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Abstract: 

Background. Cylindrical compression spring behavior has been described in the literature using an efficient 

analytical model. Conical compression spring behavior has a linear phase but can also have a non-linear phase. 

The rate of the linear phase can easily be calculated but no analytical model exists to describe the non-linear 

phase precisely. The non-linear phase can only be determined by a discretizing algorithm. 

Method of Approach. This paper presents, for the first time, analytical continuous expressions of length as a 

function of load and load as a function of length for a constant pitch conical compression spring, in linear and 

non-linear phases. The method leading to the first above analytical expression involves separating free and 

solid/ground coils, and integrating elementary deflections along the whole spring. The inverse process to obtain 

the spring load from its length is assimilated to solve a fourth order polynomial. 

Results. Two analytical models are obtained. One to determine the Length vs. Load curve and the other for the 

Load vs. Length curve. Validation of the new conical spring models in comparison with experimental data is 

performed. An example of an application with the new models is also provided. 

Conclusion: The behavior law of a conical compression spring can now be analytically determined. This kind of 

formula is useful for designers who seek to avoid using tedious algorithms. Analytical models can also be useful 

in developing assistance tools for conical spring design, especially where optimization methods are used. 

 

Keywords: constant pitch conical spring, analytical models, linear, non-linear, fourth order polynomial, design 

optimization. 
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1 Introduction 

Helical springs are among the most widespread components in mechanical systems. Wahl [1] summarized 

basic and essential definitions, characteristics, behavior models and calculation methods relating to the main 

types of springs. More recently, in order to provide precise spring applications, mechanical design research has 

been conducted leading to significant improvements in knowledge of springs. Ding and Selig [2] proposed a new 

compression spring model based on its compliance matrix. The model goes beyond the standard Euler-Bernoulli 

beam theory that induces the “closely coiled spring approximation”, hence allowing for larger deflections. 

Becker, Chassie and Cleghorn investigated buckling of helical compression springs [3] and their resonant 

frequencies under static axial load with clamped ends [4]. Jiang and Henshall [5] developed an efficient finite 

element model for helical springs. Todinov [6] studied fatigue crack origin of compression springs through 

analysis of the maximum principle tensile stress location and effects of shot-peening. 

Conical springs provide a commonly used solution for applications with constraints of reduced length or 

space. They can be used in many different mechanisms, as with contactors and switches in the electrical field. 

Indeed they are often chosen for one special characteristic, i.e. their ability to telescope, meaning they take up 

very little space at maximum compression while storing as much energy as cylindrical springs. But conical 

springs also have other specific features. For example, their load-length characteristics are usually non-linear. 

Wahl [1] did not mention these springs. However, there has been research into conical springs. The Institute of 

Spring Technology [7] proposes definitions and calculations for conical spring general characteristics such as the 

spring rate in its linear range. In parallel with this work, in order to improve our knowledge of conical springs 

and describe their behavior in greater detail, research has been performed into their fundamental frequencies [8-

10], buckling [11] and lateral loading [12]. Until now, the IST conical spring calculation model has provided 

non-linear load-length characteristics from an incremental algorithm [7]. This involves a process that dicretizes 

each coil to evaluate deflection as a function of load. This necessarily leads to an approximated load-length 

relation. This algorithm is non-inversible since it calculates spring deflection from any load value, but cannot 

directly evaluate load from a deflection value. The ‘Advanced Spring Design 6’ software from the Spring 

Manufacturers Institute [13] and Universal Technical Systems [14] provides a simple and complete interface. It 

offers design verification, but simplifies conical spring behavior into a linear phenomenon. The ‘Spring Design 

and Validation 7’ software from IST [15] verifies the accuracy of a conical spring configuration, taking into 

account its non-linear characteristic, but is unable to offer conical spring design in accordance with the 

designer’s needs, as a synthesis tool. 



Analytical Behavior Law for a Constant Pitch Conical Compression Spring 

20/09/2018 – Rodriguez 3 

Numerical optimization methods can be used to define such a tool. Such methods have already allowed for 

interesting improvements in mechanical component design. Stochastic methods such as genetic algorithms have 

also often been applied. Yoshimura et al. [16] developed a multi-objective method to optimize multiple cross-

sectional shapes for automotive body frames. Lyu et al. [17] proposed a method to design multi-component 

structural assemblies. Giassi et al. [18] developed a method based on a genetic algorithm to optimize a hill-shape 

aimed at minimizing the resistance and energy created by a ship’s displacement. Non-linear mathematical 

programming methods have also often been used. Maddisetty and Frecker [19] optimized the topology of 

compliant mechanics and piezoceramic actuators using the Sequential Linear Programming method. 

Sandgren [20] proposed an optimization method adapted to mechanical design problems with non-linear integer 

or discrete variables and also devised an application for simplified spring design. In order to manage discrete 

variables, a ‘branch and bound’ procedure is used. In previous works, we developed design assistance tools for 

compression [21] and extension [22] cylindrical springs. In our approach, the designer defines his need using a 

user-friendly interface and the tool applies numerical optimization methods to directly propose the optimum 

design to respond to requirements. Such a synthesis tool for conical springs responds to designer demands, since 

it would be a great help in defining and checking any conical spring. In tackling the development of an optimal 

design tool for conical springs, we had to face the lack of a precise and inversible analytical expression for the 

load-length law. Indeed, numerical optimization methods are more likely to be efficient when the behavior of the 

component under study is described analytically. Wu and Hsu [23] developed an analytical model for a particular 

type of conical spring. Their study focuses on a conical spring with a constant helix angle, that does not 

telescope, and has cylindrical closed and ground ends. This model is based on a separating analysis between free 

coils and solid/ground ones, and gives spring deflection as a function of load. The result is approximated in a 

third order polynomial for a dynamic study. This study is thus not applicable for common conical springs with 

constant pitch. Rather, the paper sets forth the analytical expressions we propose to use to describe the behavior 

of a constant pitch conical spring. 

Firstly, conical spring characteristics are presented as the basis of further developments. Then the first 

expression – length as a function of load – is described, and determination of the second ‘inverse’ expression – 

load as a function of length – is explained. We go on to show how these models have been validated by 

experimentation. Finally, an illustrative example using new models is proposed. 

The use of these two load-length relations within an optimization method will be further developed in future 

works. 
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2 Conical spring characteristics 

 2.1 Parameters of a constant pitch conical spring. A conical compression spring with constant 

pitch and circular wire, is studied. Its design is fully defined by six parameters (see Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

an  represents the active coils of the spring. In order to make the load as close as possible to an axial load, 

two end coils are added, with one at the top and one at the bottom of the spring. As for compression springs, in  

represents  the difference between the overall length and the active length due to end coils.  

Thus  

 

dnLL i0a   (1) 

 

dnLL iSC   (2) 

When end coils are correctly defined, they do not influence the behavior of the active coils. For this reason, 

the present work refers essentially to the active coils of the spring.  

Spring behavior also depends on the shear modulus of elasticity G  of the material. 

 

Fig. 1   Parameters of the studied conical spring 
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 2.2 Two operating modes at minimum length. At minimum length (i.e. maximum compression) 

and according to its initial geometry, the studied conical spring can adopt either of two types of coil 

arrangements (see Fig. 2): 

- type 1: coils are solid, i.e. they are stacked one above the other, in contact coil-to-coil, giving a solid 

conical shape; 

- type 2: the spring telescopes and the coils reach the ground, showing a flat spiral shape. 

 

 

 

 

 

 

 

 

 

 

 

The criteria that distinguish telescoping springs (type 2) from non-telescoping ones (type 1) are geometrically 

determined (see Table 1). 
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Both these types will be taken into account for the following calculations. 

 

 2.3 Behavior law. Constant pitch conical springs show a 2-phase compression in relation to their 

load-length characteristics (see Fig. 3): the first phase is linear (with a straight slope, as with a basic cylindrical 

spring), and the second phase is non-linear (at the end of compression). 

 

 

 

Fig. 2   Active coil arrangements of type 1 and type 2 conical springs 
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 2.4 Location of characteristic points O, T and C. Three particular points of the load-length 

curve (see Fig. 3) can be defined to delimit linear and non-linear phases. The first point O corresponds to the free 

state of the spring, i.e. the initial stage of compression where 0P  and 0LL  . The second point T represents 

the transition between both the above mentioned phases. The third point C marks the maximum compression 

state when spring length L  cannot be shorter. 

As the first stage of our analytical study of conical springs, the precise determination of points T and C 

locations is proposed, with the O point location already being known. Consequently, analysis of the compression 

process is needed to link these particular points to the spring’s inherent physical behavior, and then to its 

parameters.  

 

 2.4.1 Compression process analysis. In the linear phase [OT] of the deflection curve (see Fig. 3), all 

the an  active coils are free to deflect, and the spring rate is constant [11]: 
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Fig. 3   Deflection curve and successive coil arrangements according to compression phases 

(only active coils are displayed) 
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Along the non-linear phase [TC] (see Fig. 4), the active coils gradually stack one above the other. During this 

phase, fn  coils are free and )n(n fa   coils are at solid/ground, i.e. either ‘at solid’ for a type 1 spring, or ‘at 

ground’ for a type 2 spring. fn represents the number of coils that are still free to deflect. 

 

 

 

 

 

 

 

 

 

 

 

This physical behavior explains why the conical spring characteristic curve shows two different phases: 

linear and non-linear. In fact, in the linear phase between O and T, the first element of the largest coil is free and 

so deflects. All the an  coils of the spring deflect so the spring rate R is constant and the load-length 

characteristic is linear. When the first element of the largest coil has reached its maximum physical deflection 

sδ , it ceases to be an active element of the spring since its is now ‘solid’ or ‘at ground’. This defines the point T. 

The first phase of compression now stops and the second one begins. Between T and C, the spring rate is then 

due to the ‘still free’ fn  coils. During the second phase of compression, fn  continuously decreases from an  to 0 

and leads to a gradual increase in the spring rate. This explains why this second phase shows a non-linear load-

length characteristic. Finally at the end of compression, the last free coil element with the smallest diameter 1D  

reaches its maximum deflection sδ  and indeed defines the maximum load Pc. This analysis is a first step in 

determining points T and C, and then elaborating the method which will then be used to calculate the conical 

spring deflection. As a first result, this shows the role of the elementary coil deflections in determining these 

points. Secondly, analysis enables the active coil deflection of the entire spring to be divided into two 

components: 

- deflection of the active coils of a first conical spring with fn  coils in its linear behavior,  

- deflection of the active coils of a second conical spring with )n(n fa   coils at solid/ground. 

Fig. 4   Distribution of active coils, at any step of the non-linear phase 
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 2.4.2 Definitions of elementary deflections. For the linear behavior of a constant pitch conical spring, 

the elementary deflection of any part of coil marked n  corresponds to the elementary deflection of free coils and 

can be calculated as for a basic cylindrical spring [1]: 

 

 
n

dG

r(n)P64
  (n)δ 4

3

f d  (4) 

where   a121 n/nDD  D
2

1
  r(n)   is the local mean coil radius described on Fig. 4. 

Moreover, the elementary deflection at solid/ground corresponds to the maximum geometrical elementary 

deflection described in Table 1 and can be calculated as follows (whether the spring telescopes or not): 
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 Table 1   Lengths aL  and SL , and associated phases of compression 

 free any compression stage at solid / at ground 

type 1 springs 

 

2

DD
dn

12
a


  

   

 

 

type 2 springs 

 

2

DD
dn

12
a


  

   

COMPRESSION 

SL  

aL  
0LS 

 

aL  



Analytical Behavior Law for a Constant Pitch Conical Compression Spring 

20/09/2018 – Rodriguez 9 

From these results and analysis, ‘transition point’ T and ‘maximum point’ C (cf. Fig. 3) can be obtained. 

 

 2.4.3 Determination of ‘transition point’ T and ‘maximum point’ C. On the conical spring load-

length curve, the transition point T defines the connection between the linear phase (all active coils are free) and 

the non-linear phase (active coils gradually stack one above the other). T is defined by two values (its 

coordinates): the load at transition TP  and the length at transition TL . TP  is the load for which the largest active 

coil ( 2D ) reaches its maximum elementary deflection sδ . So at transition point T, this can be written: 

 

s2f δ  )(Dδ   
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Once TP
 

is known, length at transition is directly deduced: 

 R/PL L T0T 
 

 (8) 

On the conical spring load-length curve, the maximum point C defines the ultimate compression state of the 

spring, i.e. the minimum length associated with the maximum load. C is defined by two values: the maximum 

load CP  and the minimum length CL . CP  is the load for which the smallest active coil ( 1D ) reaches its 

maximum elementary deflection sδ . So, analogically with the transition point above, this can be written: 

 
a

3
1

Sa
4

C

nD8

)L(LdG
  P


   (9) 

The associated length CL  can be calculated using Eq. (2). Points O, T and C have been completely defined 

and located on the load-length curve. The next step involves defining precise analytical expressions for the 

conical spring characteristics. 

 

3 Length as a function of load 

The object of this chapter is to define the analytical Length vs. Load expression for a constant pitch conical 

spring (see Fig. 3). 

The most efficient method currently used for the Length vs. Load definition is proposed by IST [7]. The IST 

algorithm involves discretizing each coil of the conical spring into several angular parts. The deflection of the 
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spring for a given load is determined by adding the individual deflections of each part considered to be part of a 

cylindrical spring. Each individual deflection is limited to its maximum geometrical value. The expression fδ  

for these individual deflections and their limit sδ  were determined in Section 2.4.2. The method introduced is 

based on the same principle as the IST algorithm, but where discretization is replaced by an integral approach. 

The determination steps of the analytical expression are presented below. 

 

 3.1 Linear phase:  TP;0P . During this phase, the spring rate R is constant so the length L 

associated with a load P can be easily calculated: 

For  TP;0P : R / P  LL(P) 0   (10)
 

 

 3.2 Non-linear phase:  CT P;PP . Spring length L is expressed from the spring overall free 

length 0L  and its deflection  : 

  0LL(P)  (11) 

Analytical determination of the deflection   is more direct than that for length L. Thus, the analytical 

expression of   is proposed to lead on to the expression of L(P). 

At this stage, fn  (the number of current free coils) can be calculated as the value n  for which elementary 

deflection of free coils reaches the elementary deflection at solid/ground for any load value P  between TP  and 

CP , i.e.: 
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Total spring deflection   is the sum of both free coils and solid/ground coils deflections: 
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Finally:
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Note: Once fn  is known, an alternative method, introduced in Appendix 1, can be used to determine fΔ  
and sΔ . 

The length of a constant pitch conical spring (whether of type 1 or type 2) can thus be calculated using the 

following formula. 
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  With aL , SL  and fn  defined respectively in Eq. (1), (6) and (12). 

 

 3.3 General equation. From its definition, fn  exists whatever the compression load value P . But 

as compression begins, the load remains lower than TP  and all the active coils an  are logically free, so af nn   

whatever the P  value. Conversely, when compression comes to an end, the load becomes higher than SP  and 

logically there will be no remaining free coil, so 0nf   whatever the P  value. This implies two consequences 

relating to Eq. (12): 

- If TPP  , numerically af nn  . 

- If SPP  , numerically 0nf  . 

For these reasons, numerical safeguards are proposed to be added to Eq. (12) so as to preclude 

inconsistencies such as af nn   and 0nf  while allowing for the use of the fn  analytical definition whatever the 

value of load P : 
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Combining Eq. (14) and Eq. (15) the length of the spring can be calculated without calculating PC and PT.  

 

4 Load as a function of length 

In the above, L(P)  is proposed. This is an analytical expression of length as a function of load, for a constant 

pitch conical spring. Thus, for any load, the precise associated theoretical length is obtained. The inverse process 

(i.e. determination of load from any length value, see Fig. 5) would also be of interest for conical spring design 

and to predict the springs’ behavior and characteristics. 
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For this reason, we propose in what follows to determine P(L) , an analytical expression of load as a function 

of length, for a constant pitch conical spring. The expression P(L)  is studied and defined for two separate 

domains: the linear phase, and the non-linear phase (see Fig. 6). T and C coordinates are described in 

Section 2.4.3. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5   Graphic representations of L(P)  and its inverse P(L)  for the same conical spring 

Fig. 6   P(L) domains of definition (linear and non-linear) 
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 4.1 Linear phase.  0T L;L L  

Here, spring rate R  is constant, so L(P) is easy to inverse into P(L): 

For  0T L;L L : L)(LRP(L) 0   (16)
 

 

 4.2 Non-linear phase.  TS L;LL  

Here, the spring rate is no longer constant. To inverse L(P) and obtain P(L) for  TS L;LL , the simplest 

way is to solve Eq. (13) where P becomes the unknown term and Δ  is a given value. Then, Eq. (13) can be 

changed into a polynomial equation of 1/3P , as shown below. 
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A simplified expression can be written as follows: 
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Then, Eq. (17) multiplied by 1/3P  gives: 
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5    

And assuming 3/1Px  , a fourth order polynomial equation of x can be written in the conventional form: 

 0a.xax 01
4    

 with:
 5

07

5

7
1

K
LLK

K
ΔK

a





   

 560 K/Ka    



Analytical Behavior Law for a Constant Pitch Conical Compression Spring 

20/09/2018 – Rodriguez 14 

Using a mathematical resolution of a fourth order polynomial, based on Cardan’s method and detailed in 

Appendix 2, an analytical solution is found: 

 

2/1
2/1

0

2

000

2/1

0
a

b3

a
b

b3

a
b

b3

a
b

2

1

b3

a
b

2

1
  x
























































































   

 with:
    3/12/13

0
4

1
2

1 27/a256/a16/a  b    

So a solution of Eq. (17) is obtained to give P(L), the analytical expression of load as a function of length for 

a constant pitch conical spring in its non-linear phase: 

For  TS L;LL :
      

3
2/12/12

12
3/2

1 /KK11211/2KP(L)








  (21) 

 with:
  

K3

K
 K  K

3

2
31   (22) 

 562 K/K  K   (23) 

       3/12/13
2

2
443 3/K/16K/16K  K   (24) 

 

2

5

07
4

K

LLK
  K 







 
  (25) 

 
5K , 6K  and 7K  being defined respectively in Eq. (18), (19) and (20) 

 

5 Comparison with experimental data 

The method presented is based on the principle of the IST algorithm but where discretization is replaced by 

an integral approach. Thus, the proposed analytical formulas perfectly fit the results of the IST algorithm [7] 

when the spring is highly discretized. 

In order to validate the new conical spring models presented above, experimental tests were conducted. 

Telescoping and non-telescoping springs were tested. Load-length characteristics were measured for several 

constant pitch conical springs and compared with the proposed models. The experimental process involved 

reading the spring overall length for several load levels during a compression phase. Figure 7 shows the results 

for a telescoping spring (#1) and a non-telescoping spring (#2). The geometry of both springs and data used to 

build these models are detailed in Table 2. 
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 Spring #1 Spring #2 

1D  
7.420 

0.2921  
 mm 
 in 

8.970 
0.353 

 mm 
 in 

2D  
18.30 

0.7205 
 mm 
 in 

13.30 
0.5236 

 mm 
 in 

d  
0.8000 

0.03150 
 mm 
 in 

1.200 
0.04724 

 mm 
 in 

0L  
18.70 

0.7362 
 mm 
 in 

37.20 
1.465 

 mm 
 in 

an  4.5  coils 7.13  coils 

in  2   1.5   

G  
72000 

10440000 
 Mpa 
 psi 

80000 
11600000 

 MPa 
 psi 

 

These results clearly show correct correlation between the analytical models and real spring behavior. 

Table 2   Characteristics of both conical springs #1 and #2 



Analytical Behavior Law for a Constant Pitch Conical Compression Spring 

20/09/2018 – Rodriguez 16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7   Experimental data and analytical model of two constant pitch conical springs, #1 is 

telescoping, #2 is non-telescoping 

#2 - Non-telescoping conical spring 
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6 Application of the proposed conical spring models  

An application is submitted to show the efficiency of the proposed conical spring models. For a sensor mock-

up development, a designer needs a conical spring that telescopes, provides a first operating point with a 10 N 

(2.248 lbf) load, and accepts a 6 mm (0.2362 in) spring travel defining a second operating point for which the 

load has to remain between 19 N and 21 N (4.271 lbf and 4.721 lbf), as described in Fig. 8. The designer has two 

telescoping springs that appear to be correct according to a first dimensional approach. These springs then have 

to be evaluated precisely, i.e. determination for each spring of its length 1L  for the first operating point and of 

the resulting load 2P  for the second point, to conclude as to whether at least one of the springs is of interest. The 

spring parameters are shown in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3   Parameters of springs #3 and #4 

 Spring #3 Spring #4 

1D  
10.00 

0.3937  
 mm 
 in 

8.000 
0.3150 

 mm 
 in 

2D  
20.00 

0.7874 
 mm 
 in 

23.00 
0.9055 

 mm 
 in 

d  
1.000 

0.03937 
 mm 
 in 

1.000 
0.03937 

 mm 
 in 

0L  
25.00 

0.9843 
 mm 
 in 

35.00 
1.378 

 mm 
 in 

an  3.5  coils 7  coils 

in  1   1   

G  
80000 

11600000 
 Mpa 
 psi 

80000 
11600000 

 MPa 
 psi 

Fig. 8   Both operating points needed for conical springs #3 and #4 

?L1 

 

N10P1  

? N 12P  N 19 2  

mm 6  

?L2 

 

Operating point 1 Operating point 2 
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 6.1 Calculation of the first operating lengths 1L . The conical spring parameters and the first 

operating load 1P  are known. The corresponding spring lengths 1L  can thus be evaluated using the proposed 

model for both springs. The generalized equation for fn  defined by Eq. (15) means Eq. (14) can be used to 

calculate 1L  directly whether the spring is in its linear range or in its non-linear range. Results are shown in 

Table 4. 

 

 Spring #3 Spring #4 see 

aL  
24.00 

0.9449  
 mm 
 in 

24.00 
0.9449 

 mm 
 in 

Eq. (1) 

SL  
0.000 
0.000 

 mm 
 in 

0.000 
0.000 

 mm 
 in 

Eq. (6) 

fn  3.149  coils 4.170  coils Eq. (15) 

1L  
12.07 

0.4752 
 mm 
 in 

12.13 
0.4776 

 mm 
 in 

Eq. (14) 

 

 6.2 Calculation of the second operating loads 2P . The second operating lengths 2L  (deduced 

from 1L  and spring travel of 6 mm) are known. The corresponding spring loads 2P  can thus easily be evaluated 

by the proposed model, to verify whether they are between 19 N and 21 N or not. 

The model proposed to evaluate the spring load from any length is divided into two parts: Eq. (16) for a 

length in the linear phase and Eq. (21) for a length in the non-linear phase. First, the length at transition TL  is to 

be evaluated to determine to which phase 2L  belongs. TL  is calculated using Eq. (8). For both tested springs 

T2 LL  , 2L  thus belongs to the non-linear phase and 2P  is evaluated with Eq. (21). The results are shown in 

Table 5. 

 

 Spring #3 Spring #4 see 

2L  
6.07 

0.2390  
 mm 
 in 

6.13 
0.2413 

 mm 
 in 

 

TL  
13.75 

0.5413 
 mm 
 in 

22.20 
0.8740 

 mm 
 in 

Eq. (8) 

2P  
19.51 
4.386 

 N 
 in 

21.72 
4.883 

 N 
 in 

Eq. (21) 

 

Table 4   Calculation of 1L  with N10P1  for springs #3 and #4 

Table 5   Calculation of 2P  from 2L  for springs #3 and #4 
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 6.3 Selection of the appropriate spring. Table 5 shows that only spring #3 matches the 

requirements relating to 2P . It is thus retained for design of the sensor mock-up. 

 

7 Conclusion 

This paper presents two models for determining the behavior of a constant pitch conical spring. They were 

developed to improve currently available conical spring design software. The proposed models involve two 

analytical equations, with the first giving spring length as a function of load and the second being the exact 

inverse by giving load as a function of length. Moreover, the length expression is proved to be written as a 

polynomial. The new models were successfully confronted with experimental data and an example of an 

application was presented. 

The results of this study provide a very fast and precise calculation process. Using it, designers will be able to 

obtain any conical spring characteristic simply using a single formula (or just two formulas if the inverse 

calculation is needed), avoiding painstaking algorithm programming. In answer to our requirement to use load-

length relations, the new models will pave the way for the development of a conical spring design synthesis tool 

based on optimization methods. 
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Nomenclature 

D  = Local mean diameter of coil, mm 

1D  = Mean diameter of the smallest active coil, mm 

2D  = Mean diameter of the largest active coil, mm 

G  = Shear modulus of elasticity, MPa 

L  = Overall length (compression phase), mm 

CL  = Overall solid length, mm 

SL  = Solid length of active coils (between wire sections central points), mm 
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TL  = Overall length at transition point, mm 

aL  = Initial active length (between wire sections central points), mm 

0L  = Free length, mm 

1L  = First operating length, mm 

2L  = Second operating length, mm 

P  = Load, N 

CP  = Maximum load, N 

TP  = Transition load (between linear and non-linear behavior), N 

1P  = First operating load, N 

2P  = Second operating load, N 

R  = Constant spring rate (linear behavior), N/mm 

d  = Wire diameter, mm 

n  = Number of coils, as a continue variable running from 0 (at 1D ) to an  (at 2D ) 

an  = Total number of active coils 

fn  = Number of free coils (variable during the compression phase) 

in  = Parameter defining the influence of end coils on the difference between 0L  and aL  

r  = Local mean radius of coil, mm 

  = Total deflection, mm 

f  = Deflection of free coils, mm 

s  = Deflection of solid coils (or ground coils), mm 

fδ  = Elementary deflection of free coils, mm 

sδ  = Elementary deflection of solid coils (or ground coils), mm 

 

Appendix 1 

Second method to obtain fΔ  and sΔ . 

If fn  is known, another method – with no integration process – can be used to determine fΔ  
and sΔ . 

Deflection of free coils. fΔ  
corresponds to the deflection in the linear phase of a virtual conical spring for 

which active coils would be only those coils currently free. The characteristics of this virtual spring depend on P. 

Its largest coil diameter D corresponds to the original spring’s ‘ fn th
 ’ coil: 
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 af121f n/n)D (D  D )r(n2 D   (26) 

Its rate R is deduced: 

 D)(D)D(Dn 2

dG
  R

1
22

1f

4


  (27) 

Therefore its deflection gives directly fΔ : 

 P/RΔf   (28) 

This can be developed as: 

   






























 1

n

n
1

D

D
1

D DdG

nDP2
Δ

4

a

f

1

2

12
4

a
4
1

f  (29) 

 

Deflection of solid/ground coils. sΔ  
is the part of the maximum deflection corresponding to the 

solid/ground coils ( )n(n fa   coils). Since the maximum deflection is geometrically the difference between the 

initial active length aL  and the solid length of active coils SL , sΔ  
can be directly obtained as: 

  afSa
a

fa
Sas n/n1)L(L

n

nn
)L(L Δ 


  (30) 

 

Appendix 2 

Resolution of fourth order polynomial equations (Cardan’s method). 

Fourth order polynomial 

Starting from equation: 0  d  c.x  b.x  a.x  x 234  . 

Change of variable: a/4  z  x  . 

The following equation is then obtained: 0 r   q.z  p.z  z 24  . 

With: 8/a 3  b  p 2   

 8/a  a.b/2  c  q 3   

 256/a 3  16/b.a  a.c/4  d r 42   

For the equation in z , two cases may occur: (i) 0  q   and (ii) 0  q  . 
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(i) 0  q  . The equation is then: 0 r   p.z  z 24  . 

Assuming 2z y  , the equation becomes 0 r  p.y   y2  . 

Solutions are as follows: 

  2/12
1 r  4/p  p/2   y    and    2/12

2 r  4/p  p/2   y   

Hence: 
2/1

11  y z  ; 
2/1

12  y  z  ; 
2/1

23  y z   and 
2/1

24  y  z  .  

(ii) 0  q  . The equation is then: 0 r   q.z  p.z  z 24  . 

Assuming: p  Q  2P 2  ; q  2Q.R   and r  R  P 22  . 

This reduced equation is obtained:     0  R  Q.z  P  z
222  . 

   [another form of 0 r   q.z  p.z  z 24  ] 

P , Q  and R  have to be found, solving this system: 

                  p  Q  2P 2   

                  q  2Q.R   [S] 

                  r  R  P 22   

Equivalent to: 

                   r  P 4

q
  Q 2

2

2


  

                  r  P  R 22   

                  q/2   Q.R   

[S] can be converted in this third order polynomial equation (in P ): 

                0  8/q  p.r/2  r.P  2/p.P  P 223   

Then a solution 0P  is obtained (see hereafter the paragraph “Third order polynomial”). 

Via [S], a couple ( 0Q , 0R ) is associated with 0P . 

Then solutions of the reduced equation are solutions of: 
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                0  R  .zQ  P  z 000
2   or 

                0  R  .zQ  P  z 000
2   

Finally, z  is obtained. 

 

Third order polynomial 

Starting from equation: 0  d  c.x  b.x  a.x  x 234  . 

Change of variable: a/3  z  x  . 

Then the following equation is obtained: 0  q  p.z  z3  . 

With: 3/a  b  p 2   and 

 c  a.b/3  27/a 2  q 3   

Note: 

Once a solution 0z  of the equation in z  is obtained, then: 

a/3  z  x 00   is a solution of the equation in x . 

For the equation in z , two cases may occur: (i) 0  p   and (ii) 0  p  . 

 (i) 0  p  . The equation becomes q   z3  . 

This equation has three solutions in C : 

       3/1
1 q   z   

     12 .z  z j  

     1
2

3 .z  z j  

        Where 
2

3   1 
  

1/2i
j


  

 (ii) 0  p  . The equation is 0  q  p.z  z3  . 

Another change of variable:  v u  z  . With 0  u  . 

The equation then becomes: 

                   0   v u p  3u.v  q   v u 33   
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This system is then considered: 

                  0  q   v u 33     [S] 

                  0  p  3u.v   

The [S] system is equivalent to: 

                  0  
27

p
  q.u  u

3

36   

                  
3u

p 
  v


  

Change of variable in the first equation: 
3u y    

The equation becomes: 0  27/p q.y   y 32   

Therefore a solution is: 

                  2/132 27/p  4/q  q/2  y   

Then, solutions of 
3u y   are to be found (cf case(i) ). Here then are the solutions: 

      
3/1

1  y u   and 
1

1
3u

p 
  v


  

      12 .u  u j  and 12 .v  v j  

      1
2

3 .u  u j   and 1
2

3 .v  v j  

Hence 111  v u  z  , 222  v u  z   and 333  v u  z  .  

Which leads to solutions for x . 
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