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Abstract 

Flower and easy-axis vortex states are well-known magnetic configurations that can be stabilized 

in small particles. However, <111> vortex (V<111>), i.e. a vortex state with its core axis along the hard-

axis direction, has been recently evidenced as a stable configuration in Fe nanocubes of intermediate 

sizes in the flower/vortex transition. In this context, we present here extensive micromagnetic 

simulations to determine the different magnetic ground states in ferromagnetic nanocuboids exhibiting 

cubic magnetocrystalline anisotropy (MCA). Focusing our study in the single-domain / multidomain size 

range (10-50 nm), we showed that V<111> is only stable in nanocuboids exhibiting peculiar features, 

such as a specific size, shape and magnetic environment, contrarily to the classical flower and easy-axis 

vortex states. Thus, to track experimentally these V<111> states, one should focused on i) nanocuboids 

exhibiting a nearly perfect cubic shape (size distorsion < 12%) made of ii) a material which combines a 

zero or positive cubic MCA and a high saturation magnetization, such as Fe or FeCo; and iii) a low 

magnetic field environment, V<111> being only observed in virgin or remanent states.  

Keywords: magnetic nanocubes, hard-axis vortex, flower-vortex transition, single-domain limit. 

 

1. Introduction 

Magnetic nanoparticles attract considerable scientific and technological interests in diverse 

applications such as biomedicine, magnetic recording, radio-frequency devices, etc. From a 

technological point of view, manufacturing of magnetic particles are carried out by various methods 

which allow the control of the shape, size, composition, crystallinity and thus of the magnetic properties. 

Among the different particles, rectangular cuboids constitute a large family that can be synthesized by 

chemical means to act as nanobiological vectors for drug delivery or as heat mediators for magnetic field 
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hyperthermia [1], using Fe [2], iron oxides [3-4], Co ferrite [5], Co oxide [6], FeCo [7], FePt [8] or Ni [9] 

materials. The understanding and engineering of individual nanomagnets is mandatory to optimize their 

properties in regards to the targeted applications. Whereas the single-domain magnetic configuration is 

typically required for applications such as permanent magnets and magnetic recording, more complex 

magnetic nanostructures such as vortices, domain walls and skyrmions are expected to play key roles in 

future memory devices. In a different context, vortex states are sought in biological applications to 

minimize the stray field around the magnetic particle and thus prevent aggregation. The exact 

description of the magnetic configuration of each nanomagnets within a more complex magnetic system 

is consequently a key factor driving the final physical properties. 

From the modeling point of view, classical micromagnetics refers to uniform magnetization distributions 

that can only occur in ellipsoidal magnetic nanoelements [10]. Micromagnetic simulations have become 

essential to investigate spin arrangements in non-ellipsoidal nanomagnets, among which nanocuboids. In 

the last decades, lots of numerical efforts have been devoted on perfect nanocubes (NCs) with uniaxial 

anisotropy to determine the critical size separating single-domain and vortex configurations, referred to 

as the single-domain limit. Schabes and Bertram [11] initially showed that NCs below 50 nm exhibit a 

quasi-uniform distribution of moments along the [001] uniaxial easy-axis, known as flower state 

(hereafter named F[001]), while larger ones exhibit a vortex configuration, whose core axis lays along 

the [001] direction (hereafter named V[001]). Then, the single-domain limit in a cube has been proposed 

by the NIST’s micromagnetic modeling group in the framework of the standard problem [12]. Different 

studies have addressed the single-domain limit in NCs with various uniaxial anisotropy [13-16], leading 

to stable twisted F<001> and V<001>, as well as metastable F<111> and V<111> states. 

However, considering cubic anisotropy becomes essential since most of the chemically grown 

nanocuboids are prepared from materials exhibiting either positive or negative cubic magnetocrystalline 

anisotropy (MCA). While a positive cubic MCA results in <001> easy-axis, as in Fe, a negative 

anisotropy imposes <111> preferential directions, as in Ni and Fe3O4. Only few numerical studies have 
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been reported on NCs made of cubic MCA materials. Whereas a F<111> state was determined as the 

equilibrium state in Fe3O4 NCs over a large size range [17], a transition between F<111> and V<001> 

states was predicted in Ni NCs [18]. 

Experimental studies on the single-domain limit are now available thanks to the recent improvement of 

imaging techniques. Electron holography (EH) performed in a dedicated transmission electron 

microscope (TEM) allows mapping the magnetic induction with lateral resolution of 1-2 nm [19,20]. 

Moreover, EH recently became sensitive enough to investigate the flower/vortex transition in individual 

nanomagnets. A F<111> state has been measured in an isolated single crystal Fe3O4 nanocuboid of 50 

nm [21], in good agreement with previous numerical studies [17]. A vortex state has been recorded as a 

function of temperature in a 200 nm Fe3O4 particle [22]. Recently, we have reported a systematic study 

of the flower/vortex transition in isolated Fe NCs: F<001>, V<111> and V<001> states were evidenced 

at room temperature in 25, 26 and 27 nm NCs respectively [19]. Whereas F<001> and V<001> were 

expected for small and large NCs, respectively, the V<111>, i.e. a vortex state with a vortex axis along 

the Fe hard-axis direction, was unexpected. Indeed, while V<111> has been previously predicted 

numerically in Fe nanospheres, for diameters varying between 25 and 40 nm [23], it was only predicted 

as a metastable state in NCs of uniaxial [11] or cubic MCA [18]. Our recent observations evidenced that 

V<111> is a stable intermediate state within the flower/vortex transition of Fe NCs. Thus, numerous 

questions arisen about the effective stability of the V<111> spin arrangement in magnetic nanocuboids.  

We report here numerical simulations on nanocuboids with cubic MCA to address the different magnetic 

ground states at room temperature in a size range between the exchange length lex = (A/µ0MS
2)1/2 and the 

domain wall width 𝛿𝑤 = 𝜋(𝐴 𝐾1⁄ )1/2. Our study aims at tracking the V<111> domain of stability at the 

frontiers between single-domain and multidomain states. The study is first focused on the magnetic 

nanoparticles measured experimentally [19], i.e. single-crystalline isolated Fe NCs (Section 3). As real 

nanomagnets usually exhibit a cuboid-like shape rather than a perfect cubic shape, the effect of an axial 

deviation from the perfect cubic shape is then studied and its influence on the V<111> stability 
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discussed (Section 4). The field dependence of the magnetic states in such cuboids is then addressed, the 

majority of EH experiments being performed at remanence or under a small in-situ magnetic field due to 

the pole piece stray field of the objective lens (Section 5). Finally, the variety of magnetic configurations 

that could be observed in ferromagnetic nanocubes of cubic MCA is studied for both positive and 

negative MCA NCs (Section 6). Different ferromagnetic materials are simulated such as Fe, FeCo 

(positive cubic MCA), Fe3O4, Ni (negative cubic MCA) and NiFe (nearly zero MCA). The magnetic 

parameters required to stabilize the V<111> state are finally summarized. 

 

2. Ground state calculations in individual nanocuboids 

In a ferromagnet, the magnetic state with the lowest energy results from the minimization of the total 

magnetic energy
mE , defined as the sum of 

m ex mc d zE E E E E= + + +  (1), where
exE is the exchange 

energy, Emc is the magnetocrystalline energy, Ed is the dipolar energy and Ez is the Zeeman energy. In 

order to compute the NC energy minima, we performed micromagnetic calculations using OOMMF-3D 

package [24] following either (i) the dynamical or (ii) the conjugate-gradient (CG) approaches. The 

dynamical approach solves the Landau-Lifshitz-Gilbert (LLG) equation of motion and gives a rigorous 

solution. However, long simulation times are encountered to calculate dipole-dipole interactions. The 

second CG approach allows reaching a stable magnetic configuration after short computational times 

using the fast Fourier transform. In this case, the energy is minimized directly without taking into 

account the magnetization dynamics. Combining both CG- and LLG-algorithms allows to reduce the 

computing time [25] : CG-algorithm was first used to obtain a stable magnetic state which was then 

insert like a seed state for the LLG calculation. 

Simulations were done by considering nanocuboids of edges a,b,c along x,y,z respectively. Results 

presented in sections 3, 4 and 5 were obtained for NCs with <001> crystalline directions along the cube 

edges (as experimentally encountered in ref. [19]) and magnetic parameters of bulk body-centered-cubic 
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(bcc) Fe at room temperature: saturation magnetization MS = 1.71 MA/m, exchange stiffness A = 21 

pJ/m and cubic anisotropy constant K1 = 48 kJ/m3 [26]. A damping parameter α = 0.5 was used to reach 

the equilibrium remanent state fairly rapidly. For the meshing, a cubic cell of (0.5×0.5×0.5) nm3 was 

used, the lateral dimension being smaller than the exchange length in Fe (lex=(A/µ0MS
2)1/2 = 2.4 nm).  

In order to identify the ground state among the different metastable solutions that could be obtained, 

calculations were performed from various initial configurations of the magnetization. A first approach 

consisted in introducing a random orientation of the magnetic moments as the initial state. CG-

simulations were stopped at convergence (|�⃗⃗� ×�⃗⃗� ×�⃗⃗� | < 0.02 A/m) and the obtained configurations 

introduced as seed states in LLG-algorithms. The energy values were then tracked until the relaxation 

occurred (d�⃗⃗� /dt < 0.002 deg/ns). Depending on the NC size, three different configurations could be 

reached by this means: flower, <111> and <001> vortices. A second approach consisted in imposing 

artificially the initial spin configurations following an homogeneous, V<111> or V<001> 

configurations. After relaxation, the comparison between the energies of these three magnetic 

configurations for a similar nanocuboid size allows to define unambiguously the ground state.  

Note that in the following we use chevrons <uvw> and square brackets [uvw] to describe magnetic 

configurations. <uvw> is used when the symmetry axis of the considered configuration owns to the 

family of directions uvw without any distinctions. For example V<100> would mean V[100], V[010], 

V[001] or the negative of any of those directions: they all have the same energy. [uvw] is used when the 

symmetry axis is defined into a specified direction which cannot be associated with the corresponding 

family.  
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3. Stable magnetic configurations in perfect Fe nanocubes  

Figure 1 shows the magnetic phase diagram of perfect Fe NCs (a=b=c) whose size is varied from 10 to 

50 nm. The energy densities em=Em/V, eex = Eex/V, Kmc = Emc/V, Kd = Ed/V and ez = Ez/V obtained for 

each ground states are plotted on Fig. 1(a). Three different regions can be delimited :  

(i) for a < 23.5 nm (in blue on Fig. 1(a)), the magnetic moments are mostly aligned along a <001> 

direction, i.e. along one of the positive MCA easy-axis. The corresponding configuration in Fig. 1(c) 

revealed the so-called flower state (F<001>) characterized by slightly tilted moments at the vertex.  

(ii) for larger sizes i.e. a > 27 nm (in yellow), the magnetic moments tend to curl in the so-called vortex 

state, the vortex axis around which the moments rotate is along the <001> easy-axis directions (Fig. 

1(e)).  

(iii) for intermediate sizes, i.e. 23.5 nm ≤ a ≤ 27 nm (in white), the vortex axis is along a <111> 

direction, which corresponds to the MCA hard-axis direction. The V<111> configuration is clearly 

identified as the ground state in this size range by comparing the respective energies of the flower, the 

V<001> and the V<111> states, calculated for each size. For example, considering a = 25 nm, 

calculations give em
V<111> = 0.54 MJ/m3 < em

F<001> = 0.56 MJ/m3 < em
V<001> = 0.63 MJ/m3. A 

representative V<111> state observed in a 25 nm NC is shown in Fig. 1(d); the rotation of the magnetic 

moments along the <111> diagonal is clearly seen.  
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Figure 1. (a) Energy densities of magnetic ground states as a function of edge-cube size a. Dots: total magnetic 

energy density em (square, triangle, and circle dots correspond to F<001>, V<111> and V<001> respectively). 

Solid-red line: dipolar (Kd = Ed/V), dashed-blue: exchange (eex = Eex/V) and black dash-dots: magnetocrystalline 

(Kmc = Emc/V) energy densities. (b) Normalized magnetization as a function of size (black dots), and calculated 

max-curling and mean-curling quantities of the magnetization vector field as a function of NC size. Simulated 3D-

magnetic configurations: (c) F<001> (20 nm NC), (d) V<111> (25 nm, projected along [111]) and (e) V<001> 

(30 nm).  

 

In order to characterize these three different states, the magnetization curling field (∇⃗⃗ ×
𝑚

𝑀𝑠

⃗⃗  ⃗) was 

computed on the whole NC volume. Such curling field allows a global description of any rotating fields, 

such as the magnetization in a vortex state. Two scalar parameters are extracted: 

(i) the mean curling, which stands the averaged circulation of the magnetization �⃗⃗�  in the 

NC, |〈∇⃗⃗ ×
�⃗⃗⃗� 

𝑀𝑠
〉| =

1

𝑛
‖∑ ∇⃗⃗ ×(

𝑚𝑖⃗⃗ ⃗⃗  ⃗

𝑀𝑠
)𝑛

𝑖=1 ‖                (3) 

where i represents each cell in the discretized volume of n cells.   
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(ii) the max-curling, which is the maximum value of the curling field : 

  (|�⃗� ×
𝑚

𝑀𝑠

⃗⃗  ⃗|)
𝑀𝐴𝑋

= 𝑚𝑎𝑥 (‖�⃗� × (
𝑚𝑖⃗⃗ ⃗⃗  ⃗

𝑀𝑠
)‖)               (4) 

The max-curling allows discussing local rotations without facing averaging effects encountered with the 

mean-curling. For instance, quasi-uniform vector fields, such as the magnetization in a flower state 

configuration, will present a mean curling ~ 0, but a max-curling which can deviate from 0 due to 

rotation at vertex.  

 

3.1 Flower state (a < 23,5 nm) 

If one considers a perfect single-domain, consisting in an homogenous arrangement of moments oriented 

along one of the MCA easy axis, eex and Kmc are expected to be constant and fairly low. The main energy 

contribution arises from the Kd term due to the presence of magnetic charges at the surfaces, edges and 

corners of the NCs [27,28]. A dipolar energy density 𝐾𝑑
0 = 1

6⁄ 𝜇0𝑀𝑠
2 independent of the cube size can 

be estimated. Even if such a perfect state cannot be rigorously obtained in a cube due to the non-uniform 

demagnetizing field induced, Kd approaches Kd
0 for NCs with a < lex (Fig. 1(a)). Above this size, the 

moments tend to partially rotate, as evidenced by a non-zero max-curl parameter (Fig. 1(b)). The curling 

field reaches a maximum value at the cube’s vertex, but is globally compensated over the whole volume, 

keeping therefore the mean-curl parameter negligible. Flowering thus allows efficiently lowering the 

dipolar term, but at the expense of the exchange term. Fig. 1(a) evidences the progressive enhancement 

of the flowering through the increase of the max-curl and eex terms and the decrease of the Kd up to the 

flower/vortex transition observed for a cube size of ~10 lex. 
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3.2  <111> and <001> vortex states (a ≥ 23.5 nm) 

The vortex type configurations lead to a drastic reduction of the dipolar energy Kd but to an increase of 

the exchange and magnetocrystalline terms. Fig. 2(a)-(b) display the 3D magnetization in V<111> and 

V<001> states. An iso-M surface is plotted, evidencing the spins for which M’/MS = 0.8, where M’ is the 

component of the magnetization along the vortex axis, i.e. M’=M111 and M’=M001 for V<111> and 

V<001>, respectively. The iso-M surface encloses a large region in V<111>, leading to a global 

magnetization amplitude M/MS above 0.6 (Fig. 1(b)). On the contrary, the reduced core region in 

V<001> allows reducing M/MS below 0.5. The mean-curling curve in Fig. 1(b) exhibits a maximum for 

the V<111> configuration. Such an effect can be understood since the spins in the large V<111> tend to 

rotate from their <111> direction in the core to become parallel to the surfaces on facets, to reach a 

stray-field-free configuration.  

To further describe the different vortex structures, the magnetic configuration in a median plane 

perpendicular to the vortex axis is represented in V<111> (25 nm NC) and three V<001> (30, 34 and 42 

nm NCs) configurations in Fig. 2(c). As the exchange energy imposes a minimal misalignment between 

neighboring spins, the progressive spin rotation from an out-of-plane direction in the core to a pure in-

plane direction at peripheries cannot be fully achieved neither in V<111> nor in small V<001> (30 nm 

NC). For a 34 nm NC (V<001>), in-plane magnetization is only reached at the extreme corners, while 

in-plane magnetization is fully stabilized on the whole lateral facet for a 42 nm NC. By further 

increasing the cube size, the moments at the NC’s corners tend to be aligned antiparallel to the vortex 

axis, leading to a reduced remanent magnetization (Fig. 1(b)): above 65 nm, M/MS tends to zero due to 

the presence of “down” corners surrounding the “up” core, initiating the multidomain configuration 

observed at larger sizes. 

As a conclusion, V<111> is only stable in a limited size range (23.5 - 27 nm) as intermediate between 

F<001> and <001> vortex. The fairly similar exchange and dipolar energy densities, combined with the 

higher M/MS value and the lateral extend of the iso-M surface, indicates that V<111> is a more 
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homogeneous configuration than V<001>. These results on Fe NCs are in good agreement with the EH 

measurements which reports a V<111> in a 23.5 nm Fe NC surrounded with a 1 nm Fe3O4 shell [19]. 

The thin oxide shell did not play any significant role as revealed by previous simulations. 

 

  
Figure 2. Simulated 3D-magnetic configurations of (a) V<111> (25 nm) and (b) V<001> (30 nm). The red iso-M 

surface enfolds the magnetic moments whose component along the vortex-axis is M’/MS = 0.8 (M’=M111 and 

M’=M001 for V<111> and V<001> resp.). (c) Simulated magnetizations in the median plane (perpendicular to the 

vortex-axis) for different NC sizes.  

 

4. Deviation from the perfect cubic shape 

The experimental syntheses of perfect cubic particles still remains challenging, rectangular cuboids, i.e. 

parallelepipeds with rectangular faces, being mostly obtained. The unique experimental evidence of 

V<111> states has been reported for Fe NCs presenting some shape deviation (c/a ~ 17%) [19]. While a 

perfect cube do not own any shape anisotropy, deviations from the perfect cubic shape automatically 
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induce preferential magnetization direction(s) imposed by dipolar considerations. Thus one can question 

the stability of V<111> in real cuboids and the maximum deviation accepted. It should be noted that 

truncated corners appear in real nanoparticles, as a result of surface energy minimization, but, in a first 

approach, we did not consider this effect. 

A cube belongs to the parallelepiped group and has its edge-sizes a=b=c. We focused our study on 

square cuboids for which at least two faces are squares, that is 𝑎 = 𝑏 ≠ 𝑐. By fixing a=b we studied in 

details two types of Fe cuboids, the elongated (c>a) and the flattened (c<a) ones. This situation is 

particularly relevant to analyze EH results because, as a TEM technique, EH gives only a 2D projection 

of the sample. Therefore, the thickness c is unknown and has to be assumed from the lateral dimensions. 

Figure 3(a) shows the magnetic-state phase diagram for Fe cuboids, where the background lines indicate 

the cuboid effective size t = (a×a×c)1/3 allowing to compare the cuboid volume with a cube of an 

effective volume t3. 
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Figure 3. (a) Magnetic configurations as a function of a and c cuboid edge sizes. The background lines 

correspond to the particle effective size t = (a×a×c)1/3 (diagonal dashed line: case of cubes, i.e. a=b=c, dots: 

sizes of simulated cuboids). (b) Sketches of configurations obtained in (a). 

 

 

The main dashed diagonal in Figure 3(a) corresponds to the previous case of a perfect Fe NCs (section 

3), with the three F<001>, V<111> and V<001> states being stable solutions. Considering now cuboids, 

the flower configuration appears to be the ground state for small ones, while <001> vortex is stabilized 

in larger objects (a > 10 lex
Fe). In the intermediate size range, V<111> is only observed in cuboids with 

effective sizes t corresponding to 10 – 11 times lex
Fe, as in the case of perfect NCs. Moreover, V<111> is 

only stable for a limited aspect ratio range, 0.89 < c/a < 1.12, that is, for size deviation (ǀc-aǀ/a) smaller 

than 12%. In other words, the existence of the V<111> intermediate state in cuboids is limited to rather 

cubic particles. It means that the two measured V<111> in ref. [19] were probably obtained in specific 
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Fe NCs presenting smaller cubic deviations than the averaged 17% deviation determined on the whole 

batch.  

For larger deviations, V<111> is no longer stabilized, flower and easy-axis vortices were the only states 

observed. These states are no longer degenerated, cuboid asymmetry leading to an effective shape 

anisotropy. F[100] (or F[010]) are favored for small flattened cubes, while F[001] are observed in 

elongated ones (Fig. 3(b)). Removing degeneracy is also observed in cuboids presenting <001> vortices. 

For large flattened cuboids (under the dashed diagonal in Fig. 3(a)) V[001] is stabilized. Indeed, the spin 

curling benefits from the largest area of the (xOy) basal plane to reduce the misalignment between 

neighboring spins and consequently the exchange energy (V[001] in Fig. 3(b)). Similarly, large 

elongated cuboids (above the dashed diagonal) present a vortex axis perpendicular to the deviation axis 

(V[010] in Fig. 3(b)). 

In summary, five different magnetic configurations could be distinguished in the phase diagram of 

cuboids. Considering 𝑎 = 𝑏 ≠ 𝑐, F[100] and F[010] (V[100] and V[010]) are energetically equivalent 

but differs from F[001] (V[001] resp.). On the other hand, the four possible <111> vortices in a cuboid 

remain equivalents, due to the limited cubic deviation allowed. 

 

5. Magnetic field dependence of the magnetic configurations 

Previous sections were focused on virgin ground states obtained in absence of any external magnetic 

field, i.e. ez = 0 in Eq. (1). While the magnetization reversal has been numerically studied in NCs of 

sizes corresponding to quasi-uniform and <001> vortex remanent states [11,18,29], the magnetization 

reversal of the V<111> state is particularly detailed here. Fig. 4 displays the magnetization reversal of 

20, 25 and 30 nm Fe NCs of respective F<001>, V<111> and V<001> virgin states (Section 2). The 

hysteresis loops were calculated for magnetic field applied along the [001] easy-axis and ranging from 

µ0Hz = + 5 T to – 5 T with 1 mT steps. For the sake of readability, the loops displayed in Fig. 4 are only 

focused on the +700 mT to -700 mT field range.  
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As expected for F<001>, a square hysteresis loops is obtained (Fig. 4(a)). A sharp switching from 

F[001] to F[00-1] is observed, without the appearance of any other magnetic configurations. Considering 

small ellipsoid of positive cubic MCA, one expects a switching field of 2K1/µ0MS = 56 mT for Fe 

[30,31]. Such a value is however only approached for reduced NC size, while switching field above 100 

mT is encountered for a 20 nm NC: as previously reported numerically for uniaxial NCs [11], flowering 

in NCs of positive cubic MCA results in a so-called configurational anisotropy which increases the 

switching field.  

For a 30 nm NC exhibiting a V<001> virgin state (Fig. 4(c)), a flower state F[001] is observed for high 

magnetic fields. A V[001] is then stabilized below a switching field (+150 mT in Fig. 4(c)), whose value 

increases with the NC size (not shown). The configuration change leads to a significative drop of the 

magnetization. At µ0Hz = 0, the NC exhibits a V[001] remanent state as the virgin ground state (point 1 

and corresponding snapshot in Fig. 4(c)). The magnetic configuration further evolved with the applied 

field leading to a linear decrease of M(H). Indeed, moments surrounding the +z vortex core 

progressively turn into the –z direction. At the coercive field (µ0HC = -150 mT, point 2 in Fig. 4(c)), the 

magnetic configuration corresponds to a +z compressed core surrounded with -z reversed moments 

leading to M/MS = 0. As the applied field approaches saturation at point 3, the core is even more 

compressed. The final step of the reversal then corresponds to an abrupt reversal of the core resulting in 

a F[00-1] at saturation ( -500 mT).  
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Figure 4(b) displays the magnetization reversal in a 25 nm cube, which exhibits V<111> as virgin 

ground state, for an applied field along the [001] easy-axis direction. F[001] configuration is 

 

Figure 4. Magnetization reversal as a function the applied magnetic field (along [001]) in three representative Fe 

NCs of (a) 20 nm, (b) 25 nm and (c) 30 nm, corresponding to the three reported virgin ground states, F<001>, 

V<111> and V<001>, respectively. The dots in the hysteresis loops correspond to the different configurations 

displayed in (f). Three snapshots of the magnetization in the median plane corresponding to the points 1, 2 and 3 

in (c) are inserted. Colorbar gives the Mz magnitude, the arrows sketch the magnetization directions. (d) 

Magnetic energies and (e) max-curling evolutions during the magnetization reversal of a 25 nm Fe NC. (f) 

Schematic views of the magnetic configurations encountered during the magnetization reversal of a 25 nm NC: 

the sequence of configurations observed in a field sweep from positive ([001]) to negative ([00-1]) is indicated 

from top to bottom. 
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encountered for µ0Hz > 40 mT. This quasi-uniform state has a high dipolar energy cost but minimizes 

the exchange and Zeeman terms (Fig. 4(d)). At +40 mT, the flowering opens around the z-direction, 

leading to a V[001] state. For 40 mT > µ0Hz > 10 mT, the max-curling in Fig. 4(e) increases as a result 

of variations of the [001] vortex structure. This modification of the vortex structure comes along with 

variations in dipolar, exchange and magnetocrystalline energy densities and results in a decrease of the 

magnetization. It could be noted that the V[001] state stabilized in this field range is not strictly identical 

to the V[001] reported in Fig. 1 where no field is applied. Indeed, max-curling values for V[001] at H≠0 

(Fig. 4(d)) are smaller than for V[001] at H=0 (Fig. 1(b)), indicating that the curling is lower due to the 

Zeeman interaction. Therefore, the V[001] stabilized under magnetic field tends to be more homogenous 

than without applied field, leading to larger values of the Kd term compared to the virgin V[001] 

displayed in Fig. 1(a). Reaching the zero field value, V[001] becomes energetically unfavorable and a 

V<111> is stabilized. The magnetization reversal can be summarized as a rotation of the whole vortex 

structure with the vortex axis flipping from [001] into one of the <11+1> directions (one of the [11+1], 

[1-1+1], [-11+1], [-1-1+1] directions). As described in the schematics of Fig. 4(f), the reversal from +z 

towards –z direction is then carried out by rotating the V<11+1> axis to V<11-1> (one of the [11-1], [1-

1-1], [-11-1], [-1-1-1] directions) at -10 mT. Moments in the <11-1> vortex core maintain a component 

along the field direction minimizing the Zeeman energy. For larger fields between -10 mT and -85 mT, 

the vortex axis rotates to the [00-1] direction and the max-curling progressively drops as a result of the 

homogenization of the magnetic structure. The transition to F[00-1] finally completes for µ0H = -85 mT. 

Simulations for different NCs in the V<111> size range (23.5 ≤ a ≤ 27 nm) have confirmed the 

representativity of such a 25 nm Fe NC. 

To conclude, the magnetization reversal in a <111> NC contrasts with the one reported for <001> 

vortex. Whereas the magnetization reversal in NCs > 27 nm operates via reversed moments around the 

vortex core, NCs with 23.5 ≤ a ≤ 27 nm reverse via the rotation of the whole vortex structure. A 

noticeable point is that, whatever the virgin configurations, the remanent states always correspond to the 
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virgin states previously found. It allows for instance to experimentally observe V<111> configurations 

in appropriate NCs at remanence, even after saturation in a <001> magnetic field. 

 

6. Magnetic configurations in NCs made of various materials of cubic MCA 

As the stable spin configuration is guided by the balance between exchange, dipolar and 

magnetocrystalline energies which scale with A, MS
2 and K1 intrinsic parameters respectively, it is 

strongly material dependent. Iron oxides, ferrite and iron based alloys (FeCo, permalloy) are examples 

other than iron of abundantly used nanoparticles displaying cubic MCA. Previous sections have shown 

that <111> vortices can be stabilized in nanocuboids of positive cubic MCA. Would V<111> be stable 

in NCs made of other materials and particularly in negative MCA materials ? 

Table I compares the magnetic parameters for some magnetic materials with cubic MCA. FeCo alloy is 

the only material exhibiting a stronger saturation magnetization (MS) than Fe. Fe and FeCo present the 

highest A and Kmc values, these parameters being reduced in others materials.  

 

Material MS (MA/m) A (pJ/m) K1 (kJ/m3) 

Fe 1.71 21 48 

Fe0.65Co0.35 1.95 26 20 

Fe0.20Ni0.80
 0.83 10 -1 

Ni 0.49 9 -5.2 

Fe3O4 0.48 7 -13 

Table I. Magnetic data of magnetic materials with cubic crystalline structures [26,32]. 

 

Figure 5(a) shows the magnetic phase diagram of NCs made of the different materials listed in Table 1. 

In Fe0.65Co0.35 NCs, the flower/vortex transition is similar to the one observed in Fe NCs, with successive 
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F<001>, V<111> and V<001> states. However the higher MS decreases the transition size window due 

to the predominance of the dipolar contribution. 

In FeNi alloy, the transition occurs at larger sizes and involves only F<001> and V<001> states. The 

lower moment of FeNi reduces the dipolar effect and favors flower state even for large sizes, as 

previously suggested in spheres [33].  

At the opposite, Ni and Fe3O4 present a large reduction of the total energy density due to low values of 

MS, A and K1. The negative K1 values in these materials result in F<111> magnetic configurations on the 

whole studied size range. F<001> is never observed, as previously reported for Ni [18]. Combined with 

a low saturation magnetization, the <111> easy-axis flower persists to large sizes, with a 

F<111>/V<001> transition at 58 nm for Fe3O4, without any V<111> intermediate state. Such results are 

in good agreement with the experimental imaging of a F<111> state in a 50 nm Fe3O4 faceted 

nanoparticle [21], even if it has been shown that significant faceting in nanocuboids can induce 

differences in the ground states with respect to perfect nanocube [34].   

A deeper analysis can be performed considering finer variations of the magnetic parameters. Indeed, the 

tuning of the Fe-concentration in alloyed NCs can be seen as an effective tool to modulate the magnetic 

parameters. For instance, Slater-Pauling curve suggests a progressive MS increase with Fe content in 

FeNi alloy. Moreover, due to size effect, nano-objects can exhibit magnetic parameters which deviates 

from the bulk values [35], thus assessments on the magnetic parameters dependence is mandatory. For 

this purpose, simulations of NCs were carried out with extreme values of MS, A and K1. The limits were 

chosen to contain the magnetic parameters presented in Table 1. Fig. 5(b) shows the phase diagrams for 

NCs having a combination of the following magnetic parameters: MS = 1.95, and 1.0 MA/m; K1 = 50, 0 

and -30 kJ/m3; and A = 7, 14 and 21 pJ/m. 

Several tendencies can be extracted from the 9 graphs presented in Fig. 5(b). For a fixed MS, the larger 

size at which flower state can still be observed, referred to as the critical size, increases with the 

exchange constant A. For instance, comparing frames 1, 2 and 3 for MS =1.0 MA/m, this critical size 
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increases from 22 nm to larger than 30 nm with A. For MS = 1.95 MA/m, this critical size evolves from 

less than 15 nm to 22 nm for A = 7 pJ/m and A = 21 pJ/m, respectively. This is clearly expected as 

exchange tends to favor uniform arrangements. 

The reinforcement of quasi-uniform state with A is also found for K1 <0. Nevertheless the MS amplitude 

has in this case a major influence on the orientation of the flower state. For low and moderate MS, as in 

Fe3O4 NCs and MS = 1.0 MA/m in frames 7-8-9, the magnetic moments mainly align along the <111> 

direction. Indeed, the ground state for a small NC of negative K1 is expected to be F<111> because the 

magnetocrystalline energy is minimized for M parallel to <111>. Surprisingly, for a large MS =1.95 

MA/m, the ground state in small NCs of negative K1 is F<001>. The large saturation magnetization 

imposes here a F<001> hard-axis flower state because it allows reducing the dipolar energy thanks to the 

alignement of the moments mainly parallel to the faces. In this case, the easy-axis flower F<111> is 

never observed, the transition only involves hard-axis flower and vortex, i.e. F<001> and V<001>.  
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Figure 5. (a) Size dependence of the total magnetic energy density for NCs composed of the magnetic materials 

listed in the Table 1. (b) Size dependence of the total magnetic energy density for MS = 1.0 MA/m (blue) and 

1.95 MA/m (red). Cubic magnetocrystalline constant decreases from the top to the bottom: K1 = 50 kJ/m3 (frames 

1,2,3), 0 kJ/m3 (frames 4,5,6), and -30 kJ/m3 (frames 7,8,9). Exchange constant increases from left to right: A = 7 

pJ/m (frames 1,4,7), 14 pJ/m (frames 2,5,8) and 21 pJ/m (3,6,9).  
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While K1 does not significantly modify the critical size, which is found at 20 nm for MS = 1.95 MA/m 

and A = 21 pJ/m whatever the considered K1 value, it does influence the stability of V<111>. A major 

point is that negative K1 values do not induce V<111>, contrarily to positive K1, even though it would 

correspond to an easy-axis vortex. This difference is attributed to a reduced Kmc energy density in 

V<111> NCs of positive cubic MCA, as illustrated in the V<111> region of Fig. 1(a) and 4(d). Despite a 

weak magnetocrystalline energy value compared to exchange and dipolar energies, MCA plays a key 

role in the stability of intermediate V<111> states. Surprisingly, NCs exhibiting K1 = 0 can present 

V<111> as ground states in the flower/vortex transition, contrarily to the previous predictions that 

V<111> was a metastable solution for zero anisotropy NC [14].  

Consequently, V<111> can only be stabilized in materials which exhibit a fairly large MS and a zero or 

positive cubic MCA K1. Such features can be found in nearly cubic crystalline and amorphous Fe and 

FeCo nanocuboids. 

 

7. Conclusion 

Phase diagrams of rectangular nanocuboids made of cubic MCA materials have been investigated in the 

flower/vortex transition size range. We have demonstrated that a V<111> state appears as an 

intermediate state for NCs of zero and positive cubic MCA. It excludes Fe3O4 and Ni particles of 

negative cubic MCA. Simulations also indicate that deviations from the perfect cubic shape may 

suppress V<111> states (above 12% of deviation) and impact F<001> and V<001> configurations close 

to the transition critical size. The magnetization reversal of NCs presenting a V<111> as virgin state can 

be described as the progressive rotation of the whole vortex structure as a function of an applied field 

along one NC edge. The remanent state corresponds to a V<111> state allowing to experimentally 

observe V<111> state in previously saturated NCs made of adequate materials. The small magnetic 
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volume of NCs exhibiting V<111> configuration combined with the strict material and shape limitation 

makes the observation of V<111> spin configurations in real systems highly challenging. 
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