
HAL Id: hal-01959194
https://hal.insa-toulouse.fr/hal-01959194

Submitted on 18 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards the Virtualization of Transport-level Functions
and Protocols

El-Fadel Bonfoh, Samir Medjiah, Christophe Chassot, José Aguilar

To cite this version:
El-Fadel Bonfoh, Samir Medjiah, Christophe Chassot, José Aguilar. Towards the Virtual-
ization of Transport-level Functions and Protocols. 7th IEEE International Conference on
Smart Communications in Network Technologies (SACONET’18), Oct 2018, El Oued, Algeria.
�10.1109/SaCoNeT.2018.8585578�. �hal-01959194�

https://hal.insa-toulouse.fr/hal-01959194
https://hal.archives-ouvertes.fr

Towards the Virtualization
of Transport-level Functions and Protocols

El-Fadel Bonfoh ​1,3​, Samir Medjiah ​1,2​, Christophe Chassot ​1,3​, Jose Aguilar ​4
1​ CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France

2​ University of Toulouse, UPS, LAAS, F-31400 Toulouse, France
3​ University of Toulouse, INSA, LAAS, F-31400 Toulouse, France

4 ​CEMISID, Facultad de Ingeniería, Universidad de Los Andes, Mérida, Venezuela
{efbonfoh, medjiah, chassot} @ laas.fr, ​aguilar@ula.ve

Abstract​—The Transport layer of OSI and TCP/IP models
provides all necessary services for end-to-end communication
between application processes. There are a huge amount of works
and propositions of Transport level protocols and services to
satisfy applications requirements. Unfortunately, the vast
majority of applications refer only to TCP for reliable and
ordered services or to UDP for unreliable and low latency
services. This is due to the fact that the deployment of all new
Transport protocol proposal is mainly hampered by (1) the poor
socket API exposed by the Transport layer to applications, (2) the
introduction of middleboxes within the Internet and (3) the
tedious work required to modified Operating System kernel. ​At
the same time, the development of network functions
virtualization opportunities is growing in the world of carrier
networks and more generally. In this paper, after a survey on
Transport protocols deployment issues, we present a novel
approach to realize the effective deployment of Transport
protocols and services by leveraging virtualization principles. At
last, we present a new way to efficiently manage Transport
functions and to dynamically build Transport services through a
graph-based protocol model.

Keywords — Transport protocols, TCP/IP model, Network
Function Virtualization, Graph-based models.

I. INTRODUCTION AND BACKGROUND
The Internet was designed around a layered architectural

model, where each layer plays a very specific role in the
proper functioning of the Internet and its components. The
standard reference model is the OSI model [1] that consists of
7 layers: the Physical layer, the Data Link layer, the Network
layer, the Transport layer, the Session layer, the Presentation
layer and the Application layer. Judged too theoretical and
unsuitable to the specific context of the Internet, the OSI
model was superseded by the more practical TCP/IP model
[2], which proposes an architecture in 4 layers: the Network
Access layer, the Internet layer, the Transport layer and the
Application layer. From the layers of OSI and TCP/IP models,
there is one whose role and position are globally invariant
from one model to another, it is the ​Transport layer​.

The Transport layer, often considered as a hinge layer

between the high and low layers, provides the services

necessary for end-to-end communication between processes
[2]. In the TCP/IP standard, two main protocols have emerged
at the Transport layer: TCP [3] and UDP [4] protocols. TCP
protocol is used to provide a reliable, ordered and
connection-oriented services, while UDP protocol is
connectionless and guarantee neither order nor reliability.
Unfortunately, it is well known that TCP and UDP protocols
are insufficient to face the requirements of critical applications
(Interactive video conferencing, Virtual Reality, among
others) and in addition, are not suitable to several network
contexts. For instance, TCP is known to suffer from
limitations in the ​Wide Wireless Area Networks (WWAN),
such as Satellite network [5], or more recently, the ​Tactile
Network environments [6], where latency have to be under one
millisecond.

Nevertheless, despite their limitations, TCP and UDP
protocols remain systematically and massively used by the
various networking stakeholders, notably the application
developers. This situation leads to an underutilization of the
opportunities of the Transport layer. Indeed, an optimal
Transport layer is supposed to provide the best possible
performances taking into account both quality of service
(QoS) required by the applications, and the capabilities of the
underlying network. A large number of research works have
been done to deal with the Transport layer issues, by
considering applications requirements and/or network state.
These works take two major directions of research: (1)
proposing a ​single protocol by improving or adding features to
the existing TCP protocol, or by developing a new protocol
from scratch or on top of UDP protocol; and (2) redesigning
the ​entire Transport layer such that to enable ​service requests
by applications instead of a particular protocol invocation, and
to promote the Transport layer evolution through the easy
integration of protocol components.

TCP has known a huge number of modifications and
extensions since its conception in the 70’s. Most of these
extensions aim to improve existing TCP options or
mechanisms like ​Congestion Control or ​Selective
Acknowledgement (SACK) [7]-[12]. The rest of TCP
extensions aim at adding to it new features like security,

1

multi-streaming, etc. For example, Multipath TCP (MPTCP)
[13] is an extension of the TCP protocol that provides it a
multipath capability by leveraging the ability of today’s
devices to having multiple network interfaces (Wi-Fi, 3G,
LTE, …).

Rather than extending TCP features, there is a lot of works
that propose to build new protocols from scratch. The Stream
Control Transmission Protocol (SCTP) [14] is a reliable
Transport protocol, which operates on top of a connectionless
packet network-level protocol, such as IP, and mainly offers
multistreaming and multihoming services. In order to behave
fairly with TCP flows and leverage UDP protocol efficiency,
the Datagram Congestion Control Protocol (DCCP) [15] was
developed. It is an unreliable Transport protocol that provides
congestion control features to applications.

All previously mentioned protocols are monolithic
programs hardly configurable, inextensible, and tedious to
update. To overcome these issues and provide QoS capability
to Transport protocols, works on configurable and
reconfigurable protocols were carried out during the last
decade and conducted to a lot of propositions, like the
Enhanced Transport Protocol [16]. ETP is a modular
Transport protocol QoS-oriented aimed at implementing
behavioral and structural adaptation strategies based on the
network environment conditions, and guided by the
application requirements [17]. More recently, Google has
proposed the Quick UDP Internet Connections (QUIC) [18],
built on top of UDP, and aiming to reduce latency compared
to that of TCP.

Apart from the QUIC protocol supported by Google and
MPTCP which is based on TCP, any new proposals for
Transport protocols, including those mentioned in the previous
paragraphs, have not been massively adopted on the Internet.
This lack of deployment is due to two main factors: (1) the
backbone of the Internet is subject to an increasing integration
of ​middleboxes capable of inspecting a packet to the L4 level
and rejecting any unauthorized protocol, and (2) the limited
Application Programming Interface, called ​socket API​,
exposed by the Transport layer to applications. Indeed, socket
API ties applications to a specific protocol, so that
applications need to be rewritten to support any new protocol.
To overcome this issue, [19, 20, 21] argue that the whole
Transport layer has to be redesigned, such that the application
no longer chooses the Transport protocol it wants to use, but
instead invoke the desired ​Transport services and let the layer

chooses the adequate protocol (or Transport components) to
provide requested services. The main drawback of the
majority of these approaches is that, to no more use socket
API, applications need to be rewritten to take into account the
new proposed framework. Furthermore, to be effectively and
efficiently used, the Operating System developers (Windows,
Linux, …) must ​open their systems to permit the integration of
these frameworks in the OS kernel. This is far from being
obtained due to the tedious work required to update an
operating system. This situation contributes to the problem of
new protocols deployment.

More recently, new paradigms such as Network Function
Virtualization (NFV) [22] and Software Defined Networking
(SDN) [23] arrived at maturity. In this paper, we argue that by
leverage the virtualization concepts as ETSI defined it, we are
able to dynamically and timely deploy Transport components
on the appropriate network nodes in different contexts (e.g.
IoT, Cloud, etc.). Indeed, because each Transport protocol can
be seen as an assemblage of ​functions​, we define an
architecture allowing to directly place the appropriate
functions within a network entity (computer, router, switch,
etc.). In the first stage of our works, our main focus is to
package the Transport functions as virtualization containers
(Docker, LXC, etc.) even if they are complex or simple. In the
second and last stage of our works, for the simple Transport
functions, we will wrap them as Linux kernel modules.

Over the last decade, there are more and more works that
took advantage of the virtualization principles to improve
networking, by facilitating packets processing function
deployment and upgrading. In [24], B. Pfaff et al. present
Open vSwitch (OVS), a network switch specifically built for
virtual environments. OVS is mainly used to steer the traffic
between virtual machines within hypervisors and with the
external world. More recently, Z. Niu et al. present Network
Stack as a Service concept [25], a new way for cloud
providers to offer networking features to their tenants inside a
container. In this paper, we envision a novel way to manage
and deploy network functions at the Transport layer.

The rest of the paper is organized as follows. In ​section ​,
we detail the reasons for the non-deployment of any Transport
protocol other than TCP and UDP protocols. Next, we
introduce the NFV approach in section III. Section IV presents
the ​Virtual Transport Protocol concept and the aspects related
to it. Finally, we end the paper by presenting future works.

2

Fig. 1: A Network Function Virtualization Vision [22]

II. MAIN LIMITATION OF TRANSPORT LAYER: DEPLOYMENT

To provide Transport features beyond those of TCP and
UDP protocols, a plethora of propositions has been made by
researchers. Unfortunately, most of these propositions have
not been widely deployed. This is due to three main reasons.

Middleboxes​. Initially designed on an end-to-end
principle, at least from level L4 to level L7, the Internet has
seen the massive introduction of new network devices,
called middleboxes (NATs, firewalls, etc.), with the aim to
respond to a number of new requirements, such as security,
broke the end-to-end semantic. Therefore, to be used, a
protocol must not only be integrated and known by the
endpoints (i.e. the final hosts) but also, be supported by the
middleboxes on its way, so that it can cross the network
without failure: this hampers and complicates the
deployment of new Transport solutions.

Socket API​. In order to provide Transport-level services
to applications, the Socket API was developed in 1983. This
API was designed so that the application programmer
explicitly specifies the desired Transport protocol. This has
the disadvantage of, on the one hand, limits the Transport
services (provided to the applications) to those of the
protocol chosen at design time, and on the other hand,
requires the rewrite of the application to support a new
protocol.

Vicious circle​. This issue is well described in [26].
Application programmers are unwilling to use a new
protocol that is unlikely to work end-to-end; OS vendors
will not implement a new protocol if application
programmers do not express a need for it; middleboxes
vendors will not add support if the protocol is not in popular
operating systems; the new protocol will not work
end-to-end because of lack of support in middleboxes.

We argue that in the vicious circle described above, OS
vendors are the key actors and by enabling new protocol
support in their operating systems, the adoption of any new
protocol by other actors can be effective. Because it is
tiresome for OS vendors to integrate a new protocol in the
kernel of operating systems, many efforts have been made
to implement it in the user space of operating systems [27,
28]. This approach facilitates the integration of any new
protocol but unfortunately, suffers from performance issues.
Our approach is to deploy protocol components in user
space as Virtual Network Functions (VNF) inside
containers, and to leverage packet processing acceleration
toolkits like DPDK (Data Plane Development Kit) [29] to
realize high performance close to those of OS kernel.

III. NETWORK FUNCTION VIRTUALIZATION APPROACH

A ​network function (NF) is a processing function in a
network [30]. Traditionally, a network function is deployed
on proprietary hardware. Hence, for every customer, a
network service provider installs one dedicated hardware
per network function (Firewall, DNS, IDS/IPS, etc.). Such
network functions deployed on dedicated hardware are
called ​Physical Network Function (PNF). Promoted by the
ETSI, the ​Network Function Virtualization approach (NFV),
as shown in Figure 1, consists in decoupling these network
functions from the proprietary hardwares and to implement
them as software components in environments providing
virtualization capabilities [22]. Such network functions
implemented in software are called ​Virtual Network
Functions​ (VNF).

3

Fig. 2: Hypervisor-based (A) vs. Container-based (B) virtualization

There are two ways to perform virtualization and to
package VNFs: ​hypervisor-based virtualization and
container-based virtualization. The difference between them
is shown in Figure 2:
● in the hypervisor-based ​approach, one virtual machine

(VM) with a whole OS is instantiated per VNF
resulting in potential overhead, for example, in terms
of memory resource consumption;

● in the container-based approach, each VNF running
within a container, shares the OS kernel of the host
machine with other VNFs.

Because the containerization approach is more flexible,
lightweight, portable, scalable, stackable [31] and allows
overhead saving, we privileged this latter in our works.

In Figure 2 (B), the role of the ​Container Engine is to
automate the deployment of containers, to maintain and
update them. There are several container engines, of which
the mainstream is ​Docker [31]. Apart from this popular
containerization platform, there are others famous platforms
like the historical ​Linux Containers (LXC) [32], or more
recently ​Singularity​ [33].

Docker. ​Although containerization is an old technique
introduced in version 2.6 of the Linux kernel, it only
became popular with the appearance of Docker. Docker is
an open-source platform for developers and sysadmins to
develop, deploy, and run applications with containers. By
using Docker, we are able to dynamically deploy Transport
protocol components as containers inside any device apt to
host Docker Engine.

IV. VIRTUAL TRANSPORT PROTOCOL

In this section, we describe our approach to deploy and
manage Transport components on different entities
(computer, server, etc.) within networks. We assume that
the considered entities are able to host container engine like
Docker. We claim a virtualization-based modular approach
where any Transport protocol can be composed from a
number of basic Transport functions packaged in
virtualization containers. In order to provide unambiguous
vocabulary, in the first subsection, we define and illustrate
all aspects related to Virtual Transport Protocol concept,
among them the need of a control architecture of VTP and a

way to drive the composition of protocols. We then
introduce a control architecture, called Transport Function
Manager (TFM), aiming to manage and deploy protocol
components. Finally, we present our approach to compose
protocol based on graph.

A. TERMINOLOGY

We mainly use four terms in our formalism: ​Transport
Function (TF), ​Virtual Transport Function (VTF),
Transport Service (TS) and ​Transport protocol​. A
Transport Function​, TF, is a processing unit at Transport
level within TCP/IP model. It includes, but not limited to:
● connection management function: ensures opening,

maintaining, and closing connection;
● error control function: ensures data integrity;
● flow and congestion control functions: limit sending

rate to avoid or react to hosts or routers buffers
overflow.

Fig. 3: Transport Function generic model

Figure 3 represents the generic model of a TF. A TF is
composed of three mains elements: (1) the IN/OUT data, (2)
the algorithm implemented by the TF, and (3) the metadata
of the TF. The metadata is essential for the management of
the TF and contains information like:
● the ​name​ or task of the TF; for example “ACK”.
● the ​mechanism implemented by the TF; for example,

two TFs performing an ACK task can do it following a
cumulative algorithm or a selective mechanism; their
mechanisms name will be respectively “cumulative
ACK” and “selective ACK”.

● the ​dependencies of the TF; this information indicates
which TFs must be executed before the current one; for
example, we have to execute ​error control function on
segments before executing ​reassembly function​.

4

Fig. 4: Overview of TFM and its components

Obviously, the idea of splitting a protocol is not novel
and is the so-called modular approach evoked in section 1.
In ETP [16], the protocols are composed of so-called
micro-protocols or TFs packaged in software components.
Such TFs are what we designate by the generic term,
User-space Transport Function (UTF). As previously
mentioned, the code of TFs is most of the time embedded in
OS kernel modules; we designate such packaged TFs by the
term ​Kernel-space Transport Function (KTF). Instead of
having to deal with complex and often unmodifiable OS
kernel system, our approach consists in packaging TFs code
inside a container and in deploying it on user space of the
local entity implied in the communication, or somewhere in
the cloud. Such TF, placed inside a container, is called a
Virtual Transport Function ​(VTF). In this paper, we focus
only on the deployment of VTFs.

A ​Transport Service​, TS, is an abstraction of a set of
Transport functions. It provides an end-to-end facility to
applications. Examples include reliable delivery service,
no-loss delivery service, ordered delivery service, partially
ordered delivery service, fast delivery service, etc.

A ​Transport protocol is an implementation that provides
one or more Transport Services using a specific framing and
header format [20], to detail how a Transport sender and a
Transport receiver cooperate to provide these services. For
instance, TCP protocol is composed by the following
services: fully reliable, fully ordered, congestion-controlled
and flow-controlled.

B. TRANSPORT FUNCTION MANAGER (TFM)

The TFM is a distributed decision system inspired by the
MAPE-K cycle [34]. The TFM has to be dynamically
deployed in a virtualization container such as Docker
container. From service requested by an application, the
TFM is able to dynamically build a TS and to deploy all
necessary TFs to provide the required service. Figure 4
shows an overview of the TFM and its main components in

its current state. We can distinguish ​Monitoring​, ​Analysis​,
Decision​ and ​Knowledge Base​ components.

Monitoring. ​The role of ​Monitoring component is to
collect events and to reports them in the knowledge base
component. Examples of events include new added TF or
removed one, OS kernel configuration, started application in
user space, etc.

Analysis and Decision. ​Analysis and ​Decision
components are together responsible for intercepting
applications service requests, interpreting these requests and
to dynamically build Transport services to provide requested
services. They are also in charge of maintaining and update
the Transport Function graph within the Knowledge Base
component.

Knowledge Base: Graph-based protocol model​.
Within a Transport connection, every end-to-end entity has
to appropriately handle TFs deployed on it. In order to
enable dynamic construction of the required protocol or
services, ​the dependency relationships between the TFs are
modeled as a graph. The use of graph facilitates the add,
removal, or modification of Transport Function.
Furthermore, it is expected to provide an abstraction which
will permit to capture the heterogeneity between the TF
possible shapes (i.e. TF as a container, VTF; TF as a
software component called UTF; or TF as an OS kernel
module called KTF). TF graph is a mixed graph G = (V, A,
E) where:
● V = {TF​1​, TF​2​, …, TF​n​} is the set of TFs deployed on

entity;
● A is a set of directed links expressing dependency

between TFs; an arc (TF​x​, TF​y​) means that the
execution of TF​y requires the execution of TF​x
beforehand. For example before execute ​Error
reporting function, ​we have to first detect the error on
data through the execution of ​Error detection function​.

● E is a set of undirected links used when there is not an
order in the execution of associated TFs.

5

A TS is defined in the graph by two paths: one indicates
the order of execution of TFs in reception, Rx, and the other
indicates the order of execution in transmission, Tx. Figure
5 shows a TF graph where, for example, TS​1 is a ​No-error
service where: (1) in Rx, TF​3 and TF​0 are executed in this
order to detect and report an error, and (2) in Tx, TF​1 is used
to recover error by execution of ​retransmission function​.

Fig. 5: Example of Transport Function graph

V. CONCLUSION AND PERSPECTIVES

In this paper, we propose the ​Virtual Transport Protocol
concept consisting of leveraging virtualization principles to
permit the dynamically and remotely deployment of
Transport components. Based on modular approaches, we
propose to divide each ​Transport service ​(TS) as a set of
Transport Function ​(TF) which are packaged in a
virtualization container and called ​Virtual Transport
Function ​(VTF). Furthermore, we propose a ​Transport
Function Manager ​(TFM), a control architecture aiming to
manage VTFs and dynamically build TS thanks to a
proposed TF graph.

Our future work is to build a proof-of-concept of our
approach through the implementation of the proposed
control architecture. In addition, in this paper, we focus only
about the deployment of Transport Function as Virtual
Transport Function; we also plane to extend TFM
architecture in such a way that it can be able to deploy
Transport Functions as OS kernel modules.

REFERENCES

[1] H. Zimmermann, “OSI Reference Model -- The ISO Model of
Architecture for Open Systems Interconnection”, Innovations in
Internetworking, Artech House, Inc., Norwood, MA, 1988.

[2] R. Braden, “Requirements for Internet Hosts -- Communication
Layers”, RFC​ ​1122, Internet Engineering Task Force, October 1989.

[3] V. Cerf, Y. Dalal, C. Sunshine, “Specification of Internet
Transmission Control Program”, RFC 675 (Historic), Internet
Engineering Task Force, December 1974.

[4] J. Postel, “User Datagram Protocol”, RFC 768, Internet Engineering
Task Force, 28 August 1980.

[5] E. Dubois, J. Fasson, C. Donny, E. Chaput, “Enhancing TCP based
communications in mobile satellite scenarios: TCP PEPs issues and
solutions”, Proc. of the 5th ASMS and 11th SPSC, September 2010.

[6] G. P. Fettweis, “The Tactile Internet”, IEEE Vehicular Technology
Magazine, March 2014.

[7] V. Jacobson, “Congestion Avoidance and Control”, Proc. of
SIGCOMM’ 88, ACM, Stanford, CA, August 1988.

[8] J. Kurose, K. Ross, ​Computer Networking - A Top-Down Approach
(4th ed.)​. Addison Wesley, 2008.

[9] L. Steven, P. Larry, W. Limin, “Understanding TCP Vegas: Theory
and Practice”, Technical Report, Princeton University, 2000.

[10] T. Henderson, S. Floyd, A. Gurtov, Y. Nishida, “The NewReno
Modification to TCP’s Fast Recovery Algorithm”, RFC 6582,
Internet Engineering Task Force, April 2012.

[11] R. Wang, M. Valla, M. Y. Sanadidi, M. Gerla, “Adaptive Bandwidth
Share Estimation in TCP Westwood”, Proc. Globecom, 2002.

[12] S. Ha, I. Rhee, L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant”, ACM SIGOPS Operating System Review, 2008.

[13] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses”, RFC 6824,
Internet Engineering Task Force, January 2013.

[14] R. Stewart et al., “Stream Control Transmission Protocol”, RFC 2960,
Internet Engineering Task Force, October 2000.

[15] E. Kohler, M. Handley, S. Floyd, “Datagram Congestion Control
Protocol (DCCP)”, RFC 4340, Internet Engineering Task Force,
March 2006.

[16] N. V. Wambeke, E. Exposito, C. Chassot, M. Diaz, “ATP: A
Micro-protocol Approach to Autonomic Communication”, IEEE
Transactions on Computers, Vol. 62, No 11, November 2013.

[17] E. Exposito, “Methodology, models and paradigms for a next
generation transport layer design”, HDR, Institut National
Polytechnique de Toulouse, December 2010.

[18] J. Roskind, “QUIC: Multiplexed stream transport over UDP”, Google
working design document, 2013.

[19] N. Khademi et al., “NEAT: A Platform- and Protocol-Independent
Internet Transport API”, IEEE Com. Magazine, June 2017.

[20] “Transport Services (TAPS)”
https://datatracker.ietf.org/wg/taps/about/, accessed 2018-08-05.

[21] M. Oulmahdi, G. Dugue, and C. Chassot, “Towards a
Service-Oriented and Component-Based Transport Layer”,
International Conference on Smart Communications in Network
Technologies (SaCoNeT), 2014.

[22] B. Yi et al., “A comprehensive survey of Network Function
Virtualization”, Computer Networks 133 (2018) 212-262.

[23] B. A. A. Nunes, M. Mendonca, X.N. Nguyen, K. Obraczka, and T.
Turletti, “A Survey of Software-Defined Networking: Past, Present
and Future of Programmable Networks”, IEEE Communications
Surveys and Tutorials, Vol. 16, No 3, 2014, pp. 1617-1634.

[24] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado and S.
Shenker, “Extending Networking into the Virtualization Layer”, Proc.
of HotNets, October 2009.

[25] Z. Niu et al., “Network Stack as a Service in the Cloud”, Proc. of the
16th ACM Workshop on Hot Topics in Networks, HotNets-XVI,
December 2017.

[26] M. Handley, “Why the Internet only just works”, BT Technology
Journal, Vol. 24, No 3, July 2006.

[27] M. Tüxen and T. Dreibholz, “The sctplib Userspace SCTP
Implementation”, 2009, http://www.sctp.de/sctp-download.html,
accessed 2018-08-08.

[28] M. Honda et al., “Rekindling network protocol innovation with
user-level stacks”, ACM SIGCOMM Computer Communications
Review, vol. 44, No 2, 2014.

[29] DPDK, https://www.dpdk.org/, accessed 2018-08-12.
[30] “5G”, ITU-T Focus Group, IMT-2020 Deliverables, 2017.
[31] Docker, https://www.docker.com, accessed 2018-08-09.
[32] LXC, https://linuxcontainers.org, accessed 2018-08-09.
[33] Singularity, https://www.sylabs.io/, accessed 2018-08-09.
[34] IBM, “An Architectural Blueprint for Autonomic Computing”, IBM

White Paper 3th Ed., June 2005.

6

