T. K. Sato, Measurement of the first ionization potential of lawrencium, element 103, Nature, vol.520, p.25855457, 2015.

J. Even, Synthesis and detection of a seaborgium carbonyl complex, Science, vol.345, p.25237098, 2014.

A. Bilewicz and S. Siekierski, Chemical studies of rutherfordium (Element 104): Part I. Thin film ferrocyanide surfaces for the study of the hydrolysis of rutherfordium, Radiochim. Acta, vol.75, pp.121-126, 1996.

N. J. Stoyer, Chemical identification of a long-lived isotope of dubnium, a descendent of element 115, Nucl. Phys. A, vol.787, pp.388-395, 2007.

M. Janoschek, The valence-fluctuating ground state of plutonium, Sci. Adv, vol.1, p.26601219, 2015.

S. K. Cary, Emergence of californium as the second transitional element in the actinide series, Nat. Commun, vol.6, p.25880116, 2015.

T. Albrecht-schmitt, Californium gleaming, Nat. Chem, vol.6, p.25143222, 2014.

G. Liu, S. K. Cary, and T. E. Albrecht-schmitt, Metastable chargetransfer state of californium(iii) compounds, Phys. Chem. Chem. Phys, vol.17, p.26032575, 2015.

M. J. Polinski, Unusual structure, bonding and properties in a californium borate, Nat. Chem, vol.6, p.24755589, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00966875

S. Heathman, T. Le-bihan, S. Yagoubi, B. Johansson, and R. Ahuja, Structural investigation of californium under pressure, Phys. Rev. B, vol.87, pp.214111-214118, 2013.
URL : https://hal.archives-ouvertes.fr/in2p3-00852369

W. T. Carnall, J. V. Beitz, and H. Crosswhite, Electronic energy level and intensity correlations in the spectra of the trivalent actinide aquo ions. III. Bk 3+, J. Chem. Phys, vol.80, pp.2301-2308, 1984.

W. T. Carnall, A systematic analysis of the spectra of trivalent actinide chlorides in D 3h site symmetry, J. Chem. Phys, vol.96, pp.8713-8726, 1992.

G. M. Jursich, Laser-induced fluorescence of 249 Bk 4+ in CeF 4, Inorg. Chim. Acta, vol.139, pp.84093-84094, 1987.

J. H. Burns and J. R. Peterson, Crystal structures of americium trichloride hexahydrate and berkelium trichloride hexahydrate, Inorg. Chem, vol.10, pp.147-151, 1971.

P. G. Laubereau and J. H. Burns, Microchemical preparation of tricyclopentadienyl compounds of berkelium, californium, and some lanthanide elements, Inorg. Chem, vol.9, pp.1091-1095, 1970.

J. R. Peterson, J. P. Young, D. D. Ensor, and R. G. Haire, Absorption spectrophotometric and x-ray diffraction studies of the trichlorides of berkelium-249 and californium-249, Inorg. Chem, vol.25, pp.3779-3782, 1986.

M. R. Antonio, C. W. Williams, and L. Soderholm, Berkelium redox speciation, Radiochim. Acta, vol.90, pp.851-856, 2002.

J. H. Burns, J. R. Peterson, and R. D. Baybarz, Hexagonal and orthorhombic crystal structures of californium trichloride, J. Inorg. Nucl. Chem, vol.35, issue.73, pp.80189-80196, 1973.

E. Galbis, Solving the hydration structure of the heaviest actinide aqua ion known: The californium(III) case, Angew. Chem. Int. Ed, vol.49, p.20401881, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00493001

S. K. Cary, Spontaneous partitioning of californium from curium: Curious cases from the crystallization of curium coordination complexes, Inorg. Chem, vol.54, p.26562586, 2015.

M. L. Neidig, D. L. Clark, and R. L. Martin, Covalency in f-element complexes, Coord. Chem. Rev, vol.257, pp.394-406, 2013.

B. Weaver, F. A. Kappelmann, and T. , A New Method of Separating Americium and Curium from the Lanthanides by Extraction from an Aqueous Solution of an Aminopolyacetic Acid Complex with a Monoacetic Organophosphate or Phosphonate; ORNL-3559, 1964.

J. C. Braley, T. S. Grimes, and K. L. Nash, Alternatives to HDEHP and DTPA for Simplified TALSPEAK Separations, Ind. Eng. Chem. Res, vol.51, pp.629-638, 2012.

C. R. Heathman and K. L. Nash, Characterization of europium and americium dipicolinate complexes, Sep. Sci. Technol, vol.47, pp.2029-2037, 2012.

M. J. Polinski, Differentiating between trivalent lanthanides and actinides, J. Am. Chem. Soc, vol.134, p.22642795, 2012.

M. J. Polinski, S. Wang, E. V. Alekseev, W. Depmeier, and T. E. Albrecht-schmitt, Bonding changes in plutonium(III) and americium(III) borates, Angew. Chem. Int. Ed, vol.50, p.21853508, 2011.

M. J. Polinski, Curium(III) borate shows coordination environments of both plutonium(III) and americium(III) borates, Angew. Chem. Int. Ed, vol.51, p.22246722, 2012.

I. Grenthe, E. Jacobsen, E. Syväoja, A. Alivaara, and M. Traetteberg, Thermodynamic properties of rare earth complexes. II. Free energy, enthalpy, and entropy changes for the formation of rare earth diglycolate and dipicolinate complexes at 25.00 °C, Acta Chem. Scand, vol.17, pp.2487-2498, 1963.

M. Miguirditchian, Thermodynamic study of the complexation of trivalent actinide and lanthanide cations by ADPTZ, a tridentate N-donor ligand, Inorg. Chem, vol.44, p.15732980, 2005.

G. R. Choppin, Covalency in f-element bonds, J. Alloys Compd, vol.344, pp.55-59, 2002.

J. A. Drader, M. Luckey, and J. C. Braley, Thermodynamic considerations of covalency in trivalent actinide-(poly) aminopolycarboxylate interactions, Solvent Extr. Ion Exch, vol.34, pp.114-125, 2016.

W. Wang, G. K. Liu, M. G. Brik, L. Seijo, and D. Shi, 5f?6d Orbital hybridization of trivalent uranium in crystals of hexagonal symmetry: Effects on electronic energy levels and transition intensities, Phys. Rev. B, vol.80, pp.155120-155132, 2009.

J. Van-leusen, M. Speldrich, H. Schilder, and P. Kögerler, Comprehensive insight into molecular magnetism via CONDON: Full vs. effective models, Coord. Chem. Rev. 289, vol.290, pp.137-148, 2015.

A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys, vol.98, pp.5648-5652, 1993.

J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B Condens. Matter, vol.45, p.10001404, 1992.

F. Gendron, B. Pritchard, H. Bolvin, and J. Autschbach, Single-ion 4f element magnetism: An ab-initio look at Ln(COT) 2 (-), Dalton Trans, vol.44, p.26510902, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01377252

L. F. Chibotaru and L. Ungur, Ab initio calculation of anisotropic magnetic properties of complexes. I. Unique definition of pseudospin Hamiltonians and their derivation, J. Chem. Phys, vol.137, p.22897260, 2012.

I. Ahmad, a-Decay of 249 97 Bk and levels in 245 95 Am, Phys. Rev. C Nucl. Phys, vol.87, p.54328, 2013.

A. L. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Cryst, vol.36, pp.7-13, 2003.

W. Küchle, M. Dolg, H. Stoll, and H. Preuß, Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide, J. Chem. Phys, vol.100, pp.7535-7543, 1994.

X. Y. Cao, M. Dolg, and H. Stoll, Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials

, J. Chem. Phys, vol.118, pp.487-497, 2003.

X. Cao and M. Dolg, Segmented contraction scheme for small-core actinide pseudopotential basis sets, J. Mol. Struct. THEOCHEM, vol.673, pp.203-209, 2004.

A. Moritz, X. Y. Cao, and M. Dolg, Quasirelativistic energyconsistent 5f-in-core pseudopotentials for divalent and tetravalent actinide elements, Theor. Chem. Acc, vol.118, pp.845-854, 2007.

W. J. Hehre, R. Ditchfield, and J. A. Pople, Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules, J. Chem. Phys, vol.56, pp.2257-2261, 1972.

P. C. Hariharan and J. A. Pople, The influence of polarization functions on molecular orbital hydrogenation energies, Theor. Chim. Acta, vol.28, pp.213-222, 1973.

J. S. Binkley, J. A. Pople, and W. J. Hehre, Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements, J. Am. Chem. Soc, vol.102, pp.939-947, 1980.

M. J. Frisch, Gaussian 09, Revision A.02, 2009.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B Condens. Matter, vol.37, p.9944570, 1988.

G. A. Zhurko and D. A. Zhurko, ChemCraft Version 1.7. www.chemcraftprog, 2009.