed in Fig. 4 are only focused on the +700 mT to -700 mT field range.

As expected for F<001>, a square hysteresis loops is obtained (Fig. 4(a)). A sharp switching from F[001] to F[00-1] is observed, without the appearance of any other magnetic configurations. Considering small ellipsoid of positive cubic MCA, one expects a switching field of 2K1/µ0MS = 56 mT for Fe [30,31]. Such a value is however only approached for reduced NC size, while switching field above 100 mT is encountered for a 20 nm NC: as previously reported numerically for uniaxial NCs [11], flowering in NCs of positive cubic MCA results in a so-called configurational anisotropy which increases the switching field.

For a 30 nm NC exhibiting a V<001> virgin state (Fig. 4(c)), a flower state F[001] is observed for high magnetic fields. A V[001] is then stabilized below a switching field (+150 mT in Fig. 4(c)), whose value increases with the NC size (not shown). The configuration change leads to a significative drop of the magnetization. At µ0Hz = 0, the NC exhibits a V[001] remanent state as the virgin ground state (point 1 and corresponding snapshot in Fig. 4(c)). The magnetic configuration further evolved with the applied field leading to a linear decrease of M(H). Indeed, moments surrounding the +z vortex core progressively turn into the -z direction. At the coercive field (µ0HC = -150 mT, point 2 in Fig. 4(c)), the magnetic configuration corresponds to a +z compressed core surrounded with -z reversed moments leading to M/MS = 0. As the applied field approaches saturation at point 3, the core is even more compressed. The final step of the reversal then corresponds to an abrupt reversal of the core resulting in a F[00-1] at saturation ( -500 mT). To conclude, the magnetization reversal in a <111> NC contrasts with the one reported for <001> vortex. Whereas the magnetization reversal in NCs > 27 nm operates via reversed moments around the vortex core, NCs with 23.5 ≤ a ≤ 27 nm reverse via the rotation of the whole vortex structure. A noticeable point is that, whatever the virgin configurations, the remanent states always correspond to the virgin states previously found. It allows for instance to experimentally observe V<111> configurations in appropriate NCs at remanence, even after saturation in a <001> magnetic field.

Magnetic configurations in NCs made of various materials of cubic MCA

As the stable spin configuration is guided by the balance between exchange, dipolar and magnetocrystalline energies which scale with A, MS 2 Table I. Magnetic data of magnetic materials with cubic crystalline structures [START_REF] Coey | Magnetism and Magnetic Materials[END_REF]32].

Figure 5(a) shows the magnetic phase diagram of NCs made of the different materials listed in Table 1.

In Fe0.65Co0.35 NCs, the flower/vortex transition is similar to the one observed in Fe NCs, with successive F<001>, V<111> and V<001> states. However the higher MS decreases the transition size window due to the predominance of the dipolar contribution.

In FeNi alloy, the transition occurs at larger sizes and involves only F<001> and V<001> states. The lower moment of FeNi reduces the dipolar effect and favors flower state even for large sizes, as previously suggested in spheres [33].

At the opposite, Ni and Fe3O4 present a large reduction of the total energy density due to low values of MS, A and K1. The negative K1 values in these materials result in F<111> magnetic configurations on the whole studied size range. F<001> is never observed, as previously reported for Ni [18]. Combined with a low saturation magnetization, the <111> easy-axis flower persists to large sizes, with a F<111>/V<001> transition at 58 nm for Fe3O4, without any V<111> intermediate state. Such results are in good agreement with the experimental imaging of a F<111> state in a 50 nm Fe3O4 faceted nanoparticle [21], even if it has been shown that significant faceting in nanocuboids can induce differences in the ground states with respect to perfect nanocube [34].

A deeper analysis can be performed considering finer variations of the magnetic parameters. Indeed, the tuning of the Fe-concentration in alloyed NCs can be seen as an effective tool to modulate the magnetic parameters. For instance, Slater-Pauling curve suggests a progressive MS increase with Fe content in FeNi alloy. Moreover, due to size effect, nano-objects can exhibit magnetic parameters which deviates from the bulk values [35], thus assessments on the magnetic parameters dependence is mandatory. For this purpose, simulations of NCs were carried out with extreme values of MS, A and K1. The limits were chosen to contain the magnetic parameters presented in Table 1. The reinforcement of quasi-uniform state with A is also found for K1 <0. Nevertheless the MS amplitude has in this case a major influence on the orientation of the flower state. For low and moderate MS, as in Fe3O4 NCs and MS = 1.0 MA/m in frames 7-8-9, the magnetic moments mainly align along the <111> direction. Indeed, the ground state for a small NC of negative K1 is expected to be F<111> because the magnetocrystalline energy is minimized for M parallel to <111>. Surprisingly, for a large MS =1.95 MA/m, the ground state in small NCs of negative K1 is F<001>. The large saturation magnetization imposes here a F<001> hard-axis flower state because it allows reducing the dipolar energy thanks to the alignement of the moments mainly parallel to the faces. In this case, the easy-axis flower F<111> is never observed, the transition only involves hard-axis flower and vortex, i.e. F<001> and V<001>. 

  V<001> and the V<111> states, calculated for each size. For example, considering a = 25 nm, calculations give em V<111> = 0.54 MJ/m 3 < em F<001> = 0.56 MJ/m 3 < em V<001> = 0.63 MJ/m 3 . A representative V<111> state observed in a 25 nm NC is shown in Fig.1(d); the rotation of the magnetic moments along the <111> diagonal is clearly seen.

Figure 1 .

 1 Figure 1. (a) Energy densities of magnetic ground states as a function of edge-cube size a. Dots: total magnetic energy density em (square, triangle, and circle dots correspond to F<001>, V<111> and V<001> respectively). Solid-red line: dipolar (Kd = Ed/V), dashed-blue: exchange (eex = Eex/V) and black dash-dots: magnetocrystalline (Kmc = Emc/V) energy densities. (b) Normalized magnetization as a function of size (black dots), and calculated max-curling and mean-curling quantities of the magnetization vector field as a function of NC size. Simulated 3Dmagnetic configurations: (c) F<001> (20 nm NC), (d) V<111> (25 nm, projected along [111]) and (e) V<001> (30 nm).

Fig. 2 (

 2 a)-(b) display the 3D magnetization in V<111> and V<001> states. An iso-M surface is plotted, evidencing the spins for which M'/MS = 0.8, where M' is the component of the magnetization along the vortex axis, i.e. M'=M111 and M'=M001 for V<111> and V<001>, respectively. The iso-M surface encloses a large region in V<111>, leading to a global magnetization amplitude M/MS above 0.6 (Fig.1(b)). On the contrary, the reduced core region in V<001> allows reducing M/MS below 0.5. The mean-curling curve in Fig.1(b) exhibits a maximum for the V<111> configuration. Such an effect can be understood since the spins in the large V<111> tend to rotate from their <111> direction in the core to become parallel to the surfaces on facets, to reach a stray-field-free configuration.

Figure 2 .

 2 Figure 2. Simulated 3D-magnetic configurations of (a) V<111> (25 nm) and (b) V<001> (30 nm). The red iso-M

Figure 3 (

 3 Figure 3(a) shows the magnetic-state phase diagram for Fe cuboids, where the background lines indicate the cuboid effective size t = (a×a×c) 1/3 allowing to compare the cuboid volume with a cube of an effective volume t 3 .

Figure 3 .

 3 Figure 3. (a) Magnetic configurations as a function of a and c cuboid edge sizes. The background lines correspond to the particle effective size t = (a×a×c) 1/3 (diagonal dashed line: case of cubes, i.e. a=b=c, dots:

  (a)) V[001] is stabilized. Indeed, the spin curling benefits from the largest area of the (xOy) basal plane to reduce the misalignment between neighboring spins and consequently the exchange energy (V[001] in Fig. 3(b)). Similarly, large elongated cuboids (above the dashed diagonal) present a vortex axis perpendicular to the deviation axis (V[010] in Fig. 3(b)). In summary, five different magnetic configurations could be distinguished in the phase diagram of cuboids. Considering 𝑎 = 𝑏 ≠ 𝑐, F[100] and F[010] (V[100] and V[010]) are energetically equivalent but differs from F[001] (V[001] resp.

Figure 4 (

 4 Figure 4(b) displays the magnetization reversal in a 25 nm cube, which exhibits V<111> as virgin

Figure 4 .

 4 Figure 4. Magnetization reversal as a function the applied magnetic field (along [001]) in three representative Fe

Fig. 5 (

 5 b) shows the phase diagrams for NCs having a combination of the following magnetic parameters: MS = 1.95, and 1.0 MA/m; K1 = 50, 0 and -30 kJ/m 3 ; and A = 7, 14 and 21 pJ/m.Several tendencies can be extracted from the 9 graphs presented in Fig.5(b). For a fixed MS, the larger size at which flower state can still be observed, referred to as the critical size, increases with the exchange constant A. For instance, comparing frames 1, 2 and 3 for MS =1.0 MA/m, this critical size increases from 22 nm to larger than 30 nm with A. For MS = 1.95 MA/m, this critical size evolves from less than 15 nm to 22 nm for A = 7 pJ/m and A = 21 pJ/m, respectively. This is clearly expected as exchange tends to favor uniform arrangements.

Figure 5 .

 5 Figure 5. (a) Size dependence of the total magnetic energy density for NCs composed of the magnetic materials

  Phase diagrams of rectangular nanocuboids made of cubic MCA materials have been investigated in the flower/vortex transition size range. We have demonstrated that a V<111> state appears as an intermediate state for NCs of zero and positive cubic MCA. It excludes Fe3O4 and Ni particles of negative cubic MCA. Simulations also indicate that deviations from the perfect cubic shape may suppress V<111> states (above 12% of deviation) and impact F<001> and V<001> configurations close to the transition critical size. The magnetization reversal of NCs presenting a V<111> as virgin state can be described as the progressive rotation of the whole vortex structure as a function of an applied field along one NC edge. The remanent state corresponds to a V<111> state allowing to experimentally observe V<111> state in previously saturated NCs made of adequate materials. The small magnetic

  and K1 intrinsic parameters respectively, it is strongly material dependent. Iron oxides, ferrite and iron based alloys (FeCo, permalloy) are examples other than iron of abundantly used nanoparticles displaying cubic MCA. Previous sections have shown that <111> vortices can be stabilized in nanocuboids of positive cubic MCA. Would V<111> be stable in NCs made of other materials and particularly in negative MCA materials ?TableIcompares the magnetic parameters for some magnetic materials with cubic MCA. FeCo alloy is the only material exhibiting a stronger saturation magnetization (MS) than Fe. Fe and FeCo present the highest A and Kmc values, these parameters being reduced in others materials.

	Material	MS (MA/m)	A (pJ/m)	K1 (kJ/m 3 )
	Fe	1.71	21	48
	Fe0.65Co0.35	1.95	26	20
	Fe0.20Ni0.80	0.83	10	-1
	Ni	0.49	9	-5.2
	Fe3O4	0.48	7	-13
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volume of NCs exhibiting V<111> configuration combined with the strict material and shape limitation makes the observation of V<111> spin configurations in real systems highly challenging.
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