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Introduction

Helical springs are among the most widespread components in mechanical systems. Wahl [START_REF] Wahl | Mechanical Springs[END_REF] summarized basic and essential definitions, characteristics, behavior models and calculation methods relating to the main types of springs. More recently, in order to provide precise spring applications, mechanical design research has been conducted leading to significant improvements in knowledge of springs. Ding and Selig [START_REF] Ding | On the Compliance of Coiled Springs[END_REF] proposed a new compression spring model based on its compliance matrix. The model goes beyond the standard Euler-Bernoulli beam theory that induces the "closely coiled spring approximation", hence allowing for larger deflections.

Becker, Chassie and Cleghorn investigated buckling of helical compression springs [START_REF] Chassie | On the Buckling of Helical Springs Under Combined Compression and Torsion[END_REF] and their resonant frequencies under static axial load with clamped ends [START_REF] Becker | On the Natural Frequencies of Helical Compression Springs[END_REF]. Jiang and Henshall [START_REF] Jiang | A Novel Finite Element Model for Helical Springs[END_REF] developed an efficient finite element model for helical springs. Todinov [START_REF] Todinov | Maximum Principal Tensile Stress and Fatigue Crack Origin for Compression Springs[END_REF] studied fatigue crack origin of compression springs through analysis of the maximum principle tensile stress location and effects of shot-peening.

Conical springs provide a commonly used solution for applications with constraints of reduced length or space. They can be used in many different mechanisms, as with contactors and switches in the electrical field.

Indeed they are often chosen for one special characteristic, i.e. their ability to telescope, meaning they take up very little space at maximum compression while storing as much energy as cylindrical springs. But conical springs also have other specific features. For example, their load-length characteristics are usually non-linear.

Wahl [START_REF] Wahl | Mechanical Springs[END_REF] did not mention these springs. However, there has been research into conical springs. The Institute of Spring Technology [START_REF] Ist | Essential Spring Design Training Course[END_REF] proposes definitions and calculations for conical spring general characteristics such as the spring rate in its linear range. In parallel with this work, in order to improve our knowledge of conical springs and describe their behavior in greater detail, research has been performed into their fundamental frequencies [START_REF] Wolansky | Fundamental Frequency[END_REF][START_REF] Yildirim | Expressions for Predicting Fundamental Natural of Non-Cylindrical Helical Springs[END_REF][START_REF] Yildirim | A Parametric Study on Natural Frequencies of Unidirectional Composite Conical Spring[END_REF], buckling [START_REF] Wolansky | Conical Spring Buckling Deflection[END_REF] and lateral loading [START_REF] Wolansky | Lateral Loading of Conical Springs[END_REF]. Until now, the IST conical spring calculation model has provided non-linear load-length characteristics from an incremental algorithm [START_REF] Ist | Essential Spring Design Training Course[END_REF]. This involves a process that dicretizes each coil to evaluate deflection as a function of load. This necessarily leads to an approximated load-length relation. This algorithm is non-inversible since it calculates spring deflection from any load value, but cannot directly evaluate load from a deflection value. The 'Advanced Spring Design 6' software from the Spring Manufacturers Institute [13] and Universal Technical Systems [14] provides a simple and complete interface. It offers design verification, but simplifies conical spring behavior into a linear phenomenon. The 'Spring Design and Validation 7' software from IST [15] verifies the accuracy of a conical spring configuration, taking into account its non-linear characteristic, but is unable to offer conical spring design in accordance with the designer's needs, as a synthesis tool.

Numerical optimization methods can be used to define such a tool. Such methods have already allowed for interesting improvements in mechanical component design. Stochastic methods such as genetic algorithms have also often been applied. Yoshimura et al. [START_REF] Yoshimura | A Multiple Cross-Sectional Shape Optimization Method for Automotive Body Frames[END_REF] developed a multi-objective method to optimize multiple crosssectional shapes for automotive body frames. Lyu et al. [START_REF] Lyu | Topology Optimization of Multicomponent Beam Structure via Decomposition-Based Assembly Synthesis[END_REF] proposed a method to design multi-component structural assemblies. Giassi et al. [START_REF] Giassi | Multi-Objective Optimization Using Asynchronous Distributed Applications[END_REF] developed a method based on a genetic algorithm to optimize a hill-shape aimed at minimizing the resistance and energy created by a ship's displacement. Non-linear mathematical programming methods have also often been used. Maddisetty and Frecker [START_REF] Maddisetty | Dynamic Topology Optimization of Compliant Mechanisms and Piezoceramic Actuators[END_REF] optimized the topology of compliant mechanics and piezoceramic actuators using the Sequential Linear Programming method.

Sandgren [START_REF] Sandgren | Nonlinear Integer and Discrete Programming in Mechanical Design Optimization[END_REF] proposed an optimization method adapted to mechanical design problems with non-linear integer or discrete variables and also devised an application for simplified spring design. In order to manage discrete variables, a 'branch and bound' procedure is used. In previous works, we developed design assistance tools for compression [START_REF] Paredes | Obtaining an Optimal Compression Spring Design Directly From a User Specification[END_REF] and extension [START_REF] Paredes | An Optimization Process for Extension Spring Design[END_REF] cylindrical springs. In our approach, the designer defines his need using a user-friendly interface and the tool applies numerical optimization methods to directly propose the optimum design to respond to requirements. Such a synthesis tool for conical springs responds to designer demands, since it would be a great help in defining and checking any conical spring. In tackling the development of an optimal design tool for conical springs, we had to face the lack of a precise and inversible analytical expression for the load-length law. Indeed, numerical optimization methods are more likely to be efficient when the behavior of the component under study is described analytically. Wu and Hsu [START_REF] Wu | Modelling the Static and Dynamic Behavior of a Conical Spring by Considering the Coil Close and Damping Effects[END_REF] developed an analytical model for a particular type of conical spring. Their study focuses on a conical spring with a constant helix angle, that does not telescope, and has cylindrical closed and ground ends. This model is based on a separating analysis between free coils and solid/ground ones, and gives spring deflection as a function of load. The result is approximated in a third order polynomial for a dynamic study. This study is thus not applicable for common conical springs with constant pitch. Rather, the paper sets forth the analytical expressions we propose to use to describe the behavior of a constant pitch conical spring.

Firstly, conical spring characteristics are presented as the basis of further developments. Then the first expressionlength as a function of load -is described, and determination of the second 'inverse' expressionload as a function of lengthis explained. We go on to show how these models have been validated by experimentation. Finally, an illustrative example using new models is proposed.

The use of these two load-length relations within an optimization method will be further developed in future works.

Conical spring characteristics

2.1 Parameters of a constant pitch conical spring. A conical compression spring with constant pitch and circular wire, is studied. Its design is fully defined by six parameters (see Fig. 1).

a n represents the active coils of the spring. In order to make the load as close as possible to an axial load, two end coils are added, with one at the top and one at the bottom of the spring. As for compression springs, i n represents the difference between the overall length and the active length due to end coils.

Thus d n L L i 0 a   (1) d n L L i S C   (2)
When end coils are correctly defined, they do not influence the behavior of the active coils. For this reason, the present work refers essentially to the active coils of the spring.

Spring behavior also depends on the shear modulus of elasticity G of the material. 

2.2

Two operating modes at minimum length. At minimum length (i.e. maximum compression)

and according to its initial geometry, the studied conical spring can adopt either of two types of coil arrangements (see Fig. 2):

-type 1: coils are solid, i.e. they are stacked one above the other, in contact coil-to-coil, giving a solid conical shape;

-type 2: the spring telescopes and the coils reach the ground, showing a flat spiral shape.

The criteria that distinguish telescoping springs (type 2) from non-telescoping ones (type 1) are geometrically determined (see Table 1).

The spring does not telescope (type 1) when 

 

. Both these types will be taken into account for the following calculations.

2.3

Behavior law. Constant pitch conical springs show a 2-phase compression in relation to their load-length characteristics (see Fig. 3): the first phase is linear (with a straight slope, as with a basic cylindrical spring), and the second phase is non-linear (at the end of compression). As the first stage of our analytical study of conical springs, the precise determination of points T and C locations is proposed, with the O point location already being known. Consequently, analysis of the compression process is needed to link these particular points to the spring's inherent physical behavior, and then to its parameters.

2.4.1

Compression process analysis. In the linear phase [OT] of the deflection curve (see Fig. 3), all the a n active coils are free to deflect, and the spring rate is constant [11]: coils are at solid/ground, i.e. either 'at solid' for a type 1 spring, or 'at ground' for a type 2 spring. f n represents the number of coils that are still free to deflect. This physical behavior explains why the conical spring characteristic curve shows two different phases: linear and non-linear. In fact, in the linear phase between O and T, the first element of the largest coil is free and so deflects. All the a n coils of the spring deflect so the spring rate R is constant and the load-length characteristic is linear. When the first element of the largest coil has reached its maximum physical deflection s δ , it ceases to be an active element of the spring since its is now 'solid' or 'at ground'. This defines the point T.

    2 1 2 2 2 a 4 D D D D n 2 d G R 1    (3) 
The first phase of compression now stops and the second one begins. Between T and C, the spring rate is then due to the 'still free' f n coils. During the second phase of compression, f n continuously decreases from a n to 0 and leads to a gradual increase in the spring rate. This explains why this second phase shows a non-linear loadlength characteristic. Finally at the end of compression, the last free coil element with the smallest diameter 1 D reaches its maximum deflection s δ and indeed defines the maximum load Pc. This analysis is a first step in determining points T and C, and then elaborating the method which will then be used to calculate the conical spring deflection. As a first result, this shows the role of the elementary coil deflections in determining these points. Secondly, analysis enables the active coil deflection of the entire spring to be divided into two components:

-deflection of the active coils of a first conical spring with f n coils in its linear behavior, -deflection of the active coils of a second conical spring with 

d n L(P) i  2.4.2
Definitions of elementary deflections. For the linear behavior of a constant pitch conical spring, the elementary deflection of any part of coil marked n corresponds to the elementary deflection of free coils and can be calculated as for a basic cylindrical spring [START_REF] Wahl | Mechanical Springs[END_REF]:

  n d G r(n) P 64 (n) δ 4 3 f d  (4)
where

    a 1 2 1 n / n D D D 2 1 r(n)   
is the local mean coil radius described on Fig. 4.

Moreover, the elementary deflection at solid/ground corresponds to the maximum geometrical elementary deflection described in Table 1 and can be calculated as follows (whether the spring telescopes or not): 

n n L L δ a S a s d   (5) where   2 / 1 2 1 2 2 a S 2 D D d n , 0 max L                          (6)
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From these results and analysis, 'transition point' T and 'maximum point' C (cf. Fig. 3) can be obtained.

Determination of 'transition point' T and 'maximum point' C.

On the conical spring loadlength curve, the transition point T defines the connection between the linear phase (all active coils are free) and the non-linear phase (active coils gradually stack one above the other). T is defined by two values (its coordinates): the load at transition T P and the length at transition T L . T P is the load for which the largest active coil ( 2 D ) reaches its maximum elementary deflection s δ . So at transition point T, this can be written:

s 2 f δ ) (D δ  Thus   a S a 4 3 2 T n L L d G 2 / D P 64   So a 3 2 S a 4 T n D 8 ) L (L d G P   (7)
Once T P is known, length at transition is directly deduced:

R / P L L T 0 T   (8)
On the conical spring load-length curve, the maximum point C defines the ultimate compression state of the spring, i.e. the minimum length associated with the maximum load. C is defined by two values: the maximum load C P and the minimum length C L . C P is the load for which the smallest active coil ( 1 D ) reaches its maximum elementary deflection s δ . So, analogically with the transition point above, this can be written:

a 3 1 S a 4 C n D 8 ) L (L d G P   (9)
The associated length C L can be calculated using Eq. (2). Points O, T and C have been completely defined and located on the load-length curve. The next step involves defining precise analytical expressions for the conical spring characteristics.

Length as a function of load

The object of this chapter is to define the analytical Length vs. Load expression for a constant pitch conical spring (see Fig. 3).

The most efficient method currently used for the Length vs. Load definition is proposed by IST [START_REF] Ist | Essential Spring Design Training Course[END_REF]. The IST algorithm involves discretizing each coil of the conical spring into several angular parts. The deflection of the spring for a given load is determined by adding the individual deflections of each part considered to be part of a cylindrical spring. Each individual deflection is limited to its maximum geometrical value. The expression f δ for these individual deflections and their limit s δ were determined in Section 2.4.2. The method introduced is based on the same principle as the IST algorithm, but where discretization is replaced by an integral approach.

The determination steps of the analytical expression are presented below. L and its deflection  :    0 L L(P) [START_REF] Wolansky | Conical Spring Buckling Deflection[END_REF] Analytical determination of the deflection  is more direct than that for length L. Thus, the analytical expression of  is proposed to lead on to the expression of L(P).

At this stage, f n (the number of current free coils) can be calculated as the value n for which elementary deflection of free coils reaches the elementary deflection at solid/ground for any load value P between T P and C P , i.e.:

For
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Total spring deflection  is the sum of both free coils and solid/ground coils deflections:
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Note: Once f n is known, an alternative method, introduced in Appendix 1, can be used to determine f Δ and s Δ .

The length of a constant pitch conical spring (whether of type 1 or type 2) can thus be calculated using the following formula.

                                                a f S a 4 a f 1 2 1 2 4 a 4 1 0 n n 1 ) L (L 1 n n 1 D D 1 D D d G n D P 2 L L(P) (14) With a L , S
L and f n defined respectively in Eq. ( 1), ( 6) and (12).

General equation.

From its definition, f n exists whatever the compression load value P . But as compression begins, the load remains lower than T P and all the active coils a n are logically free, so a f n n  whatever the P value. Conversely, when compression comes to an end, the load becomes higher than S P and logically there will be no remaining free coil, so 0 nf  whatever the P value. This implies two consequences relating to Eq. ( 12):

-

If T P P  , numerically a f n n  .
-If S P P  , numerically 0 nf  . For these reasons, numerical safeguards are proposed to be added to Eq. ( 12) so as to preclude inconsistencies such as a f n n  and 0 nf  while allowing for the use of the f n analytical definition whatever the value of load P :

For any P :

                                        0 ; n ; D n P 8 d G ) L (L D D n min max n a 1 1/3 a 4 S a 1 2 a f (15)
Combining Eq. ( 14) and Eq. ( 15) the length of the spring can be calculated without calculating P C and P T .

Load as a function of length

In the above, L(P) is proposed. This is an analytical expression of length as a function of load, for a constant pitch conical spring. Thus, for any load, the precise associated theoretical length is obtained. The inverse process (i.e. determination of load from any length value, see Fig. 5) would also be of interest for conical spring design and to predict the springs' behavior and characteristics.

For this reason, we propose in what follows to determine P(L) , an analytical expression of load as a function of length, for a constant pitch conical spring. The expression P(L) is studied and defined for two separate domains: the linear phase, and the non-linear phase (see Fig. 6). T and C coordinates are described in Section 2.4.3.   0 T L ; L L Here, spring rate R is constant, so L(P) is easy to inverse into P(L):

For   0 T L ; L L : L) (L R P(L) 0   (16)

4.2

Non-linear phase.

 

T S L ; L L Here, the spring rate is no longer constant. To inverse L(P) and obtain P(L) for   T S L ; L L , the simplest way is to solve Eq. ( 13) where P becomes the unknown term and Δ is a given value. Then, Eq. ( 13) can be changed into a polynomial equation of 1/3 P , as shown below.

For   T S L ; L L , Eq. ( 13) can be developed as:

  1 2 4/3 S a 1/3 a 4 1/3 1 2 2 S a D D L L n 8 d G P 1 D D D ) L (L                   1 2 4 a 4 1 4/3 a 3 1 4 S a 1 2 4 a 4 1 1/3 D D d G n D 2 P n D 8 d G ) L (L D D d G n D 2 P 1                      
A simplified expression can be written as follows:

P K P / 1 K K Δ 5 1/3 6 7      (17) with:   1 2 4 a 4 1 5 D D d G n D 2 K    (18)   3 / 1 a 4 S a 4 1 2 6 n / ) L (L d G ) D (D 8 3 K     (19) 1 2 2 S a 7 D D D ) L (L K    (20)
Then, Eq. ( 17) multiplied by 1/3 P gives:

  0 K P Δ K P K 6 1/3 7 4/3 5      And assuming 3 / 1 P x 
, a fourth order polynomial equation of x can be written in the conventional form:

0 a .x a x 0 1 4    with: 5 0 7 5 7 1 K L L K K Δ K a      5 6 0 K / K a 
Using a mathematical resolution of a fourth order polynomial, based on Cardan's method and detailed in Appendix 2, an analytical solution is found:
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So a solution of Eq. ( 17) is obtained to give P(L), the analytical expression of load as a function of length for a constant pitch conical spring in its non-linear phase:

For   T S L ; L L :         3 2 / 1 2 / 1 2 1 2 3/2 1 /K K 1 1 2 1 1 /2 K P(L)            (21) with: K 3 K K K 3 2 3 1   (22) 5 6 2 K / K K   (23)         3 / 1 2 / 1 3 2 2 4 4 3 3 / K /16 K /16 K K    (24) 2 5 0 7 4 K L L K K          (25) 5 K , 6
K and 7 K being defined respectively in Eq. ( 18), ( 19) and ( 20)

Comparison with experimental data

The method presented is based on the principle of the IST algorithm but where discretization is replaced by an integral approach. Thus, the proposed analytical formulas perfectly fit the results of the IST algorithm [START_REF] Ist | Essential Spring Design Training Course[END_REF] when the spring is highly discretized.

In order to validate the new conical spring models presented above, experimental tests were conducted.

Telescoping and non-telescoping springs were tested. Load-length characteristics were measured for several constant pitch conical springs and compared with the proposed models. The experimental process involved reading the spring overall length for several load levels during a compression phase. Figure 7 shows the results for a telescoping spring (#1) and a non-telescoping spring (#2). The geometry of both springs and data used to build these models are detailed in Table 2.

Spring 

MPa psi

These results clearly show correct correlation between the analytical models and real spring behavior. 

Application of the proposed conical spring models

An application is submitted to show the efficiency of the proposed conical spring models. For a sensor mockup development, a designer needs a conical spring that telescopes, provides a first operating point with a 10 N (2.248 lbf) load, and accepts a 6 mm (0.2362 in) spring travel defining a second operating point for which the load has to remain between 19 N and 21 N (4.271 lbf and 4.721 lbf), as described in Fig. 8. The designer has two telescoping springs that appear to be correct according to a first dimensional approach. These springs then have to be evaluated precisely, i.e. determination for each spring of its length 1 L for the first operating point and of the resulting load 2 P for the second point, to conclude as to whether at least one of the springs is of interest. The spring parameters are shown in Table 3. L . The conical spring parameters and the first operating load 1 P are known. The corresponding spring lengths 1 L can thus be evaluated using the proposed model for both springs. The generalized equation for f n defined by Eq. (15) means Eq. ( 14) can be used to calculate 1 L directly whether the spring is in its linear range or in its non-linear range. Results are shown in L and spring travel of 6 mm) are known. The corresponding spring loads 2 P can thus easily be evaluated by the proposed model, to verify whether they are between 19 N and 21 N or not.

The model proposed to evaluate the spring load from any length is divided into two parts: Eq. ( 16) for a length in the linear phase and Eq. ( 21) for a length in the non-linear phase. First, the length at transition T L is to be evaluated to determine to which phase 2 L belongs. T L is calculated using Eq. ( 8). For both tested springs

T 2 L L  , 2
L thus belongs to the non-linear phase and 2 P is evaluated with Eq. ( 21). The results are shown in L for springs #3 and #4

6.3

Selection of the appropriate spring. Table 5 shows that only spring #3 matches the requirements relating to 2 P . It is thus retained for design of the sensor mock-up.

Conclusion

This paper presents two models for determining the behavior of a constant pitch conical spring. They were developed to improve currently available conical spring design software. The proposed models involve two analytical equations, with the first giving spring length as a function of load and the second being the exact inverse by giving load as a function of length. Moreover, the length expression is proved to be written as a polynomial. The new models were successfully confronted with experimental data and an example of an application was presented.

The results of this study provide a very fast and precise calculation process. Using it, designers will be able to obtain any conical spring characteristic simply using a single formula (or just two formulas if the inverse calculation is needed), avoiding painstaking algorithm programming. In answer to our requirement to use loadlength relations, the new models will pave the way for the development of a conical spring design synthesis tool based on optimization methods. Second method to obtain f Δ and s Δ .

If f n is known, another method -with no integration process -can be used to determine f Δ and s Δ .

Deflection of free coils. f Δ corresponds to the deflection in the linear phase of a virtual conical spring for which active coils would be only those coils currently free. The characteristics of this virtual spring depend on P.

Its largest coil diameter D corresponds to the original spring's ' f n th ' coil:

a f 1 2 1 f n / n ) D (D D ) r(n 2 D     (26) Its rate R is deduced: D) (D ) D (D n 2 d G R 1 2 2 1 f 4    (27)
Therefore its deflection gives directly f Δ

: P/R Δf  (28)
This can be developed as: Δ can be directly obtained as:
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  a f S a a f a S a s n / n 1 ) L (L n n n ) L (L Δ         (30) Appendix 2
Resolution of fourth order polynomial equations (Cardan's method).

Fourth order polynomial

Starting from equation: 

   

For the equation in z , two cases may occur: (i) 0 q  and (ii) 0 q  . (ii) 0 q  . The equation is then: 0 r q.z p.z z 

Q 2P 2   q 2Q.R   [S]

 

Equivalent to:

  r P 4 q Q 2 2 2   r P R 2 2   q/2 Q.R  
[S] can be converted in this third order polynomial equation (in P ): 0 8 / q p.r/2 r.P 2 / p.P P For the equation in z , two cases may occur: (i) 0 p  and (ii) 0 p  . 
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  Deflection of solid/ground coils. s Δ is the part of the maximum deflection corresponding to the solid/ground coils ( Since the maximum deflection is geometrically the difference between the initial active length a L and the solid length of active coils S L , s
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  This equation has three solutions in C :The equation then becomes:
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Table 1 Lengths

 1 

a

L and S L ,

and associated phases of compression free any compression stage at solid / at ground type 1 springs

  

Table 2 Characteristics of both conical springs #1 and #2

 2 

Table 3 Parameters of springs #3 and #4

 3 

				Spring #3	Spring #4
	D	1	10.00 0.3937	mm in	8.000 0.3150	mm in
	2 D	20.00 0.7874	mm in	23.00 0.9055	mm in
	d			1.000 0.03937	mm in	1.000 0.03937	mm in
	0 L	25.00 0.9843	mm in	35.00 1.378	mm in
	n	a	3.5 coils	7 coils
	n	i		1		1
	G		80000 11600000	Mpa psi	80000 11600000	MPa psi

Table 4 .

 4 

					Spring #3	Spring #4	see
		L	a	24.00 0.9449	mm in	24.00 0.9449	mm in	Eq. (1)
		L	S	0.000 0.000	mm in	0.000 0.000	mm in	Eq. (6)
		n	f	3.149 coils	4.170 coils	Eq. (15)
		L	1	12.07 0.4752	mm in	12.13 0.4776	mm in	Eq. (14)
	6.2	Calculation of the second operating loads 2 P . The second operating lengths 2 L (deduced
	from 1						

Table 5 .

 5 

				Spring #3	Spring #4	see
	L	2	6.07 0.2390	mm in	6.13 0.2413	mm in
	L	T	13.75 0.5413	mm in	22.20 0.8740	mm in	Eq. (8)
	P	2	19.51 4.386	N in	21.72 4.883	N in	Eq. (21)

Table 5 Calculation of 2 P from 2

 5 

Table 1

 1 Lengths a L and S L , and associated phases of compression Table 2 Characteristics of both conical springs #1 and #2

Table 3

 3 Parameters of the springs #3 and #4

Table 4

 4 Calculation of 1

	L with	P1 	10	N	for springs #3 and #4

Table 5

 5 Calculation of 2 P from 2 L for springs #3 and #4
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This system is then considered:

The [S] system is equivalent to: 0 27 p q.u u 

  

Therefore a solution is:

Then, solutions of 3 u y  are to be found (cf case(i) ). Here then are the solutions: