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Introduction

Over recent decades, nonlinear vibration absorbers have advanced rapidly and show considerable potential in passive vibration control applications [START_REF] Lee | Passive non-linear targeted energy transfer and its applications to vibration absorption: a review[END_REF]. Particularly in the areas of aero-space and civil engineering, absorbers are required to be light and to work over a broad spectrum of frequencies, leading to increased interests in exploiting the absorber with different nonlinearities (e.g. vibro-impact, monostable duffing, non-polynomial and bistable oscillators) [START_REF] Karayannis | Vibro-impact attachments as shock absorbers[END_REF][START_REF] Manevitch | Oscillatory models of vibroimpact type for essentially non-linear systems[END_REF][START_REF] Benarous | Nonlinear energy sink with combined nonlinearities: Enhanced mitigation of vibrations and amplitude locking phenomenon[END_REF][START_REF] Lamarque | Targeted energy transfer in mechanical systems by means of nonsmooth nonlinear energy sink[END_REF][START_REF] Su | Stabilisation of the highenergy orbit for a non-linear energy harvester with variable damping[END_REF][START_REF] Su | On electrical optimisation using a duffing-type vibrational energy harvester[END_REF][START_REF] Romeo | Dynamics of a linear oscillator coupled to a bistable light attachment: Numerical study[END_REF]. Among such devices, the nonlinear absorber with cubic stiffness, also called the Nonlinear Energy Sink (NES), has proved to be effective for moderate-energy vibration mitigation [START_REF] Lee | Passive non-linear targeted energy transfer and its applications to vibration absorption: a review[END_REF]. This type of absorber is characterized by a secondary mass strongly coupled via a cubic stiffness to the primary system that needs to be protected [START_REF] Vakakis | Energy pumping in nonlinear mechanical oscillators: part ii: resonance capture[END_REF]. Because of the nonlinearity, irreversible Targeted Energy Transfer (TET) takes place from the main structure to the secondary mass, enabling the NES to be effective in a broad band of frequencies.

Targeted Energy Transfer mechanisms and the feasibility of NES in different applications have been analyzed in detail by [START_REF] Gendelman | Targeted energy transfer in systems with external and self-excitation[END_REF][START_REF] Ahmadabadi | Self-excited oscillations attenuation of drill-string system using nonlinear energy sink[END_REF][START_REF] Gourc | Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink[END_REF][START_REF] Luo | Large-scale experimental evaluation and numerical simulation of a system of nonlinear energy sinks for seismic mitigation[END_REF][START_REF] Luo | Realization of a strongly nonlinear vibration-mitigation device using elastomeric bumpers[END_REF][START_REF] Wang | Track nonlinear energy sink for rapid response reduction in building structures[END_REF]. In these approaches, the essential cubic stiffness was mostly achieved by adopting a construction of two linear springs with no pretension (e.g. a beam [START_REF] Kani | Design and performance analysis of a nonlinear energy sink attached to a beam with different support conditions[END_REF], a piano wire [START_REF] Mcfarland | Experimental study of non-linear energy pumping occurring at a single fast frequency[END_REF], a membrane [START_REF] Mariani | Toward an adjustable nonlinear low frequency acoustic absorber[END_REF] and helical springs [START_REF] Gourc | Experimental investigation and design optimization of targeted energy transfer under periodic forcing[END_REF]). Because of their self-geometric nonlinearity, the springs stretch in tension, thus creating the cubic force. However, this classical type of device cannot effectively take advantage of spring compression and tension, and the result is a large vertical structure attached to the main system. Addition of a relatively weak nonlinear stiffness existing at the beginning extension, leads to the whole cubic term being approximated to a linear term. Thus, implementing cubic stiffness elements in practice is still an important issue if the application of NES is to be broadened.

Nowadays, physical determination of the nonlinear forcedisplacement characteristics can be performed by two common methods. One is direct using nonlinear springs, such as conical springs, variable pitch springs, piecewise stiffness springs, and special sized beam segments [START_REF] Wahl | Mechanical springs[END_REF][START_REF] Paredes | Optimal design of conical springs[END_REF][START_REF] Jutte | Design of single, multiple, and scaled nonlinear springs for prescribed nonlinear responses[END_REF][START_REF] Paredes | Analytical and experimental study of conical telescoping springs with nonconstant pitch[END_REF][START_REF] Wang | A new computational model of large three-row roller slewing bearings using nonlinear springs[END_REF]. Various applications of these springs can be found in robotic joints, bandpass filters, vehicle suspensions and crashworthiness structures. The other method is to design a mechanism with variable stiffness. For example, Wu and Lan [START_REF] Wu | Linear variable-stiffness mechanisms based on preloaded curved beams[END_REF] proposed a linear variable stiffness mechanism with preloaded curved beams. Sönmez and Tutum [START_REF] Sönmez | A compliant bistable mechanism design incorporating elastica buckling beam theory and pseudo-rigid-body model[END_REF] introduced a compliant bistable mechanism with flexible beams. Chen and Lan [START_REF] Chen | An adjustable constant-force mechanism for adaptive end-effector operations[END_REF] designed an adjustable constant force mechanism for adaptive end effector operations. Stanton et al. [START_REF] Stanton | Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator[END_REF] developed a piezoelectric cantilever with a permanent magnet for the energy harvesting system. For these methods, a key issue to be satisfied for a NES is that the linear part of the force-displacement characteristics should be very small so as to ensure that the NES can adapt itself to the frequency of any primary system [START_REF] Ma | Nonlinear energy sinks with nontraditional kinds of nonlinear restoring forces[END_REF]. Whether it is possible to combine the advantage of nonlinear springs and variable stiffness mechanisms, so as to obtain strongly cubic stiffness without any linear part for the NES system. With this in mind, a generalized methodology for designing a novel NES with the proposed components is presented in this paper.

The structure of the paper is as follows. The first section is devoted to develop the generic model of the NES system, including the dynamical model for targeted energy transfer and the physical configuration. The next section provides a design theory of variable pitch spring under a given forcedisplacement function. In the third section, the designed springs and NES system are identified, and experiments for the whole system embedded on an electrodynamic shaker are performed. Finally, some concluding remarks are proposed.

Generic model of NES system

Dynamical model of NES system

The dynamic model of the NES system presented here is based on [START_REF] Gourc | Experimental investigation and design optimization of targeted energy transfer under periodic forcing[END_REF] and [START_REF] Gendelman | Attractors of harmonically forced linear oscillator with attached nonlinear energy sink i: Description of response regimes[END_REF]. The system is composed of a harmonically excited linear oscillator (LO) strongly coupled with a cubic NES (see Fig. 1) and is described by the following equations of motion: Substituting k 1 = m 1 ω 2 0 , t = τ /ω 0 and ω = Ωω 0 to equations (1):

     m 1 ẍ + k 1 x + c 1 ẋ + c 2 ( ẋ -ẏ) + k 2 (x -y) 3 = k 1 x e + c 1 ẋe m 2 ÿ + c 2 ( ẏ -ẋ) + k 2 (y -x) 3 = 0 (1) 
     ẍ + x + c1 m1ω0 ẋ + c2 m1ω0 ( ẋ -ẏ) + k2 m1ω 2 0 (x -y) 3 = Gcos(Ωτ ) -c1Ω m1ω0 Gsin(Ωτ ) m2 m1 ÿ + c2 m1ω0 ( ẏ -ẋ) + k2 m1ω 2 0 (y -x) 3 = 0 (2) 
Then introducing

c 1 = λ 1 m 2 ω 0 , c 2 = λ 2 m 2 ω 0 and k 2 = m 2 ω 2 0 K to Eqs. (2):      ẍ + x + λ1m2 m1 ẋ + λ2m2 m1 ( ẋ -ẏ) + Km2 m1 (x -y) 3 = Gcos(Ωτ ) -λ1m2Ω m1 Gsin(Ωτ ) m2 m1 ÿ + λ2m2 m1 ( ẏ -ẋ) + Km2 m1 (y -x) 3 = 0 (3) 
Substituting m 2 /m 1 = and G = F to Eqs. (3):

     ẍ + x + λ 1 ẋ + λ 2 ( ẋ -ẏ) + K (x -y) 3 = F cos Ωτ -2 F λ 1 Ωsin(Ωτ ) ÿ + λ 2 ( ẏ -ẋ) + K (y -x) 3 = 0 (4) 
where the term containing 2 is so small that it can be eliminated. The system of equations ( 1) can be finally reduced to the dimensionless form:

ẍ + x + λ 1 ẋ + λ 2 ( ẋ -ẏ) + K (x -y) 3 = F cos Ωτ ÿ + λ 2 ( ẏ -ẋ) + K (y -x) 3 = 0 (5) 
The corresponding physical parameters of rescailing process are expressed as follows: v = x + y, w = x -y

= m 2 m 1 , ω 0 2 = k 1 m 1 , K = k 2 m 2 ω 0 2 , λ 1 = c 1 m 2 ω 0 , λ 2 = c 2 m 2 ω 0 , F = G , Ω = ω ω 0 , τ = ω 0 t ( 
Substituting Eqs. ( 7) into Eqs. ( 5):

         v + λ 1 v + ẇ 1 + + v + w 1 + = F cos Ωτ ẅ + λ 1 v + ẇ 1 + + v + w 1 + + λ 2 (1 + ) ẇ + K (1 + ) w 3 = F cos Ωt ( 8 
)
The system is studied in the vicinity of the 1:1 resonance, where both the LO and the NES execute time-periodic oscillations with identical frequency Ω. To obtain the analytical periodic solution, two new complex variables are introduced:

φ 1 e iΩτ = v + iΩv, φ 2 e iΩτ = ẇ + iΩw (9) 
Substituting Eqs. (9) into Eqs. ( 8) and keeping only the secular term containing e iΩτ yields the following slowly modulated system:

             φ1 + iΩ 2 φ 1 + λ 1 (φ 1 + φ 2 ) 2(1 + ) - i(φ 1 + φ 2 ) 2Ω(1 + ) - F 2 = 0 φ2 + iΩ 2 φ 2 + λ 1 (φ 1 + φ 2 ) 2(1 + ) - i (φ 1 + εφ 2 ) 2Ω(1 + ) - F 2 + λ 2 (1 + )φ 2 2 - 3iK (1 + ) φ 2 2 φ2 8Ω 3 = 0 (10) 
In the context of energy pumping, the mass ratio is taken to be small (≈ 1%). In this case, Eq. ( 10) can be analysed by a perturbation method with respect to this small parameter. For this purpose, the method of multiple scales [START_REF] Vakakis | Targeted Energy Transfer in Mechanical and Structural Systems[END_REF][START_REF] Nayfeh | Introduction to perturbation techniques[END_REF] is introduced in the following form:

φ i = φ i (τ 0 , τ 1 , + . . .), d dτ = ∂ ∂τ 0 + ∂ ∂τ 1 + . . . τ k = k τ, k = 0, 1, . . . (11) 
Substituting Eqs. [START_REF] Ahmadabadi | Self-excited oscillations attenuation of drill-string system using nonlinear energy sink[END_REF] into Eqs. [START_REF] Gendelman | Targeted energy transfer in systems with external and self-excitation[END_REF] and equating coefficients of 0 gives:

∂ ∂τ 0 φ 1 = 0 ∂ ∂τ 0 φ 2 + λ 2 2 φ 2 + i 2 (φ 2 -ϕ 1 ) - 3iK 8 φ 2 2 |φ 2 | = 0 (12)
Then we introduce the new variables as follows:

φ 1 (τ 1 ) = N 1 e iθ1 , φ 2 (τ 1 ) = N 2 e iθ2 (13) 
With this change of variables in Eqs. [START_REF] Gourc | Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink[END_REF], a topological structure of slow invariant manifold (SIM) is obtained in the following form:

N 2 10 = (1 + λ 2 2 )N 2 20 - 3K 2 N 4 20 + 9K 2 16 N 6 20 (14) 
where N 10 , N 20 correspond to the amplitude of LO and NES in slow time scale, respectively. According to [START_REF] Starosvetsky | Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry[END_REF], the SIM structure admits two extrema (N 21 and N 22 ) and can be divided into two stable branches and one unstable branch, where the unstable branch of the SIM is mainly responsible for the possible occurrence of energy pumping and may give rise to the strongly modulated response (SMR).

To illustrate this mechanism, a strongly modulated response and its corresponding wavelet transform are presented in Fig. 2. A quasi-periodic response with slow variation of the amplitudes of both oscillators is observed. In this regime, the procedure of energy pumping can be classified as follows: (1) nonlinear beating, where a small amplitude of NES corresponds to the growth of LO amplitude; (2) transient resonance capture, with the frequency component of 1:1 resonance (see Fig. 2(b)), in this case large targeted energy is extracted and dissipated by NES, leading to a fast decrease of the LO amplitude; (3) escape from resonance capture, in which the NES crosses the bifurcation and is quickly attracted to the low branch of SIM (see Fig. 3), which leads to a jump down for the energy of the NES. This SMR regime demonstrates the irreversible targeted energy transfer from LO to NES, which suppresses energy more efficiently than a steady state response.

Physical model of NES system

The physical NES model developed in this paper is presented in Fig. 4(a). It consists of a nonlinear characteristic part and a negative stiffness mechanism. The negative stiffness mechanism is created by two linear springs hinged together at one end with the mass of the NES, while the other ends, subjected to two equivalent preloads P , are allowed to move freely in frictionless horizontal channels.

As the two linear springs are subjected only to horizontal forces, their force on the axial spring is zero. From the equilibrium position, an external force (i.e. F ) is applied to generate an upward displacement (i.e. u) of the output link. Within an operating region of the linear spring, the stiffness curve depends on the preload p. The three F -u curves in Fig. 4(b) denote the NES system with different lateral preloads. The corresponding force-displacement curves of the two horizontal springs and the vertical spring are presented in Fig. 5 (b) and(d), respectively. From the curve with no preload, a positive preload decreases the linear stiffness, whereas a negative preload increases it. As can be seen from Fig. 4(b), the force characteristic of case p < 0 is almost dominated by its component of linear stiffness (i.e. the thick black line). Thus, to obtain strong (nonlinearizable) nonlinearity, the negative stiffness mechanism with p > 0 is adopted.

A detailed realization of the NES system is presented in Fig. 6, where the negative stiffness mechanism is implemented by two cylindrical compression springs having free length l 0 . After pre-compressing to the length l (see Fig. 6(a)), the force-displacement relation with the Taylor expansion is expressed as:

f p = 2k l p l • u -k (l + l p ) l 3 • u 3 (15) 
For the axial direction, the nonlinear characteristic part is realized by two variable pitch springs. Unlike ordinary compression springs, variable pitch springs are designed to have a nonlinear spring rate. These springs can have multiple rates or a progressively increasing spring rate as the spring compresses. Since the pitch is varied, some of the coils close up faster than the rest and become inactive, meaning that they no longer absorb the compressive energy resulting from applied forces. When the amount of active energy absorbing coils is reduced, the spring becomes stiffer and the rate increases.

To benefit from the nonlinear performance of the variable pitch spring, a symmetrical connecting type of spring is proposed, as shown in Fig. 6(b). However, this configuration has a linear stiffness part that is hard to eliminate. To obtain the cubic stiffness of the NES system, the objective function of the variable pitch spring is defined as:

F = k 0 • u (u ≤ s t ) a 3 (u -s t ) 3 + a 1 (u -s t ) + P t (u > s t ) (16) 
where k 0 is the stiffness of the linear phase, a 3 is the expected cubic value, a 1 is the spring rate after the group in linear phase is fully compressed to the ground block, P t and s t represent the force and displacement of the transition point, respectively.

To skip the linear phase, a method of pre-compressing spring at the transition point is adopted. By changing the initial origin point, the behaviors of two variable pitch springs can belong one to the linear and one to the nonlinear regime simultaneously.

By combining the two spring curves, a composed stiffness curve is obtained and the force relation is:

f K = (a 1 + k 0 ) • u + a 3 • u 3 (17) 
Obviously, the new curve is smooth and no longer piecewise (see Fig. 7). By adding the force of two variable pitch springs (i.e. f K ) to the force of the negative stiffness mechanism (i.e. f p ), the composed force of the NES system is obtained:

F = (a 1 + k 0 -2k l p l ) • u + (a 3 + k (l + l p ) l 3 ) • u 3 (18)
As can be seen from Eq. ( 18), if a 1 + k 0 = 2kl p /l, the linear component can be counterbalanced by the negative stiffness mechanism. In this case, only the pure cubic term of the equation will be left, and its coefficient will be larger with the addition of two linear springs.

Design theory of variable pitch spring

Since the stiffness of a variable pitch spring is piecewise, producing a smooth and nonlinear curve like that of a conical spring is hard. Here, a method using special coordinate points to fit the required stiffness curve is adopted. Depending on the method of curve fitting, two types of shape providing the polynomial components with only linear and cubic terms are proposed: (1) each coil having a different pitch; (2) each group of coils having a different pitch (see Fig. 8). The detailed force characteristics of the two types are presented in Fig. 9. For the first type, each coil is set with a different pitch. As one coil is fully compressed and becomes inactive, a transition point occurs and the spring rate increases considerably. By fitting the transition points on the objective function curve, the pitch of each coil can be calculated. However, the positions of these transition points cannot be selected, which leads to the last pitch being exceptionally large. As can be seen from Fig. 9(a), the last part is hard to fit on the objective function.

To overcome this limitation, the second type is adopted. Here, we allow some coils (usually the number is not an integer) to have the same pitch, which leads to several groups of ordinal linear springs being generated. By defining the transition points of the piecewise curve averagely on the nonlinear part, the stiffness in each piece will correspond well to the required value (see Fig. 9(b)). In this method, the number of transition points determines the number of groups possessing the same pitch. Then the number of active coils can be expressed by using the common formula:

n a = Ḡd 4 8D 3 • k 0 ( 19 
)
where D, d and Ḡ represent the mean diameter of the coils, the wire diameter and shear modulus of elasticity, respectively. k 0 is the initial stiffness when all coils are active, as proposed in Eq. ( 16). Defining the total deflection length of the spring as l f (l f > 2s t ), and the number of spring groups in nonlinear regime as n, the interval of each part in the nonlinear phase is obtained: Within the interval of each part of the curve, the displacement and the force of each transition point are given by:

∆ = l f -s t n (20) 
u i = s t + i • ∆, i = 1..n F i = a 3 i 3 • ∆ 3 + a 1 i • ∆ + P t ( 21 
)
Then the detailed expression of each stiffness k 1 ...k n yields: As the stiffness is held at k i , the remaining active coils n i and the number of coils in each spring group ni can be obtained:

k i = F i -F i-1 u i -u i-1 = a 3 (3i 2 -3i + 1) • ∆ 2 + a 1 ( 22 
) t P t s 0 k u 3 3 1 ( ) ( ) t t t a u s a u s P     u t P 0 k u t s u (a) (b) F F 3 3 1 ( ) ( ) t t t a u s a u s P    
n i = Ḡd 4 8D 3 • k i , ni = n i-1 -n i ( 23 
)
Once the number of coils in each group has been obtained, the corresponding pitch can be calculated. When the force reaches the transition point between the linear and nonlinear parts, the first group of coils is fully compressed and its corresponding pitch is:

t 0 = s t n + d ( 24 
)
When the force reaches the i th transition point of the nonlinear regime, the i th group of coils is fully compressed and its corresponding pitch is given by:

t i = u i -u i-1 ni + t i-1 = ∆ ni + t i-1 , i = 1..n (25)
By adding the length of each spring group to that of the closed ends, the free length of the variable pitch spring is obtained:

L f = na i=1 n i t i + 1.5 • d (26)
Here, it is important to highlight that the free length should satisfy the condition: λ = L f /D ≤ 2.6, so that the variable pitch spring will not buckle as the NES mass moves in a large displacement. To illustrate the detailed realization of a NES system, an example of the design of a variable pitch spring is presented in Table 1. The objective parameters are achieved under a given primary system specification, and detailed process can be referred from [START_REF] Qiu | Tuned nonlinear energy sink with conical spring: Design theory and sensitivity analysis[END_REF]. The force-displacement equation of the variable pitch spring corresponds to Eq. ( 16), in which the force at the transition point is given by P t = k 0 s t . We can note that the displacement of the transition point (i.e. s t ) determines the maximum amplitude of the NES mass. The number of spring groups in the nonlinear regime (i.e. n) controls the accuracy of the curve fitting. The variable pitch characteristics are detailed in a dedicated table as follows. The columns from left to right show the number of coils, the pitch, the helix angle, the stiffness and the displacement of the corresponding transition point. As can be seen, the pitch and helix angle of each spring group increase monotonously, meaning that the pitch distribution has an ascending order. To facilitate the manufacturing process, the final pitch distribution is split to symmetrical shape, as shown in Fig. 10. With this distribution, the number of spring groups is increased but the stiffness curve keeps the same shape.

Experimental validation

Static test

Based on the design parameters of Table 1, the variable pitch spring was manufactured, and its force characteristics test were executed, as shown in Fig. 11(a). With this spring, a NES system providing strongly nonlinear stiffness was designed, the components of which were spherical plain bearings, a linear guide, two variable pitch springs, two linear springs and a NES mass. It is important to highlight that the distance between each spring and the NES mass was adjustable so that a suitable force shape could be reached. Details of the NES experimental setup and the measuring equipment are presented in Fig. 11(b). The NES mass was held by a ring so that it could be connected to the internal load cell of the force gauge. The force gauge has a 500 N capacity with 0.1% accuracy and 0.04 N resolution, the handle allows a stroke of 2 mm per revolution, the displacement transducer with digital display has a resolution of 0.01 mm. With this experimental setup, the force could be measured by turning the handle to control the deflection of spring.

Fig. 11 (c) and (d) show the force characteristics of the designed spring and the NES system. Based on curve fitting, polynomial parameters of the force-displacement curves are identified. Detailed comparison of parameters between the objective and static test curve is presented in Table 2. As can be seen, the manufactured spring curves and designed piecewise curve correspond to the objective curve well. The experimental curve of the NES system is close to the objective cubic curve. Thus it can be concluded that the design theory of variable pitch spring is efficient to produce the anticipated nonlinearity for the NES system. Combining variable pitch springs and a negative stiffness mechanism is a feasible way to generate pure cubic stiffness. To enable the anticipated nonlinearity to be obtained, enough precompressed length should be reserved in both the variable pitch and the linear springs. Moreover, buckling of the negative stiffness mechanism should not be neglected during the design procedure. , , m k c 

F = k 0 • u (u ≤ s t ) a 3 (u -s t ) 3 + a 1 (u -s t ) + P t (u > s t ) k 0 (N/m) a 1 (N/m) a 3 (N/m

Dynamic test

To verify the efficiency of the designed NES, an experimental study to obtain the nonlinear frequency response function of the system around the 1:1 resonance was performed. The experimental setup is presented in Fig. 12. It consisted of a linear oscillator (LO), with an embedded NES. The whole system was fixed on a 10 kN electrodynamic shaker. The displacement of the LO and NES, and the acceleration of the shaker were measured by two contactless laser displacement sensors and an accelerometer, respectively. The raw signals were recorded using a digital oscilloscope and a bandpass filter was applied to correct biases and suppress high frequency noise. The parameters of the experimental setup are given in Table 3.

The frequency response functions (FRF) under excitation with G = 0.25 mm and G = 0.40 mm are illustrated in Fig. 13 (a) and (b), respectively, where the thick blue and the thin red lines represent the response of the LO with and without the NES, x is the amplitude of LO, and A is As the excitation increases further, the maximum amplitude of the LO remains at the same value (5.3 mm). This result is contrary to that for the traditional linear absorber, the tuned mass damper (TMD), where the maximum amplitude of the LO is proportional to the amplitude of excitation. The time-displacement response of a frequency sweep test under G = 0.25 mm is presented in Fig. 13(c). It shows that the unsmooth blue curve in Fig. 13(a) corresponds to the unstable fixed points, where a strongly modulated response (SMR) occurs. A detailed view of the SMR is presented in Fig. 13(d), where the displacements of the LO increase and decrease alternately with the cyclical activation and deactivation of the NES. In this process, targeted energy transfer (TET) occurs and the energy is irreversibly dissipated from the LO to the NES. Thus it can be concluded that this type of NES can produce energy pumping and is efficient to protect the primary system in a large band of frequencies. Moreover, it performs well in terms of controlling the maximum amplitude of the LO for different types of excitation.

Conclusion

The ultimate goal of this paper is to propose a generalized methodology for designing a novel NES with variable pitch spring, so as to control the vibration of any primary system. To this end, a generic NES system including the dynamical and physical model is firstly investigated. Targeted energy transfer (TET) of a 2 DOF system comprising a harmonically excited linear oscillator (LO) coupled with a cubic NES is studied theoretically. Strongly modulated response is shown to be beneficial for efficient TET. The physical configuration of the NES system for obtaining strongly cubic stiffness is introduced. Key features of the structure include: (i) specifically sizing two variable pitch springs to provide the force polynomial components with only linear and cubic terms; (ii) pre-compressing the two springs at the transition point to produce smooth nonlinear force characteristics; (iii) adding a negative stiffness mechanism to counterbalance the linear term. Secondly, to generate the variable pitch spring, design parametrization is implemented. Two types of shape are proposed to fit the objective force-displacement function. Among them, the type where each group of coils has a different pitch proves to produce the anticipated nonlinearity well for the NES system. Finally, a special sized NES system is developed, in which the distance between each spring and the NES mass is adjustable so that a suitable force shape can be reached. To verify the concept, identification of the forcedisplacement relation is performed, and a good agreement is observed between the theoretical and the experimental result. Then experiments for the whole system embedded on an electrodynamic shaker are studied. The results show that this NES is efficient to protect the primary system in a large band of frequencies. Moreover, it performs well in terms of controlling the maximum amplitude of the LO for different types of excitation, thus making it practical for the application of passive vibration control.
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Figure 1 .

 1 Figure 1. Schematic of a harmonically excited LO coupled with a cubic NES

6 )Figure 2 .

 62 Figure 2. Cubic NES under periodic forcing with parameters K = 2400, λ1 = 0.8, λ2 = 0.2, = 0.015, G = 0.3 mm and initial conditions x0 = 0, ẋ0 = 0, y0 = 0 and ẏ0 = 0. (a) time-displacement of LO and NES; (b) wavelet transform of LO and NES. The states of 1, 2 and 3 represent the regime of nonlinear beating, transient resonance capture and escape from resonance capture, respectively.

22 Figure 3 .

 223 Figure 3. SIM structure (blue line) and the transient projection motion of SMR (red line). The states 1, 2 and 3 represent the regime of nonlinear beating, transient resonance capture and escape from resonance capture, respectively.

FFFigure 4 .FFFigure 5 .

 45 Figure 4. (a) Schematic of NES system with negative stiffness mechanism and nonlinear spring; (b) restoring force with respect to compressing length. Where the thick black line corresponds to the component of linear stiffness for the force characteristic of case p < 0.

Figure 6 .FFigure 7 .

 67 Figure 6. Detailed realization of NES system: (a) negative stiffness mechanism; (b) conical spring; (c) the composed system.

Figure 8 .

 8 Figure 8. Two types of shape for variable pitch spring: (a) each coil with a different pitch; (b) each group of coils with a different pitch.

Figure 9 .

 9 Figure 9. Force characteristics of variable pitch spring: (a) each coil with a different pitch; (b) each group of coils with a different pitch.

Figure 10 .

 10 Figure 10. Symmetrical type of pitch distribution for the spring

FFigure 11 .

 11 Figure 11. (a) Manufactured variable pitch spring and measuring equipment; (b) details of the NES experimental setup and measuring system; (c) force-displacement relation of the designed spring (d) force-displacement relation of the NES system.

Figure 12 .Figure 13 .

 1213 Figure 12. Experimental setup: (a) global scheme of the system and (b) detailed view of LO and NES.

Table 1 .

 1 Parameters of the variable pitch spring

		Objective parameters	
	k 0	160 N/m	a 1 165 N/m
	a 3 2.3 × 10 5 N/m 3 s t	35 mm
		Designed parameters	
	D		40 mm	d	2 mm
	G	7 × 10 4 Mpa	n	7
	L f	105.6 mm	n a	13.7
			Pitch parameters	
	ni	t i (mm) α i ( o ) k i (N/m) u i (mm)
	1	4.56	2.08	160	35
	2.65	5.01	2.28	173	40.75
	2.96	5.59	2.55	218	46.5
	2.17	6.40	2.92	309	52.25
	1.42	7.57	3.45	446	58
	0.93	9.23	4.20	629	63.75
	0.62	11.48	5.22	857	69.5
	1.93	14.45	6.56	1131	75.25

Table 2 .

 2 Comparison of parameters between design and test

	Variable pitch spring

Table 3 .

 3 Parameters of the experiment

		Physical Parameters	
	m 1	5.5 kg	m 2	0.1 kg
	k 1 1.15 × 10 4 N/m k 2 4 × 10 5 N/m 3
	c 1	3 Ns/m	c 2	0.4 Ns/m
		Reduced Parameters	
	ε	1.8%	λ 2	0.088
	λ 1	0.66	K	1913
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