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Abstract

This paper presents a simple procedure of obtaining a substitute, homogenized mechanical response of
single layer graphene sheet. The procedure is based on the judicious combination of molecular mechanics
simulation results and homogenization method. Moreover, a series of virtual experiments are performed
on the representative graphene lattice. Following these results, the constitutive model development is
based on the well established continuum mechanics framework, that is, the non-linear membrane theory
which includes the hyperelastic model in terms of principal stretches. A proof-of-concept and perfor-
mance is shown on a simple model problem where the hyperelastic strain energy density function is
chosen in polynomial form.

Keywords: graphene, elastic properties, molecular mechanics, homogenization.

1 Introduction

Nanoscale systems and processes based on graphene [Novoselov et al., 2005, Singh et al., 2011] are be-
coming more viable for engineering applications, however, our ability to model their performance remains
limited. The main challenge is that parts of graphene-based devices modelled with discreet models (such
as molecular mechanics (MM) and molecular dynamics (MD) ) typically contain extremely large number
of particles, even though the actual physical dimension may be quite small. For instance, a simple square
shaped Single Layer Graphene Sheet (SLGS) with the side length of approximately 500 nm has already
nearly one million of carbon atoms. Following explicitly the trajectory for large number of degrees of free-
dom easily becomes intractable. Thus we reach for a substitute, continuum model which models the average
mechanical behaviour of atomic system.

Averaged continuum properties of graphene in the context of infinitesimal deformation is the subject of
research for nearly 10 past years (e.g. see [Caillerie et al., 2006, Reddy et al., 2006, Huang et al., 2006, Zhao
et al., 2009, Georgantzinos et al., 2010]). However, there is a large discrepancy in the results obtained by
means of the different simulation methods and experimental studies (e.g. see [Reddy et al., 2006,Huang et al.,
2006]). We reported also in [Marenić et al., 2013] an overview of the mechanisms causing the result scat-
tering which can be summarized as: formulation differences (which concerns MM, MD, ab initio methods,
continuum mechanics); choice of interatomic potential driving the atomic system (Tersoff-Brenner [Tersoff,
1986, Brenner, 1990] usually, also Morse [Morse, 1929], AMBER and second generation REBO [Brenner
et al., 2002]); uncertainty of the thickness (yet known as Yakobson’s paradox) [Huang et al., 2006]; and also
size effect, relaxation (minimisation of the energy due to coordination), chirality, and edge passivation [Lu
et al., 2011]. In [Marenić et al., 2013], we also pointed out the influence of the boundary conditions on
the (linear-elastic) stiffness of SLGS, which is related to the homogenized stiffness bounds as introduced
in [Huet, 1990] and latter discussed in [Markovic and Ibrahimbegovic, 2004].
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We tend here to give a combined MM and continuum approach for the study of the in plane mechanical
behaviour of SLGS under large deformations. In other words we present equivalent continuum modelling of
large deformations of graphene, which goes beyond what linear theory can handle. We note here that contin-
uum models of nano-structures are extremely simplified, however they bring insight as well as quantitative
information on the relevant physical phenomena . Thus, these models seam optimal for the current and po-
tential future applications of graphene materials, such as, e.g., reinforcement agents to strengthen composites
or structural parts. Recently, graphene has attracted both academic and industrial interest in graphene-based
polymer nanocomposites because it can produce a dramatic improvement in properties at very low filler con-
tent. Thus it can be used either in graphene-based nano-electro-mechanical systems (NEMS) devices [Geim
and Novoselov, 2007], or graphene-conducting polymer nanocomposites (see [Hu et al., 2014, Stankovich
et al., 2006, Gmez et al., 2011]. Micro-mechanical models are conveniently used to predict macroscopic
properties of conventional reinforced polymer composites, which behave as heterogeneous material (Mori
and Tanaka, 1973) on the scale somewhat higher then the nano length scale. However, when the multi-scale
model has a goal to predict properties of nano-reinforced composites, a detailed knowledge of the response
on the scale of the nano-structure is required (see e.g. an example of the multiscale approach for the nano-
clay reinforced polymer [Bdoui and Cauvin, 2012, Gelineau et al., 2015]. Similarly for the graphene-based
nanocomposites, and mentioned application, the mechanical response of graphene under different loading
programs, boundary conditions and large strain regime is crucial, and should still be better understood. Ex-
perimental investigation (see e.g. [Lee et al., 2008]) and first-principles calculations show that graphene
undergo very large deformations, with highly nonlinear behavior and still remain elastic, with stable bonds
and intact bond topology. This fact allows us to adapt and use a finite strain elastic model for the large range
of phenomena and motivates us to benefit from somewhat simplified nonlinear membrane theory. The main
difficulty in constructing the solutions for the problems of the deformable body subjected to large deforma-
tions concerns the choice of the suitable formulation like Lagrangian, Eulerian, updated Lagrangian, etc.
Choosing a particular formulation implies the corresponding choice of the reference frame and the properly
invariant measure of large strain [Ibrahimbegovic, 2009, Wriggers, 2008, Belytschko et al., 2000]. There
are generally two ways of dealing with this problem. First considers the theoretical development placed in
the framework of differential manifolds [Abraham and Marsden, 1987] which enables the switch between
configuration by means of the metric tensor. However, the conceptual clarity of the theoretical formulation
of the finite deformation elasticity set on a differential manifold does not imply simplicity with respect to
numerical implementation, mainly due to locking. In [Arroyo and Belytschko, 2002] a general methodology
to develop hyper-elastic membrane models for single-atomic-layered films is presented with an extension of
the Cauchy-Born (CB) rule [Ericksen, 1984, Zanzotto, 1996, Ericksen, 2008] based on the exponential map.
The exponential map is added in the formulation as an extension of CB rule to account for the curvature of
the lattice vectors. Thus, they are using curvilinear coordinates and giving general formulation capable to
treat even buckling problems of carbon nano tubes.

In this paper we are performing virtual experiments (MM simulation) on the representative sample of
the graphene lattice and thus we are not making any assumption regarding the kinematics of the atoms (CB
hypothesis does not have to be fulfilled). These virtual experiments are used to fit energy potential. Similar
procedure is performed in e.g. [Reddy et al., 2006, Lu and Huang, 2009, Cadelano et al., 2009, Lu et al.,
2011] where only uniaxial tests are performed giving an elastic potential with respect to nominal strain.
In [Cadelano et al., 2009] continuum elasticity theory and tight-binding atomistic simulations are combined
to determine the constitutive nonlinear stress-strain relation, and the corresponding nonlinear elastic moduli
for graphene. We show here biaxial tests and, moreover, we seek to adopt the nonlinear membrane theory
which includes, as a special case, the hyperelastic model in terms of principal stretches. The latter was often
used to characterise rubberlike materials, see [Ibrahimbegović and Gruttmann, 1993], with finite element for-
mulation of elastic membrane shells with co-axial energy-conjugate pairs of stress and strain measures. The
main advantage of the formulation in [Ibrahimbegović and Gruttmann, 1993] pertains to the finite element
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analysis of elastic membranes. The problem of the finite deformation of elastic membranes can be solved
relaying on the Cartesian structure without going to a more general setting of manifolds (note that this is not
possible for the elastoplastic membranes [Ibrahimbegović, 1994]). As a first step, we present the modelling
of the in plane large deformation of SLGS , however the proposed theory can be extended to membranes
whose reference and current configurations can be arbitrary space-curved surfaces. Thus, the development
of homogenized constitutive model is based on the well established continuum mechanics framework. The
main novelty concerns the specific application to graphene with the finite element implementation being
straightforward when relying upon previous works on large deformation model for rubber-like materials.
The series of virtual tests can be costly, but needs to be performed only once. Moreover, the developed
model is fully capable to reproduce the linear elastic behaviour in small strain regime as well as the nonlin-
ear that occurs in large strain regime.

The outline of the paper is as follows. We will address the problem of analysis of finite deformation
of general, space-curved, elastic membranes in the next section. In the section 2 we present the virtual
experiments performed on the SLGS and the development of the substitute continuum model in terms of
principal stretches. In the section 3 we elaborate on the performance of the developed model, and give a
closing remarks and future research in the section 5.

2 Continuum elastic membrane in finite deformations

2.1 Generalities and motivation

We will first briefly revisit continuum model problem in large displacements and solution strategy. Let the
position of each point be denoted with X and x = ϕ(X) in reference (Ω) and current (Ωϕ) configuration,
respectively, where ϕ(·) denotes the motion as a point transformation. For each point X we define the
displacement vector u(X) = x − X. When the SLGS is submitted to large deformations the difference
between the initial configuration at the beginning of the load program and the deformed configuration, can
no longer be ignored as for the case of small deformations, characterized by small strain tensor, ε. There
is a large variety (theoretically infinite) of possible choices for stress and strain tensors available for the
continuum large strain problem formulation as presented in most of the textbooks covering the subject (see
e.g. [Ibrahimbegovic, 2009,Wriggers, 2008]). For the continuum large strain problem the constitutive model
formulation depends on the choice of the particular work-conjugate pair. Usually first Piola-Kirchhoff stress
and deformation gradient (P ,F ) or second Piola-Kirchhoff stress and Green-Lagrange strain (S,E) are
chosen to express internal work. We now construct the weak form of the continuum boundary value problem
in Ω for the case of large displacements. This immediately introduces a solution strategy by weakening
the way of satisfying the equilibrium, i.e. it is satisfied only in average sense. Therefore, we assume that
Dirichlet boundary conditions u = ū are prescribed on the part Γu of the boundary Γ. The nanostructure
system treated as surrogate continuum is subjected to tractions t̄ on the part Γσ of the boundary and to a
volume forces b in Ω. We choose a virtual displacement field v as infinitesimal and kinematically admissible
with respect to Dirichlet boundary conditions, thus each component vi takes a zero value on the Γu i.e.
V0 := {vi : Ω 7→ R | [vi]Γui = 0}. We also suppose that the virtual displacement is supperposed on the
deformed configuration and par ametrized by the coordinates in the deformed configuration (Ωϕ). For the
real displacement vector field u the components ui are defined within V := {ui : Ω 7→ R | [ui]Γui = ūi}.
The weak form of equilibrium at large displacements in material description (Ω) states

0 = G(ϕ; v) :=

∫
Ω

Γ · SdΩ−
∫

Ω
v · bdΩ−

∫
Γσ

v · t̄dΓ, (1)

where Γ is the virtual Green-Lagrange strain given as the directional derivative of the Green-Lagrange strain
measure.

3



The constitutive model formulation depends on the choice of the particular work-conjugate pair, however
the unique form of the constitutive relation can be written for the hyperelastic material model in terms of the
strain energy potential, W (·). Energy potential is an unique choice, since all possibilities of the stress and
strain measures are only different material representations of the same work. The generalised approach for
establishing the well-posed form of the strain energy is given in terms of the polyconvexity conditions. The
role of the polyconvexity conditions is to ensure that the large strain remain accompanied by large stress.
Moreover, the polyconvexity conditions impose that the strain energy remains a convex function which can
be written as

W (αa1 + (1− α)a2) ≤ αW (a1) + (1− α)W (a2), (2)

where a1 and a2 are functions representing certain intrinsic measure of deformation and 0 < α < 1. Besides
the polyconvexity conditions applicable only to hyperelastic materials, there is a number of invariance re-
strictions on the general elastic response, which any constitutive model ought to respect. In order to describe
the elastic response that satisfies the invariance requirements, the strain energy potential is usually expressed
as a function of principal invariants

W (i1C , i2C , i3C), (3)

where the principal invariants of the right (C = FTF ) and left (B = FFT) Cauchy-Green deformation
tensors are given as

i1C := tr[FTF ] ≡ tr[FFT] =: i1B

i2C :=
1

2

(
(tr[C])2 − tr[C2]

)
≡ 1

2

(
(tr[B])2 − tr[B2]

)
=: i2B (4)

i3C := det[FTF ] = (det[F ])2 ≡ det[FFT] =: i3B.

2.2 Constitutive law in terms of prinipal stretches for large deformation of graphene

An elegant alternative to (3) is the strain energy potential defined in terms of the principal stretches λi,
i = 1, 2, 3. These values correspond to the principal values of the stretch tensors, right U or left V . This
derives from the standard eigenvalue problem which can be written either in material (a) or in spatial (b)
description

(a) (U − λiI)ni = 0, (b) (V − λiIϕ)mi = 0. (5)

Note that the computed principal (eigen) values λi from the equation (5) remain the same in both descrip-
tions, but the corresponding eigenvectors ni and mi change. By solving these eigenvalue problems, we can
obtain spectral decomposition of the deformation gradient, rotation tensor

(a) F =

3∑
i=1

λimi ⊗ ni, (b) R =

3∑
i=1

mi ⊗ ni, (6)

and both stretch tensors

(a) U =
3∑
i=1

λini ⊗ ni, (b) V =
3∑
i=1

λimi ⊗mi. (7)

Note that these results hold for the principal vectors that form the ortho-normal principal frames, i.e.,
ni · Inj = δij , where δij is the Kronecker delta. We further discuss the spectral decomposition of the
Cauchy-Green tensors, related to the choice of the class of constitutive equations. Considering (6a) and
it’s transpose

FT =

3∑
i=1

λini ⊗mi, (8)
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the spectral decomposition for both Cauchy-Green tensors is given as

(a) C =

3∑
i=1

λ2
ini ⊗ ni, (b) B =

3∑
i=1

λ2
imi ⊗mi. (9)

With these results in hand we can easily express the principal invariants from (4) in terms of the principal
stretches

i1C := λ2
1 + λ2

2 + λ2
3, i2C := λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1, i2C := λ2

1λ
2
2λ

2
3. (10)

Thus, any isotropic hyperelastic response that satisfies material invariance restriction can be expressed in
terms of strain energy potential as a function of principal stretches. Thus, starting from the strain energy
potential written as a function of principle invariants (3), we can express using (10) strain energy as a function
of principal stretches

W (i1C , i2C , i3C)→W (λ1, λ2, λ3). (11)

For the elastic material behaviour the unit principal stretch corresponds to the case of no deformation which
is accompanied by the zero value of strain energy:

λi → 1 ⇒ W (λi)→ 0. (12)

Formulating the strain energy potential as in (11) makes it simple to check the polyconvexity conditions
described above. These conditions enforce that large stresses should accompany large values of strains
which is written in terms of principal stretches as

W (λi)→∞ if {λ1, λ2, λ3} → ∞ (in tension),

W (λi)→∞ if {λ1, λ2, λ3} → 0+ (in compression). (13)

The last result states that polyconvexity conditions require the strain energy convexity with respect to each
principal stretch. Non-convexity is responsible for many phenomena like the development of dislocations
and phase changes, however we are not dealing with these issues in this work.

We turn now to 2D case formulation that describes the SLGS sheet. Thus, putting conveniently graphene
sheet in the plane x1x2, we are neglecting the out of plane stretch λ3, following the usual hypothesis for the
membrane theory. Since the sheet is made of a single atomic layer and the out-of-plane strains and stresses
might be difficult to interpret, we restrict the considerations to the in-plane 2D continuum mechanics (this
assumption is made by majority of authors dealing with graphene, see e.g. [Volokh, 2012]). Considering the
mentioned assumption the strain energy density (SED) in (11) becomes W (λ1, λ2). We further present the
procedure to calculate second Piola-Kirchhoff stress (S) and tangent elasticity (C) tensors from the strain
potential written in terms of the principal stretches. This computation is still performed in the conventional
manner as

(a) S =
∂W

∂E
= 2

∂W

∂C
, (b) C =

∂S

∂E
= 2

∂S

∂C
. (14)

However, the computation of the stress and tangent elasticity tensors from the material model given by
W (λ1, λ2) is not performed directly, but rather using a simple chain rule. Thus, an important role is played
by the auxiliary result pertaining to derivatives of the principal values λi. This result can be obtained by
applying the Gâteaux derivative formalism to the corresponding eigenvalue problem leading to

∂λi
∂C

=
1

2λi
ni ⊗ ni. (15)

With this result in hand, we can calculate the second Piola-Kirchhoff stress tensor from the SED potential
written in terms of principal stretches

S =
2∑
i=1

1

λi

∂W (λ1, λ2)

∂λi
ni ⊗ ni. (16)
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Comparing equations (16) and (9a) one can notice that the second Piola-Kirchhoff stress tensor is coaxial
with the right Cauchy-Green tensor. Existence of the the coaxial energy-conjugate pair enables the solution of
the problem of finite deformation membrane relaying on the Cartesian structure. The second Piola-Kirchhoff
stress tensor can be further decomposed as

S =
2∑
i=1

sini ⊗ ni, (17)

where the ni represent the same eigenvectors as in first expression in (9), and the term si denoting the
principal stresses can be written as

si =
1

λi

∂W (λ1, λ2)

∂λi
. (18)

Next, we turn to the calculation of the elastic tangent modulus. This is done in the same manner, i.e., by
performing a next step of directional derivative computation, which gives

C = 2
2∑
i=1

∂si
∂C

ni ⊗ ni + 2
2∑
i=1

si
∂

∂C
(ni ⊗ ni). (19)

The first and the second terms on the right hand side in (19) correspond to material (Cmat) and geometric
(Cgeo) part of the tangent elasticity tensor, respectively. Using the auxiliary result in (15) we obtain the
expression for the material part of the tangent elasticity tensor:

Cmat =

2∑
i=1

2∑
j=1

(
1

λj

∂si
∂λj

)
︸ ︷︷ ︸

Dij

[ni ⊗ ni][nj ⊗ nj ]. (20)

Note that the material part of the tangent elasticity tensor is usually given in terms of its reduced form Dij in
principal axes, see [Ibrahimbegović and Gruttmann, 1993]. The derivation of explicit form of the geometric
part of the tangent elasticity tensor starts from the spectral decomposition of the right Cauchy-Green strain
tensor (9) and considers a systematic usage of the auxiliary result in (15). Due to brevity we omitted this
derivation and we give the final expression of the elastic tangent modulus in tensor notation

C :=
2∑
i=1

2∑
j=1

Dij [ni ⊗ ni][nj ⊗ nj ] + 2
s1 − s2

λ2
1 − λ2

2

[I − (n1 ⊗ n1)⊗ (n1 ⊗ n1)− (n2 ⊗ n2)⊗ (n2 ⊗ n2)] ,

(21)
where I = 1

2(δikδjl + δilδjk).
The constitutive law in terms of prinipal stretches for large deformation of membrane (used here for

the SLGS), namely the expression (18) and (21), are used directly in the finite element solution procedure.
The details about the 2D elastic membrane finite element can be found in most of the books dealing with
nonlinear solid mechanics, and will not be discussed herein. For the completeness, we summarize the main
steps needed in the finite element approximation, which for the presented constitutive law in terms of prinipal
stretches boils down simply to the matrix form of the results obtained for principal stresses and elasticity,
see Appendix A.
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3 Development of constitutive law from virtual experiments on molecular
model of graphene

3.1 Molecular model

In Section 2 a continuum model problem in large displacements is presented. Likewise, we introduce here
briefly the molecular model problem. We consider a reference domain Ωa in R3 which is occupied by N
atoms placed within graphene nanostructure. A major feature of the structure of graphene is the hexagon
pattern that repeats itself periodically in space. As a result of the periodicity, each atom is bonded to three
neighbouring atoms. Such structure is mainly due to the process of sp2 hybridization during which one
s−orbital and two p−orbitals combine to form three hybrid sp2−orbitals at 120◦ to each other within a
plane [Atkins and De Paula, 2006, Ruoff et al., 2003]. This covalent bond, often referred to as the σ−bond,
is a strong chemical bond and plays an important role in the impressive mechanical properties of graphene,
while the out-of-plane bond (the π−bond) that is relatively weak contributes to the interaction between the
layers of graphene.

Let Xi and xi denote, respectively, the position vectors in the reference and the current configurations
of atom i, where i = 1, . . . , N . The corresponding displacement vector of atom i is given by di = xi −Xi.
The boundary conditions are imposed atom-wise in a quasi-static manner, such that either the displacement,
d̄i, or the external point force, f̄i, is given. The total energy (Etot) stored in the atomic structure is given by

Etot = U(x1, . . . ,xN )−
N∑
i

f̄i · di, (22)

where U denotes the energy stored in the atomic bonds, as presented in sequel, and the second term on the
right-hand side represents the external energy. The state of equilibrium of the atomistic system requires the
variation of the total energy to be equal to zero

δEtot =

N∑
i

(
∂U

∂xi
− f̄i

)
· δxi = 0, (23)

where δxi represents the kinematically admissible virtual motion. Linearizing (23) and writing the result in
matrix notation leads to

K(k)∆d(k) = F(k), (24)

where ∆d(k) is the displacement increment corresponding to the k-th load increment, whereas K(k) and
F(k) are global stiffness and the residual vector, respectively. The latter can explicitly be defined as:

Kij =
∂2U

∂xi∂xj
, Fi =

∂U

∂xi
− f̄i. (25)

Unlike conventional FE method for continuum mechanics, we derive and assemble the stiffness and residual
matrices by looping over all atoms. Due to the non-linear nature of the interatomic potentials and geometri-
cally nonlinear kinematics, an incremental-iterative solver is used. For each load increment, several Newton
iterations are performed, until convergence criteria are met. At each iteration (k) the atomic positions are
updated as

x
(k+1)
i = x

(k)
i + ∆d(k). (26)

The initial iteration (k) = 0 starts at the initial configuration of the atomic system, with the position vector,
x

(0)
i = Xi.
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Looking at the equation (25) it is obvious that the heart of molecular model lays in the internal energy
governed by the interatomic potential. For the molecular simulation of a graphene sheet, a Morse potential
[Morse, 1929] is used, more precisely we use it’s modified version following [Belytschko et al., 2002]. The
modified Morse potential is a sum of pair and angular parts given as

U =
∑
bonds

VM
p (r) +

∑
angles

VM
θ (θ). (27)

The first term is a function of the chosen atom distance r to its first neighbour, whereas the second depends
upon angle θ between particular atom bonds (see Fig. 1 b) in sequel). For the modified Morse potential, the
bond energy terms are given as

VM
p (r) = De

[
(1− e−β(r−r0))2 − 1

]
, (28)

VM
θ (θ) =

1

2
kθ(θ − θ0)2[1 + ksext(θ − θ0)4], (29)

where the constants of the potential according to [Belytschko et al., 2002] are: De = 6.03105× 10−19 Nm,
β = 2.625×1010 m−1, kθ = 0.9×10−18 Nm rad−2, ksext = 0.754 rad−4, the initial value of the bond length
r0 = 1.39 × 10−10 m and the bond angle θ0 = 2π/3 rad. The numerical implementation of MM model
based on modified Morse potential, i.e., the forming of the residual force and tangent stiffness matrices, and
the assembly procedure are given in more detail in [Marenić et al., 2013]. A general procedure for carbon
structures is shown in [Wackerfuss, 2009], where the molecular model is plugged within the formalism of
the finite element method.

3.2 Virtual experiments on representative lattice

We show subsequently the biaxial tensile tests performed on the graphene lattice sample using the presented
molecular model implemented in the inhouse MATLAB code. The scheme of the representative lattice
element with the symmetry boundary conditions is illustrated in Fig. 1 a). The square envelope representing

deformed:

undeformed:

b)a)

Zigzag (Z)

c)

Figure 1: Scheme of the lattice sample with symmetry BCs used for biaxial tensile tests a). The envelope of the sample
is composed of lines L1 . . . L4 which coincides with boundary atoms. The overlay plot of the undeformed
(red) and deformed (grey) shapes of the small graphene lattice sample for the case λ̄1 = 1, λ̄2 = 1.15 b).
A zoom on the bulk atom i is shown with the bond length and angle given in the undeformed (r0, θ0) and
deformed (rij , θikl) configurations.

the boundary of the graphene sheet is composed of lines L1 to L4. Atoms which are on the lower and left
lines L1 and L3 of the sample are pinned with u2 = 0 and u1 = 0, respectively. The boundary atoms which
belong to the upper and right lines, L2 and L4, have a given displacement u2 = ū1 and u2 = ū2, respectively,
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to produce the stretch λ̄. Overlay plot of the undeformed and deformed lattice sample is shown in Fig. 1 b)
for the case where λ̄1 = 1 and λ̄2 = 1.15 (deformed shape is given with scale factor, and really small lattice
sample is shown due to visibility). Potential parameters related to the initial, undeformed geometry of the
lattice (r0, θ0) are shown in the zoom on the bulk atom i. Given deformation (λ̄1 = 1, λ̄2 = 1.15) maps the
atom i and his neighborhood to deformed configuration (r0 → rij , θ0 → θikl), as schematically shown on
the right of Fig. 1 b).

3.3 Equivalent continuum

In order to construct equivalent continuum potential Wfit(λ1, λ2) we determine the equilibrium potential
energy of atomistic system. Note that the boundary atoms have two neighboring atoms instead of three for
the bulk ones (on the right side of Fig. 1 b) bulk atom i together with it’s neighbors j, k, l is shown). Thus,
the equilibrium energy density of the finite size lattice sample depends on the ratio of boundary and bulk
atoms. The smaller the ratio the less is the number of the boundary with respect to bulk atoms, and the energy
density converges to the infinite lattice (where all atoms have full neighborhood). This convergence tendency
is visible, e.g., on Fig. 10 b) in [Marenić et al., 2013]. Our approach which considers the development of the
surrogate continuum model based on the virtual test on representative graphene samples works well for both
really small and/or narrow lattice (e.g. graphene nano-ribbons [Xu, 2009]) as well as for the larger ones. We
compute the equilibrium potential energy of atomistic system for the series of loading cases. These loading
cases are designed to form the uniform grid in the space of λ1, λ2 in the range

λ1 = {1, . . . , λ̄}, λ2 = {1, . . . , λ̄}, (30)

resulting with the cloud of points Ŵ (λ1, λ2), shown as dots in Figure 2. Note that in the above equation the
given values of stretch λ̄ ≥ 1, which corresponds only to in-plane tension1. The energy distribution for the
series of loading cases is further used to perform a least squares, polynomial surface fitting (see Figure 2)
with SED potential given as

Wfit(λ1, λ2) =
n∑
i

n∑
j

aijλ
i
1λ

j
2, (31)

where i and j are the degree in λ1 and in λ2, respectively. The total degree of the polynomial is the maximum
of i and j. Note that the total degree of the polynomial cannot exceed the maximum of i and j. Hence if
i = j = 5, for instance, the coefficients aij = 0 if i+ j > 5. As mentioned above for the initial iteration we
have x

(0)
i = Xi, that is the r = r0 and θ = θ0, and considering our choice of the modified Morse potential

and equations (28) and (29), the value of SED turns to be zero for the unit stretch. No other constraints were
introduced in the model fit.

Using fitted, polynomial potential (31), and following the equations (16) to (18) we can calculate the
stress components. We present in Figure 3 surface plots (closed form, polynomials obtained by energy fit)
of the nonzero stress components. Note that stress components are conveniently written in terms of the
stress vector, as shown in appendix A. In addition, using spectral decomposition (17) one computes directly
principal stresses using (18). In our consideration, this further simplifies stress vector to two components.
Knowing principal stresses and directions, finite element implementation further relays to the internal force
vector, and tangent elasticity matrix computation. Stress vector (in terms of principal stresses) is directly
plugged into membrane finite element equations, for details see appendix, equations (A.5) and (A.6). From
the plots in Figure 3 we can note that the maximum stress does not correspond to the maximum biaxial

1The compressive stresses even the ones transmitted by the substrate causes out of plane buckling of the SLGS , see [Zhang and
Arroyo, 2013] for the analysis of the interplay between localized folds and distributed wrinkling of graphene deposited on planar
surfaces.
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Figure 2: The surface plot of the strain energy density polynomial surface fit Wfit(λ1, λ2). The fit is obtained by
means of series of biaxial tests performed by molecular mechanics simulation (Ŵ (λ1, λ2)) represented with
circular markers on the grid 0 ≤ λ̄i ≤ 1.15, i = 1, 2.

stretches, that is, to the case when λi = λ̄. This phenomena is related to the given hexagonal lattice struc-
ture, chosen interatomic potential, as well as the finite deformation regime and will be further analyzed and
explained in sequel.

Analogously to the stress, using fitted potential and following (20) we present the surface plots of the
components of material part of the tangent elasticity tensor using its reduced form Dij , on the Figure 4. We
note that D12 = D21 due to symmetry.

4 Analysis and verification of the constitutive model

We seek first to explain the effect illustrated in Figure 3, i.e., to answer why the stress is not maximum for the
maximum biaxial stretch. Thus, we present a variation of the stress component S11 with λ1, taking the pre-
stretch in the perpendicular direction (λ2) as a parameter, see left plot on the Figure 5. We can observe that
for larger deformation (roughly λ1 > 10%), value of the S11 decreases for higher pre-stretch (λ2). We can
also note this effect by plotting S11 vs. λ2 with the parameter λ1. The latter is depicted in the right plot in the
Figure 5, where we clearly see the decrease of S11 with evolving stretch in direction 2, for higher pre-stretch
in direction 1. Needless to say, this effect is fully captured in the developed homogenised, continuum model,
i.e., the stress decrease is noticeable in terms of the tangent elastic modulus. Namely, the component D12 of
the tange nt elastic modulus (shown on the bottom plot in Figure 4) which governs the relation between S11

and strain in direction 2, becomes negative for large deformation. An analogous effect can be seen for the
stress component S22, thus these plots are not shown.

In order to further explain this effect of stress decrease, we turn to the study of the nanostructure of
graphene. Moreover, we designed an equibiaxial, so-called half snail loading program depicted in Figure 6 a)
and we trace the corresponding lattice deformation. Given loading program consider stretching first half of
the loading time in direction 2 (up to λ2 = λ2,max) while holding the lattice sample with lambda1 = 1.
Second half of the loading program considers holding the stretch λ2 = λ2,max while loading in direction 1.
Note that the stretches we did in our virtual experiments did not go more than about 15% in each principal
direction. This value is related to the chosen interatomic potential, more precisely to its pair part. Namely
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Figure 3: Surface plot of the nonzero stress components vs. principal stretches.

the derivative of the pair part (28) with respect to the pair bond separation r gives a pair force Fp(r). This
function has a peak value after which the force diminishes with further bond separation. There are two
reasons why we are not taking this in our consideration. The first one pertains to the choice of interatomic
potential which is not suitable for the bond fracture modeling. The second is related to the implemented
Newton iterative algorithm which is not suitable when the effect similar to material softening occurs. During
the loading program we follow the deformation in C−C bonds by selecting the bulk atom i and his neighbours
j and k (see Figure 6 b)), omitting l due to symmetry. We note that the the choice of the atom we trace is free,
given that it is far enough from the boundary. The bond separation (∆r) evolving with the loading (given as
pseudo-time) is shown on Figure 6 c). We observe that for the first half of the load program with stretch in
direction 2, both ∆rij and ∆rik are increasing. However, in the second part of the load program the bond
separation ∆rij passes a peak value. This effect is related to the interplay of the pair and angular parts of the
used modified Morse potential, as well as to the to the geometric nonlinearity, i.e. the large rotations of the
bonds. The latter is causing the influence of the angular term of the modified Morse potential (eq. (29)) to
overcome the influence of the pair part (eq. (28)). Finally, this causes the global response of the nanostructure
defined in terms of stress-stretch diagram to show the stress decrease in large deformation regime which is
noticed in the developed continuum model.

Next, we show the cross-sections from the Figure 4 similarly like it was done for the stresses in Figure 5.
This gives the evolution of the components of reduced tangent elastic modulus, namely we show D11 versus
λ1 with the pre-stretch λ2 as a parameter. Likewise, D22 versus λ2 with the parameter λ1 is shown in Fig-
ure 7. The thick lines with markers (in Figure 7) denote the evolution of Dii without pre-stretch, i.e. dashed
line with circular markers represents the D11(λ1) for λ2 = 1. Analogously, full line with square markers
shows D22(λ2) for λ1 = 1. Any material description of an elastic constitutive law for large deformations
should reduce to Hooke’s law for the case of small deformation. Thus the we proceed with the constitutive
model verification. We perform this verification by comparison with the limiting case of small deformations
considered in [Marenić et al., 2013]. The numerical values of the initial stiffness obtained from the fitted
continuum model are as follows

D11|λi=1 = 956.95GPa,

D22|λi=1 = 876.35GPa.
(32)

We note that this corresponds to the results presented in [Marenić et al., 2013] considering the case E|’V’.
Moreover, plotting the evolution of the components of reduced tangent elastic modulus with the increasing
(corresponding) pre-stretch we end up with a band which is depicted for the whole range λi = 1 . . . λ̄ in
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Figure 4: Surface plot of the components of reduced tangent elastic modulus. The values are given in GPa.

Figure 7. Note that the increase of the pre-stretch causes the decrease of stiffness.
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5 Conclusion and perspective

We have shown the continuum formulation of the in plane behaviour of graphene based on the hyperelastic
potential given in terms of the principal stretches. The developed model is based on the well established
continuum mechanics framework, and fully capable to reproduce the linear elastic behaviour in small strain
regime as well as the stress release caused by intrinsic geometric non-linearity of the interatomic bonds that
occurs in large strain regime. Moreover, this formulation fits perfectly to the finite element implementation
of the elastic membranes based on the Cartesian structure, i.e., co-axial energy-conjugate pairs of stress and
strain.

The procedure performed here concerns virtual experiments performed on the graphene samples. Thus,
this approach should work for lattices of other two-dimensional materials like e.g. boron nitride [Novoselov
et al., 2005,Topsakal and Ciraci, 2010] which may have more complex lattice. The latter yields at the bottom
line more complicated deformation mechanism on the lattice level and may preclude the Cauchy-Born rule,
as a common link between atomistic and continuum scales, to be valid. Thus we plan to confront our large
strain surrogate continuum model based on the numerical homogenization procedure with the Cauchy-Born
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Figure 5: The stress-stretch plots showing the component S11 versus: stretch λ1 with parameter λ2 (left plot), and
stretch λ2 with parameter λ1 (right plot). The parameter is in the range λi = 1, . . . λ̄, where the lower-most
stress curve corresponds to the value of the paremeter λi = 1, while the upper-most corresponds to λi = λ̄.

based approach. In addition, we presented here only the modeling of the in plane large deformation of
single layer graphene sheet, however, the extension to axisymmetric (like the Carbon Nano Tube (CNT) )
or arbitrary curved membrane is possible (see e.g. [Ibrahimbegović, 1994]), and will be concerned in future
research.

A Finite element implementation

The details about the 2D plane elastic membrane finite element can be found in most of the books dealing
with nonlinear solid mechanics e.g. [Ibrahimbegovic, 2009,Wriggers, 2008,Belytschko et al., 2000] and will
not be discussed in detail. We rather illustrate the main steps needed in the finite element approximation
concerning, i.e. we recast in matrix form the results obtained for the constitutive law in terms of principal
stretches. First, we define the coordinate representation of the principal vectors in the two-dimensional
setting under consideration as

n1 =

[
cosα
sinα

]
, n2 =

[
− sinα
cosα

]
, (A.1)

where the angle α denotes the angle between the first principal direction and axis x1. Using the component
form of the (9) the value of α is

α =
1

2
arctan

(
2C12

C11 − C22

)
. (A.2)

Next, we choose to order the second Piola-Kirchhoff stress and Green-Lagrange strain tensor components in
a vector as S → sT = [S11, S22, S12], E → eT = [E11, E22, 2E12], respectively (so that their inner product
is preserved). The latter enables to recast the stress spectral decomposition from equation (17) as S11

S22

S12


︸ ︷︷ ︸

s

=

 cos2 α sin2 α
sin2 α cos2 α

sinα cosα − sinα cosα


︸ ︷︷ ︸

T3×2

[
s1

s2

]
︸ ︷︷ ︸

sp

. (A.3)
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Figure 6: Load program showing the given displacements (upper and right edges) with respect to the pseudo time a),
and b) the bulk atom i with its neighbourhood. The given load program causes the lattice deformation as
presented in c). Due to symmetry, the bond separation ∆ril is equal as ∆rij , and is thus omitted.

In the above equation the matrix T is created by ordering the tensor product of eigenvectors (A.1) in vector
notation

n1 ⊗ n1 → n1nT
1 =

[
cos2 α cosα sinα

cosα sinα sin2 α

]
→

 cos2 α
sin2 α

cosα sinα

 , (A.4)

and putting them as the columns in T (analogously for the n2 ⊗ n2). Note that the last result for the stress
vector (s) can further be directly used for the calculation of the internal force vector of the finite element

fe,intp = eT
i

∫
Ωe

BT
as dV, (A.5)

where a = 1, . . . , nnodes denotes the node, i = 1, 2 the degree of freedom (ndof ), index p = ndof (a− 1) + i,
and matrix B stands for the derivatives of the shape functions.

It is also convenient to write tangent elasticity tensor, given in (19), that connects stress and strain through
C = ∂S

∂E in a matrix form, using the transformation matrix T from (A.3), and Dij from (20)

C→ C(3×3) = TDijTT +
s1 − s2

λ2
1 − λ2

2

ggT. (A.6)

In the above equation auxiliary term gT = [− sin 2α sin 2α cos 2α] is used to express the geometric part
of the tangent elasticity tensor in more compact form. We note further, that the element tangent stiffness
matrix Ke also consists of a material and of a geometric part, and is for the 2D plane elastic membrane finite
element given as

Ke
pq = eT

i

[∫
Ωe

BT
aDBb dV +

∫
Ωe

Gab dV
]

ej , (A.7)

where a, b = 1, . . . , nnodes denote the node, i, j = 1, 2 the degree of freedom, and indexes p, and q are
p = ndof (a− 1) + i and q = ndof (b− 1) + j. The geometric part of the tangent stiffness appears only in
large displacement problems, and it depends directly on current stress values through

Gab = S11
∂Na

∂x

∂Nb

∂x
+ S22

∂Na

∂y

∂Nb

∂y
+ S12

(
∂Na

∂x

∂Nb

∂y
+
∂Na

∂y

∂Nb

∂x

)
, (A.8)
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where Na represents element shape function.
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[Ibrahimbegović and Gruttmann, 1993] Ibrahimbegović, A. and Gruttmann, F. (1993). A consistent finite
element formulation of nonlinear membrane shell theory with particular reference to elastic rubberlike
material. Finite Elements in Analysis and Design, 12:75–86.

[Lee et al., 2008] Lee, C., Wei, X., Kysar, J., and Hone, J. (2008). Measurement of the elastic properties
and intrinsic strength of monolayer graphene. Science, 321(5887):385–388.

[Lu et al., 2011] Lu, Q., Gao, W., and Huang, R. (2011). Atomistic simulation and continuum modeling
of graphene nanoribbons under uniaxial tension. Modelling and Simulation in Materials Science and
Engineering, 19(5):054006.

[Lu and Huang, 2009] Lu, Q. and Huang, R. (2009). Nonlinear mechanics of single-atomic-layer grephene
sheets. International Journal of Applied Mechanics, 1:443–467.

16
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