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Multiscale elastic properties of graphene for moderate deformations
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Abstract — A multiscale approach to simulate graphene combining molecular mechanics and con-
tinuum mechanics is presented. A series of virtual expermiments is performed first, to develop com-
putationally cheaper, substitute continuum model of the discrete molecular model of pristine graphene.
Continuum and molecular models are then coupled providing the means to simulate a defected graphene
while keeping the computational cost.
Key-words — graphene, virtual tests, elastic properties, molecular mechanics.

1 Introduction

Nanoscale systems and processes based on graphene [1] are becoming more viable for engineering ap-
plications, however, our ability to model their performance remains limited. The main challenge is that
parts of graphene-based devices modelled with discreet models (such as molecular mechanics (MM) and
molecular dynamics (MD) ) typically contain extremely large number of particles, even though the actual
physical dimension may be quite small. We focus in this work upon the MM neglecting both the dynamic
effects and the thermal effects, used for quasi-static loading applications with the assumption of the zero
Kelvin temperature. The equilibrium configuration of graphene corresponds to a state of minimum en-
ergy of the particle system. It is assumed here that the initial configuration is at equilibrium. Moreover,
for the MM model we use classical interatomic potential depending on the position of atomic nucleus,
namely modified Morse potential (see [2, 3]). Regardless of the above assumptions, following explicitly
the trajectory for large number of degrees of freedom easily becomes intractable. Thus we reach for:
1. A substitute, continuum model which models the average mechanical behaviour of atomic system
(in Sec. 2), and 2. A coupled multiscale (MS) model consisting of developed continuum and molecular
model (in Sec. 3).

2 Continuum modeling of graphene

We tend here to give a combined MM and continuum approach for the study of the in plane mechanical
behaviour of single layer graphene sheet under moderate deformations. We note that continuum model of
graphene is extremely simplified, however, experimental investigation [4] show that graphene undergos
large deformations, with highly nonlinear behavior and still remain elastic, with stable bonds and intact
bond topology. Thus continuum modeling brings insight and quantitative information on the relevant
physical phenomena, and seams optimal for the current and potential future applications. This further
allows us to adapt and use a finite strain elastic model for the large range of phenomena and motivates
us to benefit from somewhat simplified nonlinear membrane theory. We seek to adjust the nonlinear
membrane theory which includes, as a special case, the hyperelastic model in terms of strain energy
density (SED), W , as a function of principal stretches W (λ1,λ2). This is an elegant alternative for
the construction of the elastic constitutive response that satisfies the material indifference and isotropy
restrictions (often used to characterise rubberlike materials [5]). In order to construct SED potential
Wfit(λ1,λ2), we determine the equilibrium potential energy of atomistic system for the series of biaxial
loading cases performed on lattice sample, see Fig. 1 (left). The loading cases are designed to form the
uniform grid in the space of λ1,λ2 resulting with the cloud of points shown as dots in Fig. 1 (right).
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These results are further used to perform a surface fit given as Wfit(λ1,λ2). With this result in hand, we
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Figure 1: Scheme of the lattice sample with symmetry BCs used for biaxial tensile tests. The envelope
of the sample is composed of lines Li which coincides with boundary atoms (left). The surface fit W of
SED obtained by series of biaxial tests performed by MM simulation.

can calculate the second Piola-Kirchhoff stress tensor (S) and the elastic tangent modulus (C)

S :=
2

∑
i=1

1
λi

∂W (λ1,λ2)

∂λi︸ ︷︷ ︸
si

ni⊗ni, C := 2
2

∑
i=1

∂si

∂C
ni⊗ni +2

2

∑
i=1

si
∂

∂C
(ni⊗ni). (1)

Note that the matrix representations of these results can further be directly used for the calculation of
the internal force vector and the element tangent stiffness matrix of the standard 2D large displacements
elastic membrane finite element. Having the continuum description of the graphene behavior we turn to
the coupling of molecular and continuum.

3 Multiscale atomistic-to-continuum coupling

In this paper coupling is based on the bridging domain (BD) method [6]. The basic idea is to divide
the computational domain Ω in three subdomains, atomistic Ωa, continuum Ωc and their overlap Ωb =
Ωa∩Ωc, where the compatibility is enforced by Lagrange multiplier (LM) method. The total potential
energy of the system can be written as

Etot,w = Ea
tot,w(d)+Ec

tot,w(u), (2)

where d and u are displacement vectors in the atomistic and continuum domains, respectively, and w in
sequel denotes the energy weighting in Ωb. The weighted atomistic and continuum energies are defined
as

Ea
tot,w =∑

i

(
∑
j 6=i

wa
i jVp + ∑

j 6=k 6=i
wa

i Vθ

)
− ∑

i∈Ωa

wa
i f̄i ·di, (3)

Ec
tot,w =

∫
Ωc

wc(X)WdΩ
c−

∫
Ωc

wc(X)u ·bdΩ
c−

∫
Γc

σ

wc(X)u · t̄dΓ
c, (4)

where Vp and Vθ comes from interatomic potential (see [3]), and t̄, b is related to continuum tractions and
volume forces, while f̄i denotes point forces on atom i. In order to enforce the compatibility between the
atomistic and continuum domains, the coupling term, in terms of energy, is added to total energy forming

WL := Etot,w +C = Etot,w +
∫

Ωb
α1λ · (u−db)+α2∇λ(∇u−∇db)dΩ. (5)

where the choice of the weighting parameters α1 and α2 determines the coupling by mixing the dis-
placement and strain coupling terms, db(X) is the interpolated atomistic displacement field in Ωb, and λ
denotes LM field.
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We give next the weak form of the coupling problem. Let V a and V a
0 be the sets of trial (d) and test

(w) functions in Ωa, respectively. Analogously, for the continuum domain let the standard space of ad-
missible solutions be V and the space of test functions V0. Furthermore, the space of LM is denoted as
M = {λ,µ ∈ H1(Ω)}. We further proceed to the minimising of the functional in (5) which leads to the
saddle point problem, which can be written in terms of its weak form:
Find (u,d,λ) ∈ V ×V a×M such that

Gc
w(u;v)+Ga

w(d;w)+(λ,v−wb
i|i∈Ωb

)C = 0 ∀(v,w) ∈ V0×V a
0 ,

(µ,u−db)C = 0 ∀µ ∈M , (6)

where wb denotes interpolated test atom displacement field, and the terms defining the weak form of
equilibrium with the scaling in the overlap are as follows

Gc
w(u;v) :=

∫
Ωc

wc
∇

sv ·σ(∇su)dΩ−
∫

Ωc
wcv ·bdΩ−

∫
Γc

σ

wcv · t̄dΓ, (7)

Ga
w(d;w) := ∑

i∈Ωa

(
∑
j 6=i

wa
i j

∂Vp

∂di
·wi + ∑

j 6=k 6=i
wa

i
∂Vθ

∂di
·wi

)
− ∑

i∈Ωa

wa
i f̄i ·wi. (8)

The numerical implementation of the given coupling formulation pertains to the choice of the standard
finite element and LM field approximation with corresponding shape functions (for the details see [7]).

We give next one numerical example of graphene sheet with initial crack-like defect, where the defect
is modeled simply by removing a line of bonds parallel with the vertical direction. The coupled model
will be compared with the fully molecular, see both models in Fig. 2. Moreover, we present the energy

0 50 100

−80

−60

−40

−20

0

20

40

60

80

0 50 100

−80

−60

−40

−20

0

20

40

60

80

Figure 2: Graphene sheet with a hypothetical initial crack modeled using the fully molecular model (left)
consisting of 10960 atoms and coupled model (right) with the size of atomistic domain 67.4×48.7 Å.

error convergence, as a basis for adaptivity procedure, with the increase of the Ωa, for the mode-I type
loading of the model from Fig. 2. Thus we define the global the global measure of the energy error as

eE =
‖ε−εref‖Ωa\Ωb

‖εref‖Ω

, ‖ε‖= 1
na

na

∑
i
εi :C : εi, (9)

where εref is the strain from the fully molecular model. The description of the models presented in the
following results is given in Table 1 for the three different sizes of the Ωa, and referential model. Model
parameters are: number of atoms na, number of FE nodes nn, number of LM nodes nλ, number of degrees
of freedom ndo f = 2(na +nn +nλ).
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Table 1: The data for the models 1, 2 and 3 used in convergence study. The size of the atomistic domain
is defined by L1×L3 and given in Å.

id ref 1 2 3
na 10960 1368 2080 2920
nn 0 360 343 322
nλ 0 38 46 54

ndo f 21920 3532 4938 6592
L1 163.7134 67.4100 77.0400 86.6700
L3 165.4100 48.6500 65.3300 82.0100

Not surprisingly the convergence is achieved as the size of the molecular domain is increased see
Figure 3, where the type of coupling and weighting influences the error (for details see [7]).
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Figure 3: Convergence of the energy error eE given for different molecular domain dimensions and the
different couplings from (5) (L2 (α1 = 1,α2 = 0), H1 (α1 = 1,α2 = 1)).

To conclude, we note that for the model denoted as 1 in the Table 1 ndo f is reduced by 84%, while
the corresponding solution yields negligible error (less then 0.25%) with respect to the fully atomistic
model showing really good performance of the modeling strategy.
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