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Abstract. This research is a first step towards designing a numerical strategy capable
of assessing the nocivity of a small defect in terms of its size and position in the
structure with low computational cost, using only a mesh of the defect-free reference
structure. The proposed strategy aims at taking into account the modification induced
by the presence of a small inhomogeneity through displacement field correction using
an asymptotic analysis. Such an approach would allow to assess the criticality of
defects by introducing trial micro-defects with varying positions, sizes and mechanical
properties.

1 Introduction
The role played by defects in the initiation and development of rupture is crucial and

has to be taken into account in order to realistically describe the behavior till complete
failure. The difficulties in that context revolve around (i) the fact that the defect length scale
is much smaller than the structure length scale, and (ii) the random nature of their position
and size. Even in a purely deterministic approach, taking those defects into consideration
by standard models imposes to resort to geometrical discretisations at the defect scale,
leading to very costly computations and hindering parametric studies in terms of defect
location and characteristics.

Our current goal is to design an efficient two-scale numerical strategy which can ac-
curately predict the perturbation in terms of displacement concentration caused by an in-
homogeneity in elastic (background) material given by elasticity tensor (C). To make it
computationally efficient, the analysis uses only a mesh for the defect-free structure, i.e.
the mesh size does not depend on the (small) defect scale. The latter is instead taken into
account by means of a multiscale asymptotic expansion (see e.g. [4, 5]), in which the
concept of elastic moment tensor (EMT) [3, 1] plays an important role.

2 Problem definition
The main feature of the proposed approach is as briefly stated in the introduction to

accurately predict the perturbation caused by an inhomogeneity in elastic (background)



material, without explicitly modeling it. That is, we consider an elastic body occupying
a smooth bounded domain Ω ⊂ R3 characterized by elasticity tensor C, as depicted in
Figure 1 a), and we seek the solution of the background problem, given below. Hav-
ing this solution in hand, we proceed with the asymptotic expansion of the displacement
perturbation. Adding these two elements together should correspond to what we call the
transmission (perturbed) problem, without really solving it. The transmission problem for
a small trial inhomogeneity involves a small elastic (C?) inhomogeneity located at z ∈ Ω,
of characteristic linear size a, occupying the domain Ba := z + aB, where B ⊂ R3 is
a smooth fixed domain centered at the origin and defines the inhomogeneity shape, see
Figure 1 b). The elastic properties of the whole solid are defined as

Figure 1: Model scheme showing the geometric setting, that is, unperturbed a) and perturbed b)
domains, Ω and Ωa, respectively. The inhomogeneity Ba located at z is the shaded subdomain in

(b).

Ca := CχΩ\Ba
+ C?χBa , (1)

where χD is the characteristic function of a domain D. For the later reference we also
introduce the material contrast, or elastic tensor perturbation, as ∆C = C? − C.

Background solution. The background solution in terms of displacement field u aris-
ing in the reference solid Ω due to prescribed excitation (f , t̄, ū), is defined by the problem

div(C : ε[u]) + f = 0 in Ω, t[u] = t̄ on ΓN , u = ū on ΓD, (2)

where ΓN and ΓD typically denote Neumann and Dirichlet parts of boundary, while ε[w]
and t[w] are linearized strain tensor and traction vector associated with a given displace-
ment w, which are defined as

(a) ε[u] = ∇symu, (b) t[u] = (C : ε[u]) · n, (3)

with n being the unit outward normal to ΓN .

Transmission solution The displacement field ua arising in the solid containing the
small inhomogeneity Ba due to the same prescribed excitation (f , t̄, ū), solves the trans-
mission problem with elastic properties distributed as in (1)

(a) div(Ca : ε[ua]) + f = 0 in Ω, (b) t[ua] = t̄ on ΓN , (c) u = ūa on ΓD, (4)
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where the perfect-bonding transmission conditions are implicitly enforced via (4a) written
in the distributional sense and the usual smoothness assumption ua ∈ H1(Ω).

Multiscale approach by asymptotic expansion. Let us first define the displace-
ment perturbation

va := ua − u, (5)

as the difference of the total and unperturbed displacement corresponding to problems (4)
and (2), respectively. Two distinct asymptotic expansions of va arise, namely a near-field
and a far-field expansion. This distinction naturally involves two scales: the ”scale a”
corresponding to characteristic length a of the inhomogeneity, and the ”scale 1” on the
size of structure. This multiscale character of the asymptotic expansions is schematically
depicted in the Figure 2. Furthermore, this description requests two variables [5, 4]:

a) b)

Figure 2: Scheme showing the far-field a) and near-field b) expansions. Far-field is represented
with coordinates at the structure scale, while the near-field represents zoom on the ihomogenity

represented by coordinates at the structure scale.

• ’x’ representing coordinates at the structure scale (see Fig. 2 a)), and

• ’x̄ := (x− z)/a’ representing coordinates at the defect scale (see Fig. 2 b)).

The near-field expansion is given by

va(x) = avB(x̄) + o(a), (6)

where vB is the solution in terms of displacement perturbation of the auxiliary problem
of a perfectly bonded inhomogeneity B embedded in an infinite elastic medium Ω = R3

and subjected to the constant remote stress C : ∇u(z). Such solutions vB are known
analytically for simple inhomogeneity shapes (see [8]) in which case they correspond to
the famous Eshelby inclusion problem [6]. Expansion (6) is valid for finite x̄, i.e. within a
neighbourhood ofBa whose linear size isO(a). More precisely, the solution (6) represents
a zoom on the ihomogeneity and thus it exists on the ”scale a” (see Fig. 2 a)).

The far-field expansion, on the other hand, is given by

va(x) = −∇1G(z,x) : A(B,C,∆C) : ∇u(z)a3 + o(a3), x 6= z, (7)

and is valid at a finite (independent on a) distance from the inhomogeneity, that is, on
the scale of the structure. In this work, as a first step, we address the computation of

3



the far-field approximation (7) for given inclusion location z (thus purely deterministic
approach) and varying evaluation point x. The key ”ingredients” of the far-field expansion
(7) in terms of displacement perturbation are: the gradient of the background solution on
the inhomogeneity site ∇u(z), Green’s tensor for the domain Ω denoted as G(z,x) (i.e.
it’s gradient with respect to the first argument ∇1G(z,x)), and the elastic moment tensor
(EMT) A(B,C,∆C). We proceed with the brief introduction, definition and properties of
these quantities.

Elastostatic Green’s tensor. The elastostatic Green’s tensor G(ξ,x) is defined as a
solution of

div(C : ε[G(·,x)])+ δ(·−x)I = 0 in Ω, t[G(·,x)] = 0 on ΓN , G(·,x) = 0 on ΓD.
(8)

Defined this way Green’s tensor gathers the three linearly independent elastostatic dis-
placement fields Gk(·,x) resulting from unit point forces δ(· − x)ek applied at x ∈ Ω
along direction k. We further introduce a decomposition ofG as

G(·,x) = G∞(· − x) +Gc(·,x), (9)

whereG∞ is the singular, infinite-space Green’s tensor, such that

div(C : ε[G∞]) + δI = 0 in R3, |G∞(ξ − x)| → 0 as |ξ − x| → ∞, (10)

and the complementary Green’s tensorGc is bounded at ξ = x and represents a correction
ofG∞ due to the finite size of Ω. More precisely, by a superposition argument,Gc solves
the elastostatic boundary-value problem (BVP) with regular boundary data and zero body
force density:

div(C : ε[∇Gc]) = 0, ∇Gc = −∇G∞ on ΓD, t[∇Gc] = −t[∇G∞] on ΓN , (11)

where the boundary data is related to the trace of ∇G∞ on ∂Ω, treated columnwise as
displacement fields, and the traction vectors associated with those displacements. Note that
problem (11) is posed directly i terms of the gradient of complementary Green’s tensor,
mainly to avoid the loss of accuracy caused by numerical derivative (see [7] for details).
Note also that problem (11) in fact involves 9 loading cases for 3D conditions (and 4 for
2D conditions).

Elastic moment tensor (EMT). The EMT [1] is the key mathematical concept in the
asymptotic expansion of va. It carries important microstructural information, namely the
material contrast ∆C, the inhomogeneity shape B and its orientation (see e.g. Definition
2.3. in [3] for details and properties of the EMT). We focus in this work on the EMT A
associated with an ellipsoidal inhomogeneity (B,C + ∆C) embedded in a medium with
elasticity tensor C, which is given by [3]

A = |B|C : (C + ∆C : S)−1 : ∆C, (12)
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where S = S(B,C) denotes the (fourth-order) Eshelby tensor of the inclusion B [8]. We
will be dealing in this paper with the special case of plane strain, corresponding to an
ellipsoidal inclusion B infinitely elongated in the x3 direction, assuming C and C? to be
both isotropic. In this case, the nonzero components of the Eshelby tensor S are given
explicitly as

S1111 = A(1−m)(3 + γ +m), S1122 = A(1−m)(1− γ −m),

S2222 = A(1−m)(3 + γ −m), S2211 = A(1 +m)(1− γ +m), (13)

S1212 = A(1 +m2 + γ),

where A = 1/[8(1 − ν)], γ = 2(1 − 2ν), and m = (a1 − a2)/(a1 + a2), with a1 and
a2 denoting the semi-axes of the ellipse B in principal directions x1 and x2, respectively
(while a3 →∞).

3 Numerical example
The capabilities of the proposed strategy are illustrated on the academic example in-

volving the biaxial load of the square-shaped membrane as shown on Fig. 3. This pre-

Figure 3: Scheme of the geometry and boundary conditions of the biaxially loaded square
membrane.

liminary example, concerns a plane strain case involving a single, local, elliptic inhomo-
geneity, and will be used to further clarify the procedure and demonstrate the performance
of the proposed strategy. The example of finite element meshes of unperturbed (M0) and
reference (Mr) models are shown on the Figure 4.

Proposed approach considers first the FE computation of the background solution u
defined by problem (2) using a coarse mesh, M0 shown on Fig. 4a). In this computation
the inhomogeneity is not taken into account. Following steps of the proposed strategy aim
to correct u by adding far field correction (7). Thus, for a given inhomogeneity position
(z ∈ Ω) we first extract the gradient of the background displacement ∇u(z). Next, we
turn to the computation of the Green’s tensor considering a decomposition (9). The infi-
nite part is in our case of isotropic background material a simple derivative of the textbook
fundamental (Kelvin) solution, given in (4.57) in [2]. The same infinite part serves as a
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Figure 4: Finite element mesh of unperturbed i.e. background a) and reference models b). The
unperturbed mesh consists of 289, and reference of 2464 nodes.

BC for complementary part (11), thus a special attention needs to be given to the prepa-
ration and correct imposition of these BC’s (see [7]). With the properly defined BC’s, the
computation of the complementary part (11) is performed numerically using finite element
method. This step also considers a finite element computations without any (fine) meshing
at the defect scale.

Finally, for the given shape and material properties (B,C?) of the inhomogeneity we
compute the EMT A(B,C,∆C) using (12). Note, that for the case of isotropic back-
ground and inhomogeneity this can be solved analticaly, that is without any additional
computation.

Having these results in hand, all the ingredients required for evaluation of the far-field
asymptotic approximation (7) of va are available, and this solution may be post-processed
for evaluating the defect criticality. Obtained results are to be compared with reference
solution performed on a really fine mesh Mr given in th Fig. 4b). Reference model ex-
plicitly models the inhomogeneity, and is considered as a solution of the transmission
problem (4), denoted as unum

a (or in terms of perturbation vnum
a ). Note that the proposed

approach avoids any computation on the fine mesh, both u and∇Gc are computed on M0

(other steps pertain merely on the evaluation of analytical expressions). Approach based
on asymptotic expansion takes, thus, a fraction (about 11%) of CPU time needed for the
reference solution. We will discuss further the accuracy and convergence of the proposed
approach.

Accuracy. The comparison of our asymptotic approximation va and referential numer-
ical solution vnum

a are given first along the characteristic crossectionA−A, shown on the
scheme in Fig. 3. The inhomogeneity is in this case taken simply as circular hole, and a
perfect agreement is achieved, solution obtained by asymptotic expansion coincides with
the referential solution on the evaluation points x0 (see Figure 5 (left)). Moreover, to verify
further proposed approach we proceed with computing the far-field asymptotic approxi-
mation (7) also on fine mesh Mr, i.e., for each node xr of the fine mesh. As mentioned
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above, background solution and complementary part of the Green’s tensor are computed
on the coarse mesh M0, and we can using the FE interpolation ϕ write

va(xr) = −(∇G∞(x = xr) +ϕ∇Gc(x0)) : A : ∇u(z)a3, xr,x0 6= z. (14)

Let the difference of the two fields on the fine mesh Mr be given as ve = vnum
a − va.

Then, the comparison can be given as contour plot in Figure 5 (right). This plot shows
a good agreement over the whole domain, with the negligible error appearing only in the
close vicinity of the inhomogeneity.
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Figure 5: The comparison of the asymptotic approximation va and reference solution vnum
a ,

along crossection A−A (left), and in terms of contour plot of perturbation error ve (right). Both
are given for a membrane with a circular hole on site z of radius a = 2 mm.

Convergence. The proposed approach shows a good performance both in terms of ef-
ficiency and accuracy. We proceed here with the convergence test again by comparison of
the asymptotic approximation with the reference results, but here for the varying charac-
teristic inhomogeneity size a. The reference results for various inhomoeneity types and
varying sizes a were made using really fine FE model (like on Figure 4 (right)). While
each of this computations inherits the mentioned problems of the severe mesh refinement
and cost, we can note in this convergence study the key advantage of the proposed ap-
proach based on asymptotic expansion (7) and the multiplicative decomposition therein.
The decomposition makes possible that the information about the (virtual) inhomogeneity
is stored in EMT independently from Green’s tensor and background solution given by
∇u. Thus, asymptotic approximation for varying inhomogeneity sizes, types (here shown
only ellipsoidal) and material contrasts, boils down to simple recomputing of the EMT fol-
lowing (12). The computation of EMT for ellipsoidal inhomogeneity (12) mainly hinges
on the evaluation of Eshelby tensor S, which for the isotropic background material cov-
ered within this work concerns merely analytic expressions. While already for a single run
our approach was taking just a fraction of the computational cost of the fine FE model,
for multiple runs there is practically no added cost! This way we can achieve a significant
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speed-up in predicting the perturbation caused by varying inhomogeneity sizes, types and
material contrasts, which is of great practical interest.

For the convergence analysis we define discrepancy of reference and asymptotic solu-
tions as

R(a) =
||v − vnum

a ||
a2

=
||ve||
a2

= o(1). (15)

In order to find a O(a2) remainder in (15), which is the outer asymptotic behavior of the
solution, we evaluated R(a) using a L2 norm

||ve||L2 =

∫
Ω\D

vevT
e dΩ, (16)

over a domain Ω\D, whereD is a fixed neighbourhood around inhomogeneity. In this case
we have choosen a disk with a radius Rd centered at the inhomogeneity (as shown for one
a size in Figure 4b), withRd kept fixed as a varies. The plot ofR(a) versus the normalized
characteristic size of the inhomohenity a/L is depicted in Figure 6 for the varying inho-
mogeneities. We show the results for soft (E?/E = 0.5), hard (E?/E = 1.5), and nearly
rigid (E?/E = 10) inhomogeneities of circular (a1/a2 = 1) and ellipsoidal (a1/a2 = 2)
shape. A desired convergence trend (O(a2)) is clearly visible for all considered cases.
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Figure 6: The plot of discrepancy versus the normalized inhomogeneity size. The soft and hard
inclusions with elliptic and circular shape are considered.

4 Conclusion and perspectives
A numerical strategy for predicting the perturbation caused by an inhomogeneity in

an elastic solid is outlined. We focus on the evaluation of the far field displacement cor-
rection. Thanks to the use of an asymptotic expansion, we achieve the major advantage
which pertains to the fact that the defect scale is not meshed. The computations involved
are straightforward and include the computation of background solution, followed by the
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Green’s and elastic moment tensors. A very good performance in terms of accuracy and
convergence is presented on the academic example.

The next steps of this work include (i) matching the near and far-field asymptotic
expansions to obtain uniform expansions, and (ii) applying the developed strategy to as-
sessing the criticality of defects by considering virtual micro-defects and varying their
positions, sizes and mechanical properties.
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