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Abstract
Background: Real-time RT-PCR is the recommended method for quantitative gene expression
analysis. A compulsory step is the selection of good reference genes for normalization. A few genes
often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the
most commonly used, as their expression is assumed to remain unchanged over a wide range of
conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully
selected internal control genes is now strongly recommended for normalization to avoid this
problem of expression variation of single reference genes. The aim of this work was to search for
a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae.

Results: From public microarray datasets, we selected potential reference genes whose
expression remained apparently invariable during long-term growth on glucose. Using the
algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression
remained stable, independent of the growth conditions and the strain backgrounds tested in this
study. We then showed that the geometric averaging of any subset of three genes among the six
most stable genes resulted in very similar normalized data, which contrasted with inconsistent
results among various biological samples when the normalization was performed with ACT1.
Normalization with multiple selected genes was therefore applied to transcriptional analysis of
genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1
and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was
no induction of these two genes at this transition phase on galactose, although in both cases, the
kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the
carbon source and increased by 3-fold in stationary phase.

Conclusion: In this work, we provided a set of genes that are suitable reference genes for
quantitative gene expression analysis by real-time RT-PCR in yeast biological samples covering a
large panel of physiological states. In contrast, we invalidated and discourage the use of ACT1 as
well as other commonly used reference genes (PDA1, TDH3, RDN18, etc) as internal controls for
quantitative gene expression analysis in yeast.
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Background
Real-time PCR technology has recently reached a level of
sensitivity, accuracy and practical simplicity allowing its
use as a routine bioinstrumentation for pathogen detec-
tion, single nucleotide polymorphism and gene expres-
sion analysis [1-4]. In particular for the latter application,
several controls are needed to ensure the integrity of each
step along the process [5] and therefore, to obtain reliable
and accurate results. This process includes RNA extraction
(yield, integrity, DNA contamination), efficiency of the
reverse transcription and PCR steps, amount of RNA
added into the reaction, etc. While the quantitative RT-
PCR is technically robust, the normalization procedure to
correct sample-to-sample variation remains a critical and
challenging problem of this method [1,4,6,7]. Several
procedures have been suggested based on physical param-
eters, such as volume or cell number, but these methods
are either impractical or unreliable due to the heterogene-
ity of biological samples. Some authors favour an internal
control strategy, which uses an alien RNA molecule that is
artificially incorporated into the biological sample [7]. As
an example, Liu & Slininger proposed a set of universal
external RNA calibrators for microbial mRNA expression
analysis [8]. In spite of these initiatives, the most common
practice is to normalize to either total RNA amount, ribos-
omal RNA or to a single internal reference gene termed
HouseKeeping gene (HSK). Several mathematical models
have been developed that calculate the "relative" mRNA
expression changes of a target gene with respect to an
HSK. The "2ΔΔCt" approach [9] is the most popular appli-
cation in quantitative RT-PCR, but it assumes optimal and
identical PCR efficiencies of target and reference genes.
Violation of this rule results in a systematic bias that either
underestimates or overestimates the initial copy numbers.
This problem can be bypassed by adjusting for PCR effi-
ciency, which can be estimated using many approaches
[10-12] that can be separated into three groups [12]: serial
dilutions, individual graph analysis based on the rate of
fluorescence accumulation within the exponential region,
or mathematical model fitting. Whatever the method
employed for determining the PCR efficiency, accurate rel-
ative quantification implies that the expression of the ref-
erence gene is perfectly stable in the sample set.

It is empirically assumed that housekeeping genes fulfil
the criterion of unregulated expression independent of
the experimental condition. However, some evidence
shows that these genes are regulated to some extent, rein-
forcing the idea that there is no universal reference gene
whose expression level remains constant whatever the
conditions [2]. Since even small variations of an internal
control could lead to non-reliable expression data, it is
critical to validate that the expression of reference genes is
stable prior to their use for normalization in real time RT-
PCR analysis. To overcome the "circular problem" of eval-

uating the expression stability of a candidate gene if no
reliable measure is available to normalize the candidate
[13], Vandesompele and colleagues [14] developed a sta-
tistical algorithm termed geNorm. Their strategy relied on
(i) a careful selection of a set of genes that display mini-
mal variation across different biological conditions, and
(ii) normalization of the genes of interest to the geometric
mean of a minimal, albeit optimal number of the selected
genes. The strength of using geometric averaging is in
smoothing the individual variation of the expression
value of a single reference gene, which can lead to large
errors of normalized data in samples of interest [14].
Other statistical algorithms were also proposed, e.g. Best-
keeper [15], which allows including up to ten genes of
interest in the analysis, or Normfinder [13] that is appar-
ently less sensitive toward coregulation of the candidate
reference genes.

Real-time RT-PCR is commonly used to validate microar-
ray-generated data [16,17]. ACT1 and RDN18 are among
the most frequently used reference genes in S. cerevisiae
studies, because the expression of these genes has been
considered relatively stable under the conditions investi-
gated. However, only two recent papers showed the stabil-
ity of ACT1 expression and some other standard reference
genes to normalize the expression of genes involved in
central carbon metabolism during short-term glucose
pulse [18], or during the rehydration process in active dry
yeast [19]. With the notable exception of these works, we
could not find any study dedicated to the selection and
validation of suitable reference genes in S. cerevisaie, con-
trary to other fungal models such as the pathogenic yeast
Candida albicans [20], and the fungi Metarhizium anisopliae
[21] and Aspergillus niger [22]. Therefore, the purpose of
the present work was to identify a robust set of reference
genes for growth phase-related mRNA profiling in the
yeast Saccharomyces cerevisiae. From public microarray
datasets, we selected a set of potential reference genes that
exhibited minimal variation among various conditions.
The most stable subset of internal controls, which gave
rise to a robust normalization factor, was then applied to
quantify expression of genes involved in glycogen metab-
olism in response to changing growth conditions, and in
a mutant defective in TPS1 which encodes the trehalose-
6P synthase subunit [23].

Results
Sampling
Cell samples were regularly harvested from the yeast cul-
tures, and only samples from key physiological states were
selected and used for mRNA quantification by real time
RT-PCR assays (Figure 1 and Additional files 1 and 2).
These physiological states were defined from the macrok-
inetic growth parameters and reserve carbohydrates pro-
files as follows: the exponential - respiro fermentative-
Page 2 of 15
(page number not for citation purposes)



BMC Molecular Biology 2009, 10:99 http://www.biomedcentral.com/1471-2199/10/99
phase (EP); the diauxic shift (DS), which corresponds to
the time when the sugar has just been exhausted from the
medium while glycogen shows a transient peak of accu-
mulation; the post-diauxic or purely respiratory phase
(PDS), which corresponds to the re-assimilation of fer-
mentation products and to a second phase of glycogen
accumulation; and finally, the stationary phase (SP) when
cells are starved for carbon nutrient. Contrary to the wild
type strain behaviour, the tps1 mutant significantly mobi-
lized glycogen during the PDS phase, and consequently
more samples were taken up during this period to better
characterize the physiological state of this mutant in this
growth phase (see also additional file 2 for details of the
sampling). In total, we carried out six independent yeast
cultures (Figure 2). The wild type KT strain was grown on
glucose (sample set B) as the basic and reference growth
condition [24]. It was also cultivated on galactose (set C),
which was used as the growth control condition for tps1
mutant since this mutant strain cannot grow on glucose
[25]. Finally, cultures on galactose of the CEN.PK strain
and the corresponding tps1 mutant were made in dupli-
cates (sets D & E for the wild type CEN.PK and sets H & I
for the tps1 mutant).

Expression level and stability of candidate reference genes
As stated in the introduction, accurate normalization
requires reference genes whose expression changes are
negligible under the investigated conditions. Candidate
genes were therefore identified using public microarray
datasets from De Risi et al [26] and Gasch et al [27],
because the culture conditions reported in these studies

were the closest to our experimental setup. We selected
eight potential reference genes based on the stability of
their expression during growth on glucose (genes high-
lighted in bold in Table 1), taking care that these genes
belong to different functional categories to minimize the
risk of coregulation. The remaining genes listed in Table 1,
i.e. ACT1, PDA1, RDN18, IPP1 and TDH3, were also
included in the list since they are traditionally used as sin-
gle reference genes in expression studies by Northern blots
or real time RT-PCR.

Transcription profiling using real-time RT-PCR assays was
then performed with these 13 candidate genes, in samples
from the 6 cultures. We first analyzed transcript abun-
dance of these genes in the different samples by direct
comparison of their cycle threshold (Ct), assuming equal
Ct for equal transcript number since all RT-PCR reactions
were performed with equal quantity of total RNA. As can
be seen in Figure 3, most of the selected genes presented
Ct values that spanned from 20 to 30 cycles, while Ct val-
ues from RDN18 and TDH3 were clearly lower. For
RDN18, these values centered around 8 cycles with a very
low dispersion. The glycolytic gene TDH3 was also highly
expressed as indicated by Ct values around 17 cycles, but
it exhibited rather high dispersion over the growth phases
and culture conditions as indicated by large whiskers of
the box and many outliers. The Ct of the remaining
selected genes showed a reasonable dispersion, with
expression levels of ALG9, KRE11, TAF10, TFC1 and UBC6
exhibiting smaller variation than that of ACT1, HEM2,
IPP1 or PDA1.

Schematic view of growth characteristics of a WT strain and its tps1 derivativeFigure 1
Schematic view of growth characteristics of a WT strain and its tps1 derivative. Growth (cells) and glycogen pro-
files during cultures of CEN.PK strains on galactose. WT (left, set D from Figure 2) and tps1 (right, set H from Figure 2). EP, 
Exponential Phase; DS, Diauxic Shift; PDS, Post-Diauxic Shift; SP, Stationary Phase. Original data and sampling numbering can 
be found in the Additional files. Cells (OD600), Glycogen (μg eq.glucose/OD unit).

Time (Hours) Time (Hours)

0 500 600100

Cells (          )
Glycogen (          )

200 300 400

EP DS      PDS SP\ / EP   DS      PDS SP\ /

0 500 600100 200 300 400

WT tps1

Cells (          )
Glycogen (          )

// //

//

//

//
//C

el
ls

0

20

40

60

G
ly

co
ge

n

10

20

30

0

Page 3 of 15
(page number not for citation purposes)



BMC Molecular Biology 2009, 10:99 http://www.biomedcentral.com/1471-2199/10/99
These raw Ct data were then analyzed using geNorm to
identify the most suitable candidate genes. For each inde-
pendent culture (e.g. sample set B, Figure 2 left panel), or
pool of several cultures (e.g. set A that combined samples
from cultures B & C), the 13 genes were ranked according
to their gene expression stability measure "M" (Figure 2,
right panel, and additional file 3). All genes presented an
M value below 1.5, which is the default limit for accepta-
ble expression stability as defined by Vandesompele et al
[14]. Another advantage of geNorm is to provide the opti-
mal number of reference genes required for accurate nor-
malization. This number is obtained by calculating the
Pairwise variation values (V(n/n+1)) between each combi-
nation of sequential normalization factors (NF) (Figure 2,
right column). Vandesompele and coworkers [14] recom-
mended a cut-off value at 0.15, below which the inclusion
of an additional gene does not result in a significant
improvement of the normalization. According to this cri-
terion, TAF10 and UBC6 turned out to be sufficient as
internal controls to normalize expression levels from sam-
ples taken from growth on glucose (set A, V2/3 = 0.098),
whereas 5 genes were required for normalizing gene
expression from the data sets F and G (V5/6 = 0.150 and

0.141, respectively). According to the recommendation of
Vandesompele et al [14], we always used a minimum of
three of the most stably expressed genes to calculate the
normalization factor. From this analysis, ACT1, IPP1 and
TDH3 were excluded from the set of selected genes for
normalization as they always ranked among the worst
candidates. In contrast, ALG9, TAF10, TFC1, UBC6 and to
a lesser extent KRE11 turned out to be the most stable
genes in the culture conditions tested in this study (Figure
2 right panel, additional file 3).

To further support this conclusion and the suitability of
this set of genes to serve as a reference in a broader panel
of experimental conditions, we examined gene stability of
these candidate reference genes by using data from the
entire microarray datasets from the SGD server (approx. 30
experiments), which altogether correspond to several
hundred different experimental conditions. As can be
seen in Figure 4, genes like ALG9, TAF10, TFC1, UBC6 pre-
sented a significantly higher number of experiments with
a log2 ratio close to zero as compared to ACT1. This
microarray survey analysis indicated that our initially
selected genes exhibited very little expression change over

Sample sets and Ranking of candidate reference genes as calculated by geNormFigure 2
Sample sets and Ranking of candidate reference genes as calculated by geNorm. Left panel: Independent cultures 
(illustrated by the boxes) were carried out: Wild type KT strain on glucose (sample set B) and galactose (set C); Wild type 
CEN.PK (set D & set E as independent cultures) and its tps1 derivative strain (set H & set I as independent cultures), on galac-
tose. Sampling [S#] was performed all along the cultures with a posteriori selection and analysis of 4 to 7 RNA samples repre-
sentative of different physiological states (e.g. samples 1 to 5 for growth of the KT strain on glucose; see Additional file 1). 
Expression data from one culture (e.g. set B/) or from several cultures (connector between boxes, e.g. set A/that includes sam-
ples from sets B & C together) were then analyzed with geNorm (A ~M sample sets). Right panel: Synthetic overview of rank-
ing of the candidate reference genes according to their expression stability, and determination of the optimal number of genes 
used for normalization. The 2 most stable genes (black circle), the third (dashed circle) and the following 3 best reference 
genes (empty circle). Pair-wise variation (Vn/n+1) between NFn and NFn+1 (NF: normalization factor; n: number of genes used for 
NF calculation). Right Column: pair-wise variation value below the threshold 0.15, which means that n genes might be sufficient 
for NF calculation (i.e. 2 genes for set "A"). See additional file 3 for overall stability under the standard geNorm output format.
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Table 1: List of candidate reference genes and genes of interest

Name Molecular Function (SGD curated)/Biological process Primer sequence Eff

Candidate reference genes

ACT1 Structural constituent of cytoskeleton/Cell polarization, endocytosis, 
and other cytoskeletal functions

F:ATTATATGTTTAGAGGTTGCTGCTTTGG
R:CAATTCGTTGTAGAAGGTATGATGCC

94

ALG9 Mannosyltransferase activity/Protein amino acid glycosylation F:CACGGATAGTGGCTTTGGTGAACAATTAC
R:TATGATTATCTGGCAGCAGGAAAGAACTTGGG

93

FPR2 Membrane-bound peptidyl-prolyl cis-trans isomerase activity/Unknown F:TCTTTATTAGAATCGGGAACTGTATTTGACTC
R:AATGACGCCTGGGACACCTCTTTC

89

HEM2 Porphobilinogen synthase activity/Heme biosynthesis F:TTCCGCTATTCATCTCCGATAATCCAG
R:ACAGACATCGCAAATAATATACAGTTCAGG

95

IPP1 Inorganic diphosphatase activity/Phosphate metabolic process F:CCCAATCATCCAAGACACCAAGAAGG
R:AGCAATAGTTTCACCAATTTCCAACACATC

90

KRE11 Unknown/ER to Golgi vesicle-mediated transport F:AACTGGTTCTGTTACCCAAATCAACTCAAC
R:AACGCTTCAATGTGACTTCTGTTTCCC

86

PDA1 Pyruvate dehydrogenase activity/Pyruvate metabolism F:ATTTGCCCGTCGTGTTTTGCTGTG
R:TATGCTGAATCTCGTCTCTAGTTCTGTAGG

93

RDN18 Sstructural constituent of ribosome/Translation F:AACTCACCAGGTCCAGACACAATAAGG
R:AAGGTCTCGTTCGTTATCGCAATTAAGC

93

RPN2 Protein binding, bridging/Ubiquitin-dependent protein catabolic process F:GCGGATACAGGCACATTGGATACC
R:TGTTGCTACCTTCTCTACCTCCTTACC

101

TAF10 RNA Pol II transcription factor activity/Transcription initiation and 
chromatin modification

F:ATATTCCAGGATCAGGTCTTCCGTAGC
R:GTAGTCTTCTCATTCTGTTGATGTTGTTGTTG

96

TDH3 Glyceraldehyde-3P dehydrogenase (phosphorylating) activity/Glycolysis 
& Gluconeogenesis

F:CGGTAGATACGCTGGTGAAGTTTC
R:TGGAAGATGGAGCAGTGATAACAAC

91

TFC1 RNA Pol III transcription factor activity/Transcription initiation on Pol III 
promoter

F:GCTGGCACTCATATCTTATCGTTTCACAATGG
R:GAACCTGCTGTCAATACCGCCTGGAG

91

UBC6 Ubiquitin-protein ligase activity/ER-associated protein catabolic process F:GATACTTGGAATCCTGGCTGGTCTGTCTC
R:AAAGGGTCTTCTGTTTCATCACCTGTATTTGC

84

Genes of interest (GOIs) in glycogen metabolism

GPH1 Glycogen phosphorylase activity/Glycogen catabolic process F:ACAAAACTCAGCAGAAATTCACCACAAG
R:CAAGACGACCTAGACCACCATTACC

90

GSY2 Glycogen synthase activity/Glycogen biosynthetic process F:TGCCCAGTATAAAGACCATTACCACTTGATAGG
R:GCACCTTCAATCAGCCACCTCCCATAAAC

86

SGA1 glucan 1,4-alpha-glucosidase activity/Glycogen catabolic process F:TCCAAACGGATATTTCCTGGGTGGTACTGAG
R:GCATGATCTATTGTGTTTACATTAGCGGGTAG

89

Function of candidate reference genes and GOIs as annotated in the SGD database http://db.yeastgenome.org. All ORF sequences were recovered 
from the SGD database. Forward (F) and reverse (R) primer sequences; PCR amplification efficiency (Eff). Genes highlighted in bold were selected 
from their apparent stability during growth on glucose (public microarray datasets from De Risi et al [26] and Gasch et al [27]). The remaining 
reference genes are commonly used internal controls in yeast studies.

http://db.yeastgenome.org
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a wide range of experimental conditions. Therefore, this
set of genes, ALG9, TAF10, TFC1 and UBC6 should be
preferentially used to calculate normalization factors in
quantitative RT-PCR expression analysis in the yeast S. cer-
evisiae.

Impact of reference gene selection on expression ratio 
values
The strength of GeNorm to select the most suitable refer-
ence genes was demonstrated by comparing normalized
data calculated from different subsets of potential HSKs.
As is shown in Figure 5, the use of a normalization factor
based on the geometric mean of expression levels of

UBC6, TAF10 and ALG9 (NF(UBC6, TAF10, ALG9)) yielded
expected expression patterns of the glycogen metabolic
genes GSY2 and GPH1 during growth of the KT strain on
glucose (see last results section for more details). Ratios of
expression values were almost identical using the follow-
ing 3 best genes based on geNorm classification (NF(TFC1,

KRE11, FRP2), compare grey and hatched bars) or applying
the normalization factor calculated from the six best genes
together (NF(6 best), not plotted). These results showed
that, at least in this condition, any subset of three genes
among the most stably expressed candidates was suffi-
cient to calculate robust NF and to normalize expression
of Genes of Interest (GOIs).

Distribution overview of expression levels (Ct) of the different genesFigure 3
Distribution overview of expression levels (Ct) of the different genes. Boxplot representation of raw Ct values 
obtained from amplification curves. Lower and upper boundaries of the box indicate the 25th and the 75th percentile, respec-
tively, the thin line within the box marks the median, and the whiskers (error bars) below and above the box indicate the 10th 
and 90th percentiles. Mean (thick line) and outliers (*). Complete RNA sample set from the study (n = 32, grey), sample set "A" 
(n = 9, yellow; see Figure 2, Glucose + Galactose) and sample set "K" (n = 11, green; see Figure 2, WT + tps1Δ). As stated in 
methods, the 25 μL reaction mixes contained 5 μL of cDNA preparation diluted 10 times, except for RDN18 where cDNA 
was diluted 50 times. For a easy and preliminary estimation of the relative expression of a gene between two samples, a differ-
ence of 3.33 Ct with 100% PCR efficiency represents 10-fold over-expression or repression between two conditions (N2/N1 = 
(1+Eff)^(Ct1-Ct2)); With PCR efficiency correction, the same Ct difference with only 90% efficiency signifies a 8.5-fold variation 
of transcripts between the two samples.
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The advantage of using validated genes for normalization
was further analyzed comparing expression results after
normalization (NF(UBC6, TAF10, ALG9), etc) to those obtained
by using non-validated reference genes, e.g. ACT1
(NF(ACT1)) or a combination of ACT1, PDA1 and IPP1
(NF(ACT1, PDA1, IPP1)). As it could be expected from the
coregulation of these three genes during growth on glu-
cose (Figure 5), identical expression data were obtained
with NF(ACT1) and NF(ACT1, PDA1, IPP1) as normalization fac-
tors (compare empty and black dots for RDN18 and GOIs
normalized expression data). In contrast, a strong discrep-
ancy between normalization to ACT1 and normalization
to validated genes was observed in biological samples col-
lected in the post-diauxic phase (#3 and #4) and in the
stationary phase (#5). This strong deviation could be
explained by the drop of ACT1 mRNA as well as that of
transcripts of other HSK genes (IPP1 and PDA1) during
these growth phases (Figure 5). To better visualize the
advantage of using normalization to validated genes, data

from sample set B were reported on a scatter plot (Figure
6), comparing data normalized to NF(TFC1, KRE11, FRP2) and
NF(ACT1), respectively, to those normalized to NF(UBC6,

TAF10, ALG9) (Figure 6). A regression coefficient close to one
(R2 = 0.997) was calculated for NF(TFC1, KRE11, FRP2) versus
NF(UBC6, TAF10, ALG9). In contrast, the coefficient was
extremely low for NF(ACT1) versus NF(UBC6, TAF10, ALG9) (R2 =
0.598), mainly due to expression data from PDS and SP
samples.

Similar analyses were carried out by using different bio-
logical situations, as for instance, in a biological set com-
bining samples from cultures on glucose and galactose to
analyze the influence of the carbon source (Figure 7, set
A), or from wild type and tps1 mutants to analyze the
impact of the mutation on the expression data (Figure 8,
set K). Again, discrepancies in ratios of expression values
calculated by normalization to the "best reference genes"
and to ACT1, respectively, were evident in samples col-
lected from yeast cultures entering the diauxic shift. The
difference was even more pronounced with late stationary
phase samples, as the difference could reach almost 10-
fold between the two procedures (see Figure 7 &8). This
discrepancy was visualized in the scatter plots presented
in Figure 9, which report a larger range of ratio values than
those in Figures 7 &8. As expected, data from (NF(TAF10,

FRP2, ALG9)) versus (NF(UBC6, TFC1, KRE11)) aligned with a good
regression coefficient (panel A, R2 = 0.916), while
NF(ACT1) did not correlate at all with NF(UBC6, TFC1, KRE11)
as shown by the worst regression coefficient of the study
(panel B, R2 = 0.124). Altogether, these results demon-
strated the benefit of using multiple selected genes instead
of a single, non-validated gene (e.g. ACT1) for accurate
and reliable data normalization.

Application to quantitative expression analysis of genes 
involved in glycogen metabolism
To test the robustness of this subset of selected reference
genes, we analyzed the transcriptional regulation of genes
involved in glycogen metabolism in this yeast. It has been
reported that large variations of reserve carbohydrate con-
tent are associated with coordinated transcriptional regu-
lation of the cognate genes in response to changing
growth conditions or under various genetic contexts
[23,24,28-33]. When examining raw Ct values from GPH1
(glycogen phosphorylase) and GSY2 (glycogen synthase)
in the complete dataset (Figure 3), the very long whiskers
of the boxes and numerous outliers confirmed the high
variability of the expression of these two genes. On the
contrary, the SGA1 gene encoding the vacuolar amylo-1,4
-1,6 glucosidase [34] exhibited much lower dispersion of
Ct values, indicating smaller expression change than GSY2
and GPH1 under our growth conditions. Using the 3 best
reference genes for data normalization (NF(UBC6, TAF10,

ALG9)), we confirmed the induction of GSY2 and GPH1

Expression summary as reported in the SGD Expression Connection toolFigure 4
Expression summary as reported in the SGD Expres-
sion Connection tool. For each gene (depicted by different 
color lines), the pattern that is reported in this figure is a 
copy of the "expression summary" histogram that was 
obtained using the Expression Connection tool from the 
SGD server http://www.yeastgenome.org. This graph indi-
cates the number of samples (also called 'experiments' on the 
SGD server), at a given expression ratio value, that could be 
found in all the microarray datasets stored on the SGD 
server (i.e. approx. 30 studies). The expression data reported 
on the axis are in log2 scale.
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between the exponential phase (S#1, calibrator sample)
and the entry into the diauxic shift (S#2), and found
remarkable expression ratios close to 20 for GSY2 and
almost 100 for GPH1 (Figure 5). Moreover, this normali-
zation procedure allowed us to show that the expression
of these two genes dropped immediately after the diauxic
shift, to return to the initial level in stationary phase for
GSY2, or close to it for GPH1, while ACT1 normalization
indicated stable and high expression of these two genes all
along these growth phases. In contrast to GSY2 and GPH1,
the expression of SGA1 showed a modest increase when
cells entered the diauxic shift to reach a 3-fold activation
in the stationary phase. We also analyzed for the first time
transcriptional patterns in galactose-grown cells (Figure
7). Unexpectedly, the expression of GPH1 and GSY2 was
already very high in the exponential phase (S#6) as com-
pared to cultures on glucose (S#1), and it did not further
increase as cells entered the diauxic shift on this carbon

source, whereas glycogen accumulated with a kinetic
almost similar to that on glucose (see additional files 1
&2). The expression of these two genes then dropped dur-
ing the post diauxic phase to reach levels even lower than
on glucose in the stationary phase. In contrast to GPH1
and GSY2, SGA1 expression was not affected by the car-
bon source. Finally, expression patterns of these three
genes on galactose were the same in the CEN.PK genetic
background (Figure 8) as in the KT strain (Figure 7).

The loss of TPS1 function had a strong impact on the gly-
cogen accumulation pattern on galactose, as it caused
hyper-accumulation of the polymer at the end of the
exponential phase, and also promoted its rapid and sus-
tained degradation during post-diauxic and stationary
phases (Figure 1, and in additional file 2). Therefore, to
get a preliminary idea on how this mutation could alter
the glycogen kinetics at the transcriptional level, we quan-

Effect of normalization strategies on expression ratiosFigure 5
Effect of normalization strategies on expression ratios. Normalized expression of ACT1, PDA1, IPP1, RDN18, GPH1, 
GSY2 and SGA1, in 5 characteristic samples during growth on glucose (i.e. set "B" in Figure 2): early exponential phase (respiro-
fermentative), entry in (disappearance of glucose) and exit from the diauxic shift, mid of post-diauxic (respiratory) growth, and 
3 days stationary phase. The exponential phase sample (S#1) was used as calibrator. Normalization was performed using the 
three most stable genes (NF(UBC6, TAF10, ALG9), dashed bar), the following 3 best (NF(TFC1, KRE11, FRP2), grey bar), ACT1 alone 
(NF(ACT1), black diamond) or using ACT1, PDA1 and IPP1 (NF(ACT1, PDA1, IPP1), empty diamond). Normalized expression data and 
error bars were calculated using the gene expression module of the BIORAD iQ5 software, which follows models and error 
propagation rules outlined in the geNorm manual. For the sake of clarity, we did not plot standard deviation of ratios obtained 
from NF(ACT1, PDA1, IPP1).
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tified the expression of GSY2, GPH1 and SGA1 during
growth on galactose of the WT and its tps1 derivative
strain. It is shown in Figure 8 that the expression pattern
of GPH1 or GSY2 was identical in both the wild type and
in the mutant strains. The only noticeable difference was
for SGA1 gene whose expression was already increased in
the exponential phase in a tps1 mutant (S#14) as com-
pared to the wild type strain (S#10, calibrator).

Discussion
In the yeast Saccharomyces cerevisiae, the microarray data-
sets available on the Saccharomyces Genome Database
website now represent a vast treasure-trove of reference
genes suitable for gene expression normalization. We
therefore used the Gene Expression Connection tool [35]
to search for a set of stably expressed genes in growth
dynamics [26,27]. Other approaches have recently been
proposed for selection of internal controls, with statistical
analysis of large microarray datasets [36,37]. Neverthe-
less, as stated by the authors [36,37], these in silico
searches for stable internal controls must be accompanied
by lab-bench work to verify that selected candidate genes

are reliable for normalization in a specific experimental
context. This is what we actually performed in the present
work. Out of 13 genes analyzed in this study, i.e. 8 func-
tionally unrelated genes selected from the microarray
datasets together with 5 standard reference genes (e.g.
ACT1, PDA1 etc), we identified ALG9, TAF10, TFC1,
UBC6 and to a lesser extent KRE11, as the most stable
genes in our experimental conditions. Another very
important result from this study was the observation that
geometric averaging of any subset of three genes among
the six most stable genes led to very similar normalization
factors, therefore highlighting the robustness of our gene
selection. This conclusion was further supported by the
weak expression change of this subset of genes as revealed
by a survey of microarray datasets from the SGD server, i.e.
in approximately 30 large scale transcriptomic studies,
which altogether correspond to several hundreds of differ-
ent samples. Therefore, ALG9, TAF10, TFC1 and UBC6
genes are the most pertinent reference genes, not only for
growth phase related mRNA profiling in S. cerevisiae, but
more generally for quantitative gene expression analysis
with samples that cover a large panel of physiological and
metabolic states.

Probably because of the tedious experimental validation
of a suitable set of reference genes, the common practice
by many authors was to use ACT1, PDA1, TDH3 or
RDN18 as a single reference gene for normalization in S.
cerevisiae expression studies, assuming a steady state level
of expression for these so-called housekeeping genes.
However, the validity of ACT1 as an internal standard has
been already questioned [38] and PDA1 was preferred to
ACT1 for normalization in Northern blot analysis since
stationary phase samples showed a more significant drop
of ACT1 mRNA. Still, by the use of Northern blot analysis,
it was indeed demonstrated that ACT1 is a representative
gene whose transcription is typically repressed following
the shift from logarithmic growth to stationary phase
[39,40]. As preliminary molecular clues on how down
regulation of this gene occurs, these authors showed that
topoisomerase I has a regulatory role in the transcrip-
tional repression of most of the genes following the
diauxic shift and in the stationary phase [39]. The second
work reported a major role of the RNA polymerase II sub-
unit RPB4, which permitted appropriate transcriptional
responses during stress, including nutrient stress that
accompanies entry into stationary phase [40]. Global
transcriptome analysis [27] also showed that ACT1 mRNA
levels did decrease significantly during growth in a glu-
cose rich medium, a pattern that was confirmed by using
absolute quantification by real time RT-PCR [41]. In our
study, using the geometric averaging of multiple selected
reference genes for relative quantification, we also found
a significant drop of ACT1 transcripts and of other fre-
quently used genes like PDA1 (E1 alpha subunit of the

Degree of correlation between normalization strategies in simple datasetsFigure 6
Degree of correlation between normalization strate-
gies in simple datasets. Scatter plot of the data illustrated 
in Figure 5. X axis: ratios calculated using the three most sta-
ble genes (NF(UBC6, TAF10, ALG9)); Y axis: ratios calculated using 
NF(TFC1, KRE11, FRP2) (green diamond) or NF(ACT1) (purple 
square). Horizontal and vertical error bars: Standard devia-
tion on X and Y ratio, respectively. Grey Dotted line: y = x. 
The equation and correlation coefficient of the linear regres-
sion fit (not reported) are y = 0,9178x, R2 = 0,997 (green dia-
monds), and y = 0,9327x, R2 = 0,598 (purple squares).
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pyruvate dehydrogenase complex) and IPP1 (cytoplasmic
inorganic pyrophosphatase) when cells proceed from the
exponential phase of growth to the stationary phase.
Therefore, as already mentioned by Monje-Cajas et al [41],
the use of ACT1 and related transcripts would seriously
over-estimate (approx. 10-fold) expression levels of genes
of interest in stationary phase, leading to erroneous con-
clusions. Moreover, the genes encoding glycolytic
enzymes, for example TDH3 (glyceraldehyde-3-phos-
phate dehydrogenase), were amongst the first yeast genes
to be isolated. Because of their high expression levels,
their promoters have been widely used to construct yeast
expression vectors [42-47] and as model systems to study
transcription [48]. Nevertheless, as details of the organisa-
tion of glycolytic promoters have emerged, it has become
clear that these "simple HouseKeeping genes" actually
have sophisticated molecular mechanisms controlling
their expression [48]. As reviewed in this latter reference,

some glycolytic enzymes were induced by glucose while
others such as ENO1 and TDH3 appeared to be constitu-
tively expressed irrespective of the carbon source (glucose
or other sugars versus non-fermentable carbon sources).
Our results, i.e. the large dispersion of Ct values from
TDH3 in our experimental conditions (Figure 3) and the
fact that this gene ranked amongst the worst candidate ref-
erence genes (Additional File 3), somehow contradicted
this conclusion and do not encourage the use of TDH3 as
a constitutive, internal reference gene for reliable gene
normalization. Finally, the gene RDN18 encoding the
18srRNA could have been accepted for normalization, but
the very strong expression that is several orders of magni-
tude above the mean expression of tested reference genes
and GOIs, together with the fact that RDN18 does not
encode mRNA precluded its use as an internal reference
gene.

Effect of carbon source on expression profiles of the commonly-used ACT1 and genes of interestFigure 7
Effect of carbon source on expression profiles of the commonly-used ACT1 and genes of interest. Normalized 
expression of ACT1 and GPH1, GSY2, SGA1 in sample set "A" (n = 9). This set includes 5 samples selected during growth on glu-
cose (grey, see legend from Figure 5) and 4 characteristic samples from growth on galactose (blue): early exponential phase 
(respiro-fermentative), entry in the diauxic shift (disappearance of galactose), mid of post-diauxic (respiratory) growth, and 3 
days stationary phase. The exponential phase sample on glucose was used as calibrator for this sample set. Normalization was 
performed using the three most stable genes (NF(UBC6, TAF10, ALG9), dashed bar), the geometric mean of ACT1, PDA1 and IPP1 
(NF(ACT1, PDA1, IPP1), empty diamond) or ACT1 alone (NF(ACT1), black diamond). Normalized expression data and error bars calcu-
lated as described in Figure 5. For the sake of clarity, we did not plot standard deviation of ratios obtained from NF(ACT1, PDA1, 

IPP1).
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As an application of this normalization procedure with
carefully selected reference genes, we reinvestigated in a
quantitative manner the transcriptional response of genes
implicated in glycogen metabolism, since this physiolog-
ical event is an interesting hallmark during long term yeast
cultures with significant transcriptional remodeling and
huge variations of the polysaccharide content [23,24].
This study confirmed known transcriptional induction
patterns of genes encoding glycogen phosphorylase
(GPH1) and glycogen synthase (GSY2) that paralleled the
accumulation of glycogen between the exponential phase
and the diauxic shift on glucose [23,24], with a notable
induction ratio of approx. 100-fold for GPH1 and 20-fold
for GSY2. For the first time, this study also provided

expression data of these genes on galactose. Despite simi-
lar growth pattern and glycogen accumulation kinetic as
compared to glucose, the growth on galactose radically
changed the expression pattern of these two genes. Tran-
scripts levels were already very high in the exponential
phase as compared to glucose, and we could not observe
any upregulation at the entry into the diauxic-shift. There-
fore, the glycogen accumulation that was observed at the
end of the exponential phase during growth on galactose
probably came from a concomitant activation of Gsy2p
and the inactivation of Gph1p by protein phosphatases
mediated dephosphorylation events [23]. With respect to
the vacuolar amylo-glucosidase (SGA1), the large-scale
transcriptional study from Gash and co-workers showed

Effect of tps1 mutation on expression profiles of genes of interestFigure 8
Effect of tps1 mutation on expression profiles of genes of interest. Normalized expression of GPH1, GSY2 and SGA1 in 
WT and tps1Δ strains grown on galactose (set "K"). This set includes i/4 samples selected during growth of the WT strain 
(blue): early exponential phase [respiro-fermentative], exit from the diauxic shift, mid of post-diauxic [respiratory] growth, and 
after 3 days in stationary phase; and ii/7 samples from growth of the tps1Δ strain (red): early exponential phase [respiro-fer-
mentative], entry in and exit from the diauxic shift, early and mid respiratory growth (i.e. just before and just after glycogen 
peak), entry in and after 3 days in stationary phase. The exponential phase sample of the WT strain was used as calibrator. 
Normalization was performed using the three most stable genes in this sample set (NF(UBC6, TFC1, KRE11), dashed bar) or ACT1 
alone (NF(ACT1), black diamond). Normalized expression data and error bars calculated as described in Figure 5. For the sake of 
clarity, we did not plot standard deviation of ratios obtained using ACT1 as reference.
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some transcriptional activation of this gene during long
term yeast cultures on glucose [27,49]. Wang and co-
workers [49] also provided indirect evidence of transcrip-
tional activation of SGA1 in stationary phase, showing a
significant role of SGA1 gene deletion on glycogen accu-
mulation pattern in this phase of growth. Their result sug-
gested that SGA1 may not be strictly sporulation specific,
but could be activated under starvation, like in the late sta-
tionary phase. Our study supported this assertion and
showed that the expression of SGA1 increased during the
post-diauxic growth, with maximal 3-fold activation in
stationary phase in wild type strains. On the other hand,
the causal relationship between higher expression of
SGA1 and faster glycogen degradation in tps1 derivative
strains as compared to the WT remains to be investigated.

Conclusion
A set of putative internal control genes for real-time RT-
PCR analysis was selected from public microarray data-
sets. Using geNorm software, we validated that ALG9,
TAF10, TFC1, UBC6 and to a lesser extent KRE11, turned
out to be the most stable genes under all conditions inves-
tigated. Geometric averaging of their expression data was
then applied to smooth individual variation and to calcu-
late robust normalization factors, which allowed for the
demonstration that the use of a single reference gene like
ACT1 could lead to erroneous expression data. This set of
reference genes was carefully tested in a context of large
heterogeneity of samples (different physiological states
during long term S. cerevisiae cultures, different carbon
sources and genetic contexts) and applied to explore
quantitatively the transcriptional regulation of genes
involved in glycogen metabolism in this yeast. This study
brought new insights into the transcriptional control of
GSY2, GPH1 and SGA1 during long term growth on glu-
cose and galactose, suggesting a potential role of SGA1 in
the management of glycogen storage in tps1 cells. To sum-
marize, this work provides a set of pertinent reference
genes that should be used for validation of expression
data from microarrays experiments and more generally for
reliable real time RT- PCR analysis in yeast.

Methods
Yeast strains, growth conditions and sampling
The Saccharomyces cerevisiae strains, CEN.PK113-7D [50]
and its tps1 derivative [51], and JLP48-3B (KT1112 context
[24]), were grown at 30°C in a synthetic minimal
medium containing 0.17% (w/v) yeast nitrogen base
(DIFCO), 0.5% (w/v) ammonium sulfate and 2% (w/v)
galactose (YNGal) or glucose (YNGlu). The use of pro-
totroph strains did avoid amino acid complementation of
the medium. The pH was adjusted to 5.0 with succinic
acid and sodium hydroxide. Cell growth was followed by
measurement of OD (600 nm) during at least 10 days. For
real independency of duplicates, shake-flasks cultures

Degree of correlation between normalization strategies in more heterogeneous datasetsFigure 9
Degree of correlation between normalization strate-
gies in more heterogeneous datasets. Scatter plot of 
ratio values obtained from sample set "K" for genes which 
together illustrated a wide range of responses (from strong 
over-expression to repression, see Figure 8 for some of 
them). X axis: ratios calculated using the three most stable 
genes (NF(UBC6, TFC1, KRE11)); Y axis: ratios calculated using 
NF(TAF10, FRP2, ALG9) (A) and NF(ACT1) (B). Dotted line: y = x. The 
equation and correlation coefficient of the linear regression 
fit (not reported) were y = 1.030x, R2 = 0.916 (A) and y = 
2.405x, R2 = 0.124 (B).
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were performed neither simultaneously, nor from the
same inoculums. The residual extracellular carbon source
was quantified by HPLC. Intracellular glycogen and treha-
lose were measured as described in [52]. Yeast samples for
real-time PCR analysis (approx. 108 cells) were centrifuged
(3,000 rpm, 4°C, 3 min), and the cell pellets were imme-
diately frozen in liquid nitrogen and stored at -80°C until
RNA extraction.

Total RNA extraction
Frozen cells were mechanically disrupted using a ball mill
(Mikro-Dismembrator S; B. Braun Biotech International).
Total RNA was extracted using the RNeasy mini kit (Qia-
gen). To eliminate genomic DNA contamination, an addi-
tional DNase treatment was performed according to the
RNeasy kit instruction with the RNase-free DNase set
(Qiagen). The extracted RNA was quantified using the
Bioanalyzer 2100 with the RNA 6000 Nano LabChip kit
(Agilent) and the ND-1000 UV-visible light spectropho-
tometer (NanoDrop Technologies). As another prelimi-
nary quality control assay, the absence of contaminant
genomic DNA in RNA preparations was verified using
RNA as a template in real-time PCR assays (minus RT con-
trol, i.e. RNA not reverse-transcribed to cDNA).

Quantitative RT-PCR
Oligonucleotides for real-time PCR (Table 1) were
designed using Beacon Designer 2.0 software (PREMIER
Biosoft International), which included a BLAST analysis
against S. cerevisiae Genome sequence for specificity con-
fidence, and analysis using the Mfold server to avoid posi-
tioning on risky secondary structures.

One microgram of total RNA was reverse-transcribed into
cDNA in a 20 μL reaction mixture using the iScript cDNA
synthesis kit (Bio-Rad). The cDNA levels were then ana-
lyzed using the MyIQ real-time PCR system from Bio-Rad.
Each sample was tested in duplicate in a 96-well plate
(Bio-Rad, CA). The reaction mix (25 μL final volume)
consisted of 12.5 μL of iQ SYBR Green Supermix (Bio-
Rad), 2.5 μL of each primer (250 nM final concentration),
2.5 μL of H2O, and 5 μL of a 1/10 dilution of the cDNA
preparation. The absence of genomic DNA in RNA sam-
ples was checked by real-time PCR before cDNA synthesis
(minus RT control). A blank (No Template Control) was
also incorporated in each assay. The thermocycling pro-
gram consisted of one hold at 95°C for 4 min, followed
by 40 cycles of 10 s at 95°C and 45 s at 56°C. After com-
pletion of these cycles, melting-curve data were then col-
lected to verify PCR specificity, contamination and the
absence of primer dimers.

The PCR efficiency of each primer pair (Eff) was evaluated
by the dilution series method using a mix of sample
cDNAs as the template. Briefly, it was determined from

standard curves using the formula 10(-1/slope). For the cal-
culations, the base of the exponential amplification func-
tion was used (e.g. 1.94 means 94% amplification
efficiency). Relative expression levels were determined
with efficiency correction [53], which considers differ-
ences in primer pair amplification efficiencies between
target and reference genes, and results in a more reliable
estimation of the "real expression ratio" than the 2ΔΔCt
method [9]. Expression data and associated technical
errors on duplicates were calculated using the gene expres-
sion module of the BIORAD iQ5 software, which follows
models and error propagation rules outlined in the
geNorm manual.

Data analysis using geNorm
The stability of mRNA expression of tested reference genes
was evaluated by using the geNorm VBA applet for Micro-
soft Excel [14]. This program calculates the gene expres-
sion stability measure "M" for a potential reference gene
as the average pair-wise variation for that gene with all
other tested genes. Then it ranks genes considering that
those with the lowest M value have the most stable expres-
sion. Finally, it determines the optimal number of genes
for an accurate normalization by calculating the pair-wise
variation (V(n/n+1)) between two normalization factors,
namely NFn (normalization factor based on the geometric
mean of the n most stable genes) and NFn+1 : if Vn/n+1 is
superior to 0.15 as a cut-off value, one could consider that
the (n+1)th gene has a significant effect on normalization
quality and should preferably be included for calculation
of a reliable normalization factor. Authors of geNorm
nevertheless recommend the minimal use of the three
most stable internal control genes for calculation of the
normalization factor (NF3), and stepwise inclusion of
more control genes until the (n+1)th gene has no signifi-
cant contribution to the newly calculated normalization
factor.
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Growth curve and glycogen content of WT strain on glucose and 
galactose. Growth (cells) and glycogen content during cultures of KT 
strain on glucose (set B from Figure 2) and galactose (set C from Figure 
2). Cell samples (red dots) analyzed by real-time RT-PCR and sample 
numbering (S# followed by red numbers in the blue area). Cells (OD600), 
Glycogen (μg eq.glucose/OD unit).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2199-10-99-S1.pdf]

Additional file 2
Growth curve and glycogen content of WT and tps1 strains. Growth 
(cells) and glycogen content during cultures of CEN.PK strains on galac-
tose, WT (set D from Figure 2) and tps1 (set H from Figure 2). Legend 
as in Additional file 1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2199-10-99-S2.pdf]

Additional file 3
Ranking of reference genes according to their expression stability. 
Compiled data from all sample sets. For each set (A to M), genes are 
ranked from the least stable (left) to the most stable (right). The two most 
stable genes cannot be ranked in order. Gene expression stability value 
(Upper panel) as a function of gene name (lower panel).
Click here for file
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