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Donghai Qiu1, Manuel Paredes1 and Sébastien Seguy1

Abstract
This paper aims to propose a generalized methodology for designing a novel Nonlinear Energy Sink (NES) with variable
pitch springs. To this end, a generic model of the NES system providing the nonlinearity of pure cubic stiffness is
introduced. Key features of the model include: (i) specifically sizing two variable pitch springs to provide the force
polynomial components with only linear and cubic terms; (ii) pre-compressing two springs at the transition point to
produce smooth nonlinear force characteristics; (iii) adding a negative stiffness mechanism to counterbalance the
linear term. To generate the variable pitch spring, design parametrization is implemented. The type of shape and the
pitch distribution adopted for the spring are shown to fit the objective force-displacement function well. To validate the
concept, a special sized NES system is developed. Identification of the force-displacement relation and experiments
for the whole system embedded on an electrodynamic shaker are studied. The results show that this NES can not only
output the anticipated nonlinearity, but can also produce energy pumping to protect the primary system in a large band
of frequencies, thus making it practical for the application of passive vibration control.
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Nomenclature
n̄i number of coils of the ith spring group

ε mass ratio between NES and linear oscillator
λ1, λ2 reduced damping of linear oscillator and NES

a1, a3 linear and cubic stiffness at the nonlinear regime

c1, c2 damping of linear oscillator and NES

D mean diameter of variable pitch spring

d wire diameter of variable pitch spring

G amplitude of the harmonic excitation

K reduced nonlinear stiffness of NES
k stiffness of the linear spring

k0 stiffness at the linear regime

k1, k2 stiffness of linear oscillator and NES

l remaining length of pre-compressed spring

l0 free length of linear spring

Lf free length of variable pitch spring

lp pre-compressed length of linear spring

m1,m2 mass of linear oscillator and NES

n number of spring groups in nonlinear regime

na number of active coils of variable pitch spring

Pt, st force and displacement of the transition point

ti pitch of the ith spring group

x, y displacement of linear oscillator and NES

xe imposed harmonic displacement

1 Introduction
Over recent decades, nonlinear vibration absorbers have
advanced rapidly and show considerable potential in passive
vibration control applications [1]. Particularly in the areas of
aero-space and civil engineering, absorbers are required to
be light and to work over a broad spectrum of frequencies,
leading to increased interests in exploiting the absorber
with different nonlinearities (e.g. vibro-impact, monostable
duffing, non-polynomial and bistable oscillators) [2–8].
Among such devices, the nonlinear absorber with cubic
stiffness, also called the Nonlinear Energy Sink (NES),
has proved to be effective for moderate-energy vibration
mitigation [1]. This type of absorber is characterized by a
secondary mass strongly coupled via a cubic stiffness to
the primary system that needs to be protected [9]. Because
of the nonlinearity, irreversible Targeted Energy Transfer
(TET) takes place from the main structure to the secondary
mass, enabling the NES to be effective in a broad band of
frequencies.

Targeted Energy Transfer mechanisms and the feasibility
of NES in different applications have been analyzed in detail
by [10–15]. In these approaches, the essential cubic stiffness
was mostly achieved by adopting a construction of two linear
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springs with no pretension (e.g. a beam [16], a piano wire
[17], a membrane [18] and helical springs [19]). Because
of their self-geometric nonlinearity, the springs stretch in
tension, thus creating the cubic force. However, this classical
type of device cannot effectively take advantage of spring
compression and tension, and the result is a large vertical
structure attached to the main system. Addition of a relatively
weak nonlinear stiffness existing at the beginning extension,
leads to the whole cubic term being approximated to a
linear term. Thus, implementing cubic stiffness elements in
practice is still an important issue if the application of NES
is to be broadened.

Nowadays, physical determination of the nonlinear force-
displacement characteristics can be performed by two
common methods. One is direct using nonlinear springs,
such as conical springs, variable pitch springs, piecewise
stiffness springs, and special sized beam segments [20–
24]. Various applications of these springs can be found
in robotic joints, bandpass filters, vehicle suspensions and
crashworthiness structures. The other method is to design
a mechanism with variable stiffness. For example, Wu and
Lan [25] proposed a linear variable stiffness mechanism
with preloaded curved beams. Sönmez and Tutum [26]
introduced a compliant bistable mechanism with flexible
beams. Chen and Lan [27] designed an adjustable constant
force mechanism for adaptive end effector operations.
Stanton et al. [28] developed a piezoelectric cantilever with
a permanent magnet for the energy harvesting system. For
these methods, a key issue to be satisfied for a NES is that the
linear part of the force-displacement characteristics should
be very small so as to ensure that the NES can adapt itself
to the frequency of any primary system [29]. Whether it
is possible to combine the advantage of nonlinear springs
and variable stiffness mechanisms, so as to obtain strongly
cubic stiffness without any linear part for the NES system.
With this in mind, a generalized methodology for designing
a novel NES with the proposed components is presented in
this paper.

The structure of the paper is as follows. The first section
is devoted to develop the generic model of the NES system,
including the dynamical model for targeted energy transfer
and the physical configuration. The next section provides a
design theory of variable pitch spring under a given force-
displacement function. In the third section, the designed
springs and NES system are identified, and experiments for
the whole system embedded on an electrodynamic shaker are
performed. Finally, some concluding remarks are proposed.

2 Generic model of NES system

2.1 Dynamical model of NES system
The dynamic model of the NES system presented here
is based on [19] and [30]. The system is composed of a
harmonically excited linear oscillator (LO) strongly coupled
with a cubic NES (see Fig. 1) and is described by the
following equations of motion:


m1ẍ+ k1x+ c1ẋ+ c2 (ẋ− ẏ) + k2 (x− y)

3

= k1xe + c1ẋe

m2ÿ + c2(ẏ − ẋ) + k2 (y − x)
3

= 0

(1)

1m 2m

NESLO

1k

1c

2k

2c

x yex

Figure 1. Schematic of a harmonically excited LO coupled with
a cubic NES

where x, m1, c1, k1 and y, m2, c2, k2 are the displacement,
mass, damping and stiffness of the LO and the cubic NES
respectively and the dots denote differentiation with respect
to time. The imposed harmonic displacement xe is expressed
as: xe = G cos(ωt).

Substituting k1 = m1ω
2
0 , t = τ/ω0 and ω = Ωω0 to

equations (1):


ẍ+ x+ c1

m1ω0
ẋ+ c2

m1ω0
(ẋ− ẏ) + k2

m1ω2
0
(x− y)3

= Gcos(Ωτ)− c1Ω
m1ω0

Gsin(Ωτ)
m2

m1
ÿ + c2

m1ω0
(ẏ − ẋ) + k2

m1ω2
0
(y − x)3 = 0

(2)

Then introducing c1 = λ1m2ω0, c2 = λ2m2ω0 and k2 =
m2ω

2
0K to Eqs. (2):


ẍ+ x+ λ1m2

m1
ẋ+ λ2m2

m1
(ẋ− ẏ) + Km2

m1
(x− y)3

= Gcos(Ωτ)− λ1m2Ω
m1

Gsin(Ωτ)
m2

m1
ÿ + λ2m2

m1
(ẏ − ẋ) + Km2

m1
(y − x)3 = 0

(3)

Substituting m2/m1 = ε and G = εF to Eqs. (3):


ẍ+ x+ ελ1ẋ+ ελ2 (ẋ− ẏ) + εK (x− y)

3

= εF cos Ωτ − ε2Fλ1Ωsin(Ωτ)

εÿ + ελ2 (ẏ − ẋ) + εK (y − x)
3

= 0

(4)

where the term containing ε2 is so small that it can be
eliminated. The system of equations (1) can be finally
reduced to the dimensionless form:

{
ẍ+ x+ ελ1ẋ+ ελ2 (ẋ− ẏ) + εK (x− y)

3
= εF cos Ωτ

εÿ + ελ2 (ẏ − ẋ) + εK (y − x)
3

= 0

(5)

The corresponding physical parameters of rescailing
process are expressed as follows:

ε =
m2

m1
, ω0

2 =
k1

m1
, K =

k2

m2ω0
2
, λ1 =

c1
m2ω0

,

λ2 =
c2

m2ω0
, F =

G

ε
, Ω =

ω

ω0
, τ = ω0t

(6)
New variables representing the displacement of the centre

of mass and the internal displacement of the cubic NES are
introduced as follows:
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Figure 2. Cubic NES under periodic forcing with parameters K = 2400, λ1 = 0.8, λ2 = 0.2, ε = 0.015, G = 0.3mm and initial
conditions x0 = 0, ẋ0 = 0, y0 = 0 and ẏ0 = 0. (a) time-displacement of LO and NES; (b) wavelet transform of LO and NES. The
states of 1, 2 and 3 represent the regime of nonlinear beating, transient resonance capture and escape from resonance capture,
respectively.

v = x+ εy, w = x− y (7)

Substituting Eqs. (7) into Eqs. (5):


v̈ + ελ1

v̇ + εẇ

1 + ε
+
v + εw

1 + ε
= εF cos Ωτ

ẅ + ελ1
v̇ + εẇ

1 + ε
+
v + εw

1 + ε
+ λ2 (1 + ε) ẇ +K (1 + ε)w3

= εF cos Ωt

(8)

The system is studied in the vicinity of the 1:1 resonance,
where both the LO and the NES execute time-periodic
oscillations with identical frequency Ω. To obtain the
analytical periodic solution, two new complex variables are
introduced:

φ1e
iΩτ = v̇ + iΩv, φ2e

iΩτ = ẇ + iΩw (9)

Substituting Eqs. (9) into Eqs. (8) and keeping only the
secular term containing eiΩτ yields the following slowly
modulated system:


φ̇1 +

iΩ

2
φ1 +

ελ1(φ1 + εφ2)

2(1 + ε)
− i(φ1 + εφ2)

2Ω(1 + ε)
− εF

2
= 0

φ̇2 +
iΩ

2
φ2 +

ελ1(φ1 + εφ2)

2(1 + ε)
− i (φ1 + εφ2)

2Ω(1 + ε)
− εF

2

+
λ2(1 + ε)φ2

2
− 3iK (1 + ε)φ2

2φ̄2

8Ω3
= 0

(10)

In the context of energy pumping, the mass ratio ε is taken
to be small (≈ 1%). In this case, Eq. (10) can be analysed by
a perturbation method with respect to this small parameter.
For this purpose, the method of multiple scales [31, 32] is
introduced in the following form:

φi = φi(τ0, τ1,+ . . .),
d

dτ
=

∂

∂τ0
+ ε

∂

∂τ1
+ . . .

τk = εkτ, k = 0, 1, . . .
(11)

Substituting Eqs. (11) into Eqs. (10) and equating
coefficients of ε0 gives:

∂

∂τ0
φ1 = 0

∂

∂τ0
φ2 +

λ2

2
φ2 +

i

2
(φ2 − ϕ1)− 3iK

8
φ2

2 |φ2| = 0 (12)

Then we introduce the new variables as follows:

φ1(τ1) = N1e
iθ1 , φ2(τ1) = N2e

iθ2 (13)

With this change of variables in Eqs. (12), a topological
structure of slow invariant manifold (SIM) is obtained in the
following form:

N2
10 = (1 + λ2

2)N2
20 −

3K

2
N4

20 +
9K2

16
N6

20 (14)

whereN10,N20 correspond to the amplitude of LO and NES
in slow time scale, respectively. According to [33], the SIM
structure admits two extrema (N21 and N22) and can be
divided into two stable branches and one unstable branch,
where the unstable branch of the SIM is mainly responsible
for the possible occurrence of energy pumping and may give
rise to the strongly modulated response (SMR).

To illustrate this mechanism, a strongly modulated
response and its corresponding wavelet transform are
presented in Fig. 2. A quasi-periodic response with slow
variation of the amplitudes of both oscillators is observed.
In this regime, the procedure of energy pumping can
be classified as follows: (1) nonlinear beating, where a
small amplitude of NES corresponds to the growth of
LO amplitude; (2) transient resonance capture, with the
frequency component of 1:1 resonance (see Fig. 2(b)), in
this case large targeted energy is extracted and dissipated
by NES, leading to a fast decrease of the LO amplitude; (3)
escape from resonance capture, in which the NES crosses
the bifurcation and is quickly attracted to the low branch of
SIM (see Fig. 3), which leads to a jump down for the energy
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Figure 3. SIM structure (blue line) and the transient projection
motion of SMR (red line). The states 1, 2 and 3 represent the
regime of nonlinear beating, transient resonance capture and
escape from resonance capture, respectively.

of the NES. This SMR regime demonstrates the irreversible
targeted energy transfer from LO to NES, which suppresses
energy more efficiently than a steady state response.

2.2 Physical model of NES system
The physical NES model developed in this paper is presented
in Fig. 4(a). It consists of a nonlinear characteristic part
and a negative stiffness mechanism. The negative stiffness
mechanism is created by two linear springs hinged together
at one end with the mass of the NES, while the other ends,
subjected to two equivalent preloads P , are allowed to move
freely in frictionless horizontal channels.

As the two linear springs are subjected only to horizontal
forces, their force on the axial spring is zero. From the
equilibrium position, an external force (i.e. F ) is applied to
generate an upward displacement (i.e. u) of the output link.
Within an operating region of the linear spring, the stiffness
curve depends on the preload p. The three F -u curves
in Fig. 4(b) denote the NES system with different lateral
preloads. The corresponding force-displacement curves of
the two horizontal springs and the vertical spring are
presented in Fig. 5 (b) and (d), respectively. From the curve
with no preload, a positive preload decreases the linear
stiffness, whereas a negative preload increases it. As can be
seen from Fig. 4(b), the force characteristic of case p < 0
is almost dominated by its component of linear stiffness
(i.e. the thick black line). Thus, to obtain strong (non-
linearizable) nonlinearity, the negative stiffness mechanism
with p > 0 is adopted.

A detailed realization of the NES system is presented
in Fig. 6, where the negative stiffness mechanism is
implemented by two cylindrical compression springs having
free length l0. After pre-compressing to the length l (see
Fig. 6(a)), the force-displacement relation with the Taylor
expansion is expressed as:

fp = 2k
lp
l
· u− k (l + lp)

l3
· u3 (15)

For the axial direction, the nonlinear characteristic part
is realized by two variable pitch springs. Unlike ordinary

compression springs, variable pitch springs are designed to
have a nonlinear spring rate. These springs can have multiple
rates or a progressively increasing spring rate as the spring
compresses. Since the pitch is varied, some of the coils close
up faster than the rest and become inactive, meaning that
they no longer absorb the compressive energy resulting from
applied forces. When the amount of active energy absorbing
coils is reduced, the spring becomes stiffer and the rate
increases.

To benefit from the nonlinear performance of the variable
pitch spring, a symmetrical connecting type of spring is
proposed, as shown in Fig. 6(b). However, this configuration
has a linear stiffness part that is hard to eliminate. To obtain
the cubic stiffness of the NES system, the objective function
of the variable pitch spring is defined as:

F =

{
k0 · u (u ≤ st)
a3(u− st)3 + a1(u− st) + Pt (u > st)

(16)

where k0 is the stiffness of the linear phase, a3 is the expected
cubic value, a1 is the spring rate after the group in linear
phase is fully compressed to the ground block, Pt and st
represent the force and displacement of the transition point,
respectively.

To skip the linear phase, a method of pre-compressing
spring at the transition point is adopted. By changing the
initial origin point, the behaviors of two variable pitch
springs can belong one to the linear and one to the nonlinear
regime simultaneously.

By combining the two spring curves, a composed stiffness
curve is obtained and the force relation is:

fK = (a1 + k0) · u+ a3 · u3 (17)

Obviously, the new curve is smooth and no longer
piecewise (see Fig. 7). By adding the force of two variable
pitch springs (i.e. fK) to the force of the negative stiffness
mechanism (i.e. fp), the composed force of the NES system
is obtained:

F = (a1 + k0 − 2k
lp
l

) · u+ (a3 + k
(l + lp)

l3
) · u3 (18)

As can be seen from Eq. (18), if a1 + k0 = 2klp/l, the
linear component can be counterbalanced by the negative
stiffness mechanism. In this case, only the pure cubic term
of the equation will be left, and its coefficient will be larger
with the addition of two linear springs.

3 Design theory of variable pitch spring
Since the stiffness of a variable pitch spring is piecewise,
producing a smooth and nonlinear curve like that of a conical
spring is hard. Here, a method using special coordinate points
to fit the required stiffness curve is adopted. Depending on
the method of curve fitting, two types of shape providing
the polynomial components with only linear and cubic terms
are proposed: (1) each coil having a different pitch; (2) each
group of coils having a different pitch (see Fig. 8). The
detailed force characteristics of the two types are presented
in Fig. 9. For the first type, each coil is set with a different
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Figure 4. (a) Schematic of NES system with negative stiffness mechanism and nonlinear spring; (b) restoring force with respect to
the compressing length. Where the thick black line corresponds to the component of linear stiffness for the force characteristic of
case p < 0.
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Figure 5. Schematic of the sub-system and the corresponding force-displacement curves, with respect to the compressing length:
(a)(b) negative stiffness mechanism; (c)(d) nonlinear spring.

pitch. As one coil is fully compressed and becomes inactive,
a transition point occurs and the spring rate increases
considerably. By fitting the transition points on the objective
function curve, the pitch of each coil can be calculated.
However, the positions of these transition points cannot be
selected, which leads to the last pitch being exceptionally
large. As can be seen from Fig. 9(a), the last part is hard
to fit on the objective function.

To overcome this limitation, the second type is adopted.
Here, we allow some coils (usually the number is not an
integer) to have the same pitch, which leads to several groups
of ordinal linear springs being generated. By defining the
transition points of the piecewise curve averagely on the
nonlinear part, the stiffness in each piece will correspond
well to the required value (see Fig. 9(b)). In this method, the

number of transition points determines the number of groups
possessing the same pitch. Then the number of active coils
can be expressed by using the common formula:

na =
Ḡd4

8D3 · k0

(19)

where D, d and Ḡ represent the mean diameter of the
coils, the wire diameter and shear modulus of elasticity,
respectively. k0 is the initial stiffness when all coils are
active, as proposed in Eq. (16). Defining the total deflection
length of the spring as lf (lf > 2st), and the number of
spring groups in nonlinear regime as n, the interval of each
part in the nonlinear phase is obtained:

∆ =
lf − st
n

(20)
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Figure 6. Detailed realization of NES system: (a) negative
stiffness mechanism; (b) conical spring; (c) the composed
system.
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Figure 7. Force characteristics of two variable pitch springs
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the transition point. The red curve represents the composed
force.
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Figure 8. Two types of shape for variable pitch spring: (a) each
coil with a different pitch; (b) each group of coils with a different
pitch.

Within the interval of each part of the curve, the
displacement and the force of each transition point are given
by:

ui = st + i ·∆, i = 1..n

Fi = a3i
3 ·∆3 + a1i ·∆ + Pt

(21)

Then the detailed expression of each stiffness k1...kn
yields:

ki =
Fi − Fi−1

ui − ui−1
= a3(3i2 − 3i+ 1) ·∆2 + a1 (22)

tP

ts

0k u

3
3 1( ) ( )t t ta u s a u s P   

u

tP
0k u

ts u

(a)

(b)

F

F
3

3 1( ) ( )t t ta u s a u s P   

Figure 9. Force characteristics of variable pitch spring: (a)
each coil with a different pitch; (b) each group of coils with a
different pitch.

As the stiffness is held at ki, the remaining active coils
ni and the number of coils in each spring group n̄i can be
obtained:

ni =
Ḡd4

8D3 · ki
, n̄i = ni−1 − ni (23)

Once the number of coils in each group has been obtained,
the corresponding pitch can be calculated. When the force
reaches the transition point between the linear and nonlinear
parts, the first group of coils is fully compressed and its
corresponding pitch is:

t0 =
st
n

+ d (24)

When the force reaches the ith transition point of the
nonlinear regime, the ith group of coils is fully compressed
and its corresponding pitch is given by:

ti =
ui − ui−1

n̄i
+ ti−1 =

∆

n̄i
+ ti−1, i = 1..n (25)

By adding the length of each spring group to that of the
closed ends, the free length of the variable pitch spring is
obtained:

Lf =

na∑
i=1

niti + 1.5 · d (26)

Here, it is important to highlight that the free length should
satisfy the condition: λ = Lf/D ≤ 2.6, so that the variable
pitch spring will not buckle as the NES mass moves in a large
displacement.
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Table 1. Parameters of the variable pitch spring

Objective parameters

k0 160 N/m a1 165 N/m
a3 2.3× 105 N/m3 st 35 mm

Designed parameters

D 40 mm d 2 mm
G 7× 104 Mpa n 7
Lf 105.6 mm na 13.7

Pitch parameters

n̄i ti (mm) αi (o) ki (N/m) ui (mm)

1 4.56 2.08 160 35
2.65 5.01 2.28 173 40.75
2.96 5.59 2.55 218 46.5
2.17 6.40 2.92 309 52.25
1.42 7.57 3.45 446 58
0.93 9.23 4.20 629 63.75
0.62 11.48 5.22 857 69.5
1.93 14.45 6.56 1131 75.25

To illustrate the detailed realization of a NES system, an
example of the design of a variable pitch spring is presented
in Table 1. The objective parameters are achieved under a
given primary system specification, and detailed process can
be referred from [34]. The force-displacement equation of
the variable pitch spring corresponds to Eq. (16), in which
the force at the transition point is given by Pt = k0st. We
can note that the displacement of the transition point (i.e.
st) determines the maximum amplitude of the NES mass.
The number of spring groups in the nonlinear regime (i.e.
n) controls the accuracy of the curve fitting. The variable
pitch characteristics are detailed in a dedicated table as
follows. The columns from left to right show the number
of coils, the pitch, the helix angle, the stiffness and the
displacement of the corresponding transition point. As can be
seen, the pitch and helix angle of each spring group increase
monotonously, meaning that the pitch distribution has an
ascending order. To facilitate the manufacturing process, the
final pitch distribution is split to symmetrical shape, as shown
in Fig. 10. With this distribution, the number of spring groups
is increased but the stiffness curve keeps the same shape.

4 Experimental validation

4.1 Static test
Based on the design parameters of Table 1, the variable pitch
spring was manufactured, and its force characteristics test
were executed, as shown in Fig. 11(a). With this spring,
a NES system providing strongly nonlinear stiffness was
designed, the components of which were spherical plain
bearings, a linear guide, two variable pitch springs, two linear
springs and a NES mass. It is important to highlight that
the distance between each spring and the NES mass was
adjustable so that a suitable force shape could be reached.
Details of the NES experimental setup and the measuring
equipment are presented in Fig. 11(b). The NES mass

was held by a ring so that it could be connected to the
internal load cell of the force gauge. The force gauge has a
500 N capacity with 0.1% accuracy and 0.04 N resolution,
the handle allows a stroke of 2 mm per revolution, the
displacement transducer with digital display has a resolution
of 0.01 mm. With this experimental setup, the force could be
measured by turning the handle to control the deflection of
spring.

Fig. 11 (c) and (d) show the force characteristics of the
designed spring and the NES system. Based on curve fitting,
polynomial parameters of the force-displacement curves are
identified. Detailed comparison of parameters between the
objective and static test curve is presented in Table 2. As
can be seen, the manufactured spring curves and designed
piecewise curve correspond to the objective curve well.
The experimental curve of the NES system is close to the
objective cubic curve. Thus it can be concluded that the
design theory of variable pitch spring is efficient to produce
the anticipated nonlinearity for the NES system. Combining
variable pitch springs and a negative stiffness mechanism is
a feasible way to generate pure cubic stiffness. To enable
the anticipated nonlinearity to be obtained, enough pre-
compressed length should be reserved in both the variable
pitch and the linear springs. Moreover, buckling of the
negative stiffness mechanism should not be neglected during
the design procedure.
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Figure 10. Symmetrical type of pitch distribution for the spring

Table 2. Comparison of parameters between design and test

Variable pitch spring

F =

{
k0 · u (u ≤ st)
a3(u− st)3 + a1(u− st) + Pt (u > st)

k0 (N/m) a1 (N/m) a3 (N/m3) st (mm)
objective 160 165 2.3× 105 35
static test 160 218 1.9× 105 35

NES system
F = b0 + b1u+ b2u

2 + b3u
3

b0 (N/m) b1(N/m) b2 (N/m2 ) b3 (N/m3)
objective 0 0 0 4× 105

static test 0 62 161 3.7× 105
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Figure 11. (a) Manufactured variable pitch spring and measuring equipment; (b) details of the NES experimental setup and
measuring system; (c) force-displacement relation of the designed spring (d) force-displacement relation of the NES system.
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Figure 12. Experimental setup: (a) global scheme of the system and (b) detailed view of LO and NES.
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Figure 13. Experimental results: (a) frequency response curve of LO with (blue) and without (red) designed NES, G = 0.25 mm;
(b) frequency response curve of LO with (blue) and without (red) designed NES, G = 0.40 mm; (c) detailed view of response of LO
under frequency sweep test with G = 0.25 mm; (d) Strongly Modulated Response of LO (blue) and NES (green) with G = 0.25
mm, σ = 0.

4.2 Dynamic test

To verify the efficiency of the designed NES, an experimental
study to obtain the nonlinear frequency response function
of the system around the 1:1 resonance was performed.
The experimental setup is presented in Fig. 12. It consisted
of a linear oscillator (LO), with an embedded NES. The
whole system was fixed on a 10 kN electrodynamic shaker.
The displacement of the LO and NES, and the acceleration
of the shaker were measured by two contactless laser
displacement sensors and an accelerometer, respectively. The
raw signals were recorded using a digital oscilloscope and
a bandpass filter was applied to correct biases and suppress
high frequency noise. The parameters of the experimental
setup are given in Table 3.

The frequency response functions (FRF) under excitation
with G = 0.25 mm and G = 0.40 mm are illustrated in
Fig. 13 (a) and (b), respectively, where the thick blue and
the thin red lines represent the response of the LO with
and without the NES, x is the amplitude of LO, and A is

Table 3. Parameters of the experiment

Physical Parameters

m1 5.5 kg m2 0.1 kg
k1 1.15× 104 N/m k2 4× 105 N/m3

c1 3 Ns/m c2 0.4 Ns/m

Reduced Parameters

ε 1.8% λ2 0.088
λ1 0.66 K 1913

the displacement of response under time history. It can be
seen that the original peak of FRF has vanished, and the
RMS value of LO amplitude is obviously decreased with
vibration mitigation by the NES. As the excitation increases
further, the maximum amplitude of the LO remains at the
same value (5.3 mm). This result is contrary to that for the
traditional linear absorber, the tuned mass damper (TMD),
where the maximum amplitude of the LO is proportional to
the amplitude of excitation.

The time-displacement response of a frequency sweep test
under G = 0.25 mm is presented in Fig. 13(c). It shows
that the unsmooth blue curve in Fig. 13(a) corresponds
to the unstable fixed points, where a strongly modulated
response (SMR) occurs. A detailed view of the SMR is
presented in Fig. 13(d), where the displacements of the
LO increase and decrease alternately with the cyclical
activation and deactivation of the NES. In this process,
targeted energy transfer (TET) occurs and the energy is
irreversibly dissipated from the LO to the NES. Thus it
can be concluded that this type of NES can produce energy
pumping and is efficient to protect the primary system in
a large band of frequencies. Moreover, it performs well in
terms of controlling the maximum amplitude of the LO for
different types of excitation.

5 Conclusion
The ultimate goal of this paper is to propose a generalized
methodology for designing a novel NES with variable pitch
spring, so as to control the vibration of any primary system.
To this end, a generic NES system including the dynamical
and physical model is firstly investigated. Targeted energy
transfer (TET) of a 2 DOF system comprising a harmonically
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excited linear oscillator (LO) coupled with a cubic NES is
studied theoretically. Strongly modulated response is shown
to be beneficial for efficient TET. The physical configuration
of the NES system for obtaining strongly cubic stiffness
is introduced. Key features of the structure include: (i)
specifically sizing two variable pitch springs to provide the
force polynomial components with only linear and cubic
terms; (ii) pre-compressing the two springs at the transition
point to produce smooth nonlinear force characteristics; (iii)
adding a negative stiffness mechanism to counterbalance the
linear term. Secondly, to generate the variable pitch spring,
design parametrization is implemented. Two types of shape
are proposed to fit the objective force-displacement function.
Among them, the type where each group of coils has a
different pitch proves to produce the anticipated nonlinearity
well for the NES system. Finally, a special sized NES system
is developed, in which the distance between each spring and
the NES mass is adjustable so that a suitable force shape can
be reached. To verify the concept, identification of the force-
displacement relation is performed, and a good agreement
is observed between the theoretical and the experimental
result. Then experiments for the whole system embedded
on an electrodynamic shaker are studied. The results show
that this NES is efficient to protect the primary system in
a large band of frequencies. Moreover, it performs well in
terms of controlling the maximum amplitude of the LO for
different types of excitation, thus making it practical for the
application of passive vibration control.
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