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Determining both radial pressure distribution and

torsional stiffness of involute spline couplings
A. Barrot, M. Paredes and M. Sartor.
INSA de Toulouse, LGMT, 137 Av. de Rangueil, 3106ulouse Cedex, France

Abstract:

In this paper an analytical method is used to itigate the distortions of involute
spline teeth. The following hypotheses are adopteat: teeth geometry is in conformity with
standardisation, dimensions are nominal (no defdatye is no friction and the load is a pure
torsional torque. Teeth distortions due to bendamgar, compression and foundation rotation
are analysed. As the load is distributed alongttimeh height, the displacement calculation
differs from the conventional approach used for geeth. Sliding over the contact surfaces is
also considered as it emerged during the studytthatphenomenon, that has not hitherto
been taken into account, plays a significant rAl@unch model is used to describe the radial
distribution of the contact pressure. Ascribingaahitrary value to the tilted angle between
the two contacting flanks enables the pressurédlgraf be evaluated, from which calculation
of teeth distortions can be arrived at so as fyrtallobtain a new estimation of the tilted angle.
Thus displacements and the contact load can bendetrl together by iterating the
calculation procedure until convergence. Torsiosgdfness, which is one of the main
parameters required to predict the torque distiibualong the spline coupling, is evaluated
from the various displacement components. The tesi@rived from the proposed analytical

method are compared with finite element resultssdrmv good correlation.

Keywords:. spline coupling, teeth stiffness, pressure distidmn.



Notations:
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Tilted angle in radians

Poisson coefficient

Modulus of rigidity

Kolosov’'s constant

O’Donnell’s foundation deflection in radians

Contact angle including tooth angle at node j oiaas
Shaft and sleeve tooth foundation rotation in naslia
Global rotation of the teeth in radians

Contact pressure angle at node j in radians

Contact angle at node j in radians

Contact load angularity with the force P in radians
Contact load angularity with the pressurg)p(sradians
Shaft and sleeve teeth angle at the neutral axedians
Half contact length on the curvilinear axis in m
Constant factor

Half contact length on the x axis in m

Torsional stiffness per unit width (along z axis)N/rad
Curvilinear length in m

Young’'s modulus in Pa

Force applied on the contact surface per unit wirdtki/m
Shear modulus in Pa

Effective height in m

Shaft and sleeve tooth height at node jin m
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Shaft and sleeve tooth height at the middle oktgment jin m

Shaft and sleeve tooth height at the pitch radius i

Shaft and sleeve tooth second moment of area atjrind'

Shaft and sleeve corrective coefficients relatecbimpression

Shaft and sleeve section modulus coefficientslieas

O’Donnell’s influence coefficient related to fourtide rotation in N
Shaft and sleeve influence coefficient relatecbtanfiation rotation in N
Contact length on the axis x in m

Shaft and sleeve length on the axis x at noden] in
Shaft and sleeve length on the axis x at the midiitee segment jin m

Curvilinear distance on the contact at node jin m
Distance between R and.fh m

Distance between R ang; i m

Shaft and sleeve tooth foundation moment at ngae pnit width in N
Number of teeth

Even number of segments

Circular pitch in m

Pressure distribution along the contact line, aenjan N/nf
Pressure distribution along the axis x in K/m

Shaft and sleeve radial pressure in N/m

Pitch radius in m

Base radius in m

External radius of the sleeve in m

Shaft and sleeve major radius in m



Rint Radius corresponding to the hole of the shaft in m

R Radius at node jin m

Re, Ri Foundation radius of the shaft and the sleeve in m

S Curvilinear coordinate at node j in m

5% S Shaft and sleeve tooth section at node jfn m

T Moment applied on the contact surface per unit hvidtN
ty Circular tooth thicknesat the base radius in m

Text External torque per unit width in N

Us |, q‘)] Shaft and sleeve tooth bending deflection at naden]
us, U Shaft and sleeve tooth compression deflection in m
us g Shaft and sleeve tooth shear deflection at nodery i

Vsich, Vsid  Shaft and sleeve radial displacement due to sliitimg

Uslid Orthoradial displacement due to sliding in m

1. Introduction

Involute spline couplings are commonly encounteretbrque transmission lines. When
they are used in high technology applications, @sfig in aero-engine equipment, the
designers have to study their behaviour under Itemtoughly in order to size them
accurately. Various works [1-5] have shown that &xel load distribution on the teeth is
non-uniform and therefore contradicts standardisagissumptions relating to spline coupling
sizing. In order to estimate the risks of frettimggar and bearing, good knowledge of the
pressure distribution on the teeth flanks is needdds pressure distribution is mainly
governed by the torsional stiffness of the jointthe axial direction and by the teeth

distortions in the radial direction.



Axial torque distribution received attention fromatlir [1]. His approach was
developed for straight flank couplings as showhig 1a but can also be used for any kind of
spline coupling. Tatur proposed to calculate theniog torquem(z) transmitted from the

sleeve to the shaft along the axial direczdrom the following differential equation:

dTe (Z)

mzF——==¢[¢' @¢° @

where
- T%z)is the shaft torque (for everythe sum off*(z) andT'(z), the sleeve torque, being
equal to the external torqUey),

- Cyis the torsional stiffness of the joint, considkas constant whatever thgalue,

- #(2) and¢%(z) are the twisting angles for the internal splind arternal spline.

m(z)is directly linked to the mean pressure actinge&tionz. It has been shown that this
model leads to satisfactory results provided thatvialue assigned to the torsional stiffngss

is appropriate [2, 3].

A number of studies have been devoted to the etirafuaf spline stiffness. Roger Ku
[6, 7] developed an experimental method relatingathigh-speed rotating machine spline
coupling. The authors introduced dynamic coeffitserbut did not propose a method to
calculate the stiffness of the joint from their gexirical and material characteristics. An
analytical method was developed by Marmol [8] tst teotor vibrations. He considered the
shaft and sleeve teeth to behave like cantilevamise The effects of bending, shear and
compression were considered, and the rotationeatabth foundation centre was also taken
into account. But the proposed solution departsifreality since the contacts between sleeve

and shaft were considered to be merely punctuabtifer simplified analytical method was



developed by Hayashi [9] where teeth of externdliaternal splines were considered to have

a rectangular shape and the only teeth deflectimied was bending.

Tooth behaviour will vary according to whether thad is introduced as punctual or
distributed. Models need to consider a radial pnesslistribution to obtain more accurate
results. In 1969, Tatur [1] posited a uniform ra&dweessure distribution while, in 1982,
Volfson [4] assumed a parabolic distribution, buwitiner was able to validate their
hypotheses. With modern hardware and software aeégam finite element calculations, we
can now predict pressure distribution in an appad@pmanner. Adey [5] and Leen [10] have
developed FE analyses with experimental validatidhsstrating that radial pressure
distribution is far from being uniform and is adty&lose to that of the punch model. But FE
approaches are relatively costly, with each newdystrtequiring the development of an

accurate FE model.

The difficulty encountered by designers seekingide Tatur's model lies in the fact that
the literature does not offer any general methodaloulate at low cost a suitable value for
spline stiffnesxc; and, in conjunction, a good prediction of radie¢gsure distribution that

caters for the necessary relationships linkingeghe® parameters.

The present paper aims to create an analyticalodedledicated to determining torsional
stiffness of standard involute spline couplingsshswn in Fig. 1b. This method seeks to
consider the interdependence between teeth dmtertand pressure distribution in its
calculations. Firstly, the punch model selectedefresent radial pressure distribution will be
described. The general process leading to the latilmu of torsional stiffness will then be
introduced. Developments relating to the calcutatid pressure distribution and the various
teeth deflections will then be set forth in det&inally, to validate the analytical approach,

the results thus obtained will be compared withr&stilts.



2. Choosing a model for teeth contact
To understand the contact phenomenon in a spliopliog, Leen [10] developed an
experiment similar to a punch test. The experimlemi@asurements were compared on the
one hand with FE results and on the other withataytical model associated with the punch
shown in Fig. 2a (Hanson [11, 12]). In spline cangd, the sleeve tooth can be considered to
be the punch and the shaft tooth the plane, or wezea. However, Hanson’s punch model
considers a symmetric pressure distribution, wieepgassure distribution on a spline tooth is

dissymmetric [10].

Various other works related to punch models wereiclered in the quest for a model
capable of introducing a dissymmetric distributioBackfield [13] used a half plane
formulation to analyse the pressure and slip daftedtpunch as shown in Fig. 2b-c. Unlike
with Hanson, the punch load is a force and a tongiite two configurations. In the first
configuration, the load is centred on the punch tlwedcontact is complete (as in Fig. 2b). In
the second configuration, the load is off-centnepasing a receding contact (as in Fig. 2c).
The equation for pressure distributip(x) along the contact surface in the complete contact

configuration is

« Fis the external force applied on the punch perwith (along the z axis),

+ : . -
Ay :ﬁ—l, with x is Kolosov’s constant arglthe modulus of rigidity,
n

* qaisthe tilted angle,



» crepresents the half contact length,

e Xis a variable parametet[] [-C ; ¢].

The applied torqué is obtained by the equation

_Cna

T A (1)

More recently Goryacheva [14] developed an analticethod for the inclined punch
having a flat base and blend radii as shown in Zig.

Finally, taking into account Leen’s study and tle®metry of spline couplings, which
does not present blend radii at the teeth endskfiskts model can be considered to be the
most appropriate. The tilted angteis the one formed by the two surfaces that areiping
each other as shown in Fig. &.is linked to the global rotation of the sleeveatetl to the
shaft, which is considered to be fixed. This ratatis the result of the shaft and sleeve teeth
distortions. Consequently, the punch model canreotapplied immediately to the spline

coupling and the various sources of teeth distonieed to be studied.

3. Defining the main calculation process

Fig. 4 describes the general process that wilwalleeth distortions, radial pressure
distribution and spline torsional stiffness to betasned. This process starts with a loop
structure including three different steps. The ainthis first part is to determine the value of
the tilted anglea and, by so doing, distortions and pressure. Indaddtrarily giving an
initial value equal to zero to the tilted angtanakes it possible to develop a first calculation
step where the pressure profile arising from thiglea can be evaluated using the Sackfield
model. Knowing the distributed load acting on tbatact surfaces, a second step is dedicated

to teeth distortion calculation. Subsequently, iedtetep can then generate a new estimation



of the tilted angle from the displacements relatediistortions. Thus, the required value of
the tilted angle is determined by iterating thiscakation procedure until convergence. The
second part of the process is limited to evaluatimgional stiffness through knowledge of the
various displacement components. All the stepsimgrocess are described below in a more

detailed manner.

4. Calculating pressuredistribution

This section explains how to determine the radiasgure distribution considering the
external torquéley and the tilted angler to be known. Only study of the external spline is
presented. Radial pressure at point& be represented; (R the crossing point between the
contact curve and the pitch diameter) by a toffjaed a forcd-. Fig. 5 shows loading of the
shaft.

T can be obtained from equation (1). The equilibrilaw applied to the external
spline on the shaft section centre gives the regudiquivalent forcé :

1

F:(%JFT)R,

(2)

where
* Texlis the torque per unit width applied on the shatft,
* Nis the number of teeth,
* Tis the torque per unit width applied by the sle@vthe shaft at the tooth contact
surface,

* Ryis the base radius of the spline.

The Sackfield pressure distribution equation cameoapplied directly since the punch

surface is considered to be planar while the tsoitiace is curved. The linear varialxés



replaced by a curvilinear varialtdeFurthermore, the tooth section is variable, he¢hegooth
is divided along its height inta segments as shown in Fig. 6 . Thn(), which becomes

p(g), is calculated for eacky, wherej varies from 0O ton.
The pressure distribution expression becomes:

1 F a
= (— +— 3
Sy rrvivarwel (3)

wherea is the half length of the contact along the cumeér axis and; is the curvilinear

j-1
coordinates, :z Is.-a . Isk is the curvilinear distance between the contaot sadiusk;, and
k=1

nodek. During this calculation, the approximation thag¢ tooth spline curve can be cut into a

straight segment between two consecutive nodedoistad. Hence the curvilinear distange

is given as

(555 (3)

where

« L is the contact length in thedirection, L=R - R,

where
P(N-1)
O : 1
R 27
o R-= Ri+E,
T

« h¢is the tooth height of the shaft at ndde

where

o for k=0, at the tooth baseh§=2n%,

1C



o fork=1ton hA=2R sin(Hd,k),

where

= @ «is the contact angle including the tooth angler(@b [15])
g, =t -tan(g,) @
d, k 2 R, k k?
where

« @Iis the contact pressure anglg= asir{%j,

e t,is the circular tooth thickness the base radius,

* Rgistheradius at node R = R+(kj5.

n)n
This step shows that appears to be the key parameter required to sloé/eroblem.

This angle depends directly on the behaviour of tdeth, hence the next step involves

determination of distortions.

5. Calculating teeth distortions

Since the teeth geometry of the external splinelase to that for spur gears, the
literature has been analysed to take note of a#inpmena addressed in spur gear teeth
deformation studies. Terauchi [16] and Oda [17, déflned tooth stiffness in relation to two
dimensional elasticity theory and a “mapping fumati This function allows an equation to
be obtained that divides the tooth profile aftefod®mation. This equation is based on
Timoshenko’s work, which uses 14 variables. Amohg studies encountered, Cornell’s
appeared to provide the basis for several otheksvaCornell [15] developed an analytical

method allowing stiffness of the teeth to be foand compliance and stress sensitivity to be
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determined. In this model, the distortions of tesfiur gears are due to bending, shear,
compression and foundation rotation. Analysis o thst parameter is based on the work of
O’Donnell [19, 20]. Huang [21] proposed an analytignamic analysis of a spur gear.
Bending, shear, local compression due to the cbrtetween spur gears, and foundation
rotation are also considered to determine stifingSernell’'s [15] and Matusz's [22]
publications are referred to in order to calcufaendation rotation. More recently, Sainsot
[23] used the theory of elasticity to model spuargeody distortion. In this publication, tooth
stiffness is also based on Cornell’s theory. Expental methods [24] or finite element
investigations [25] addressed the question of etadg teeth distortions. The results proposed
in these papers were useful in validating the apsioms made in studies devoted to spur
gears but cannot be used for spline coupling. liidas the nature of the contact and the
geometry of the internal tooth are different, tredues for deformations too are necessarily

different.

Many of the numerical analyses carried out witthe framework of the present study
showed that the slip phenomenon that takes pladheatcontact surface has significant
consequences. Indeed, the flank is inclined andspre exerts radial forces that impose a
compression of the shaft body and an expansioheo$leeve body. This generates orthoradial
displacements, which can have a major influencerdier to obtain a good estimation of the

teeth stiffness, sliding needs to be taken int@aetin stiffness calculation.

Finally, according to these different works, teb#haviour can be considered to be a
superposition of four phenomena:

1. bending and shear of the teeth,

2. compression,

3. tooth foundation rotation,

4. sliding.
12



These various phenomena will now be described atggr

5.1. Bending and shear of the teeth
According to a number of papers, shear force amilihg moment appear to be the
principal effects on deflection of the teeth. Thpkenomena are based on stress analysis and

can thus be expressed easily.

Fig. 6 provides an illustration of the following@anations. The teeth on sleeve and
shaft can be divided into two sections. The fifst,the external spline, is between the shaft
foundation radius. and the sleeve minor radi&® and that for the internal spline between
the sleeve foundation radil® and the shaft major radidg. On these parts, no loading is
applied. The second is betweBnandRy, where contact is made. As shown in the pressure

distribution formula, the geometry imposes a doisof the tooth into segments.

For shear and bending deflections, the teeth arsidered to behave like cantilever

beams. The shear deflection of the sleexe, or of the shaftyg ,, is the sum of the

S, j?

deflection on each segment of the tooth.

Note when a mathematical expression is identicaltlierdhaft and the sleeve, the index

replaces indicese” and “i”.

The shear deflection expression at npe

£ ¢
CEE Y &

¢ Véis the shearing force per unit width, the integrélthe pressure along the

contact surface between the fixed extremity ancehkod

13



Vo=V

« S¢is the surface area, whex& is applied. As unit width is considered, this
surface area depends of the tooth height beforeatiadthe segmenky andhy..

According to Cornell [15], calculating¢ using the following formulae improves

accuracy
& W
=2 = T
iﬁTl he+he,
he he,
where

o hcis the shaft tooth height, already defined inghessure distribution

description. For the sleeve the height is
o R _
. =2n—* fork=0
=2
= RN .,=2 R S‘”@ ﬂd*kj for k from 1 ton,

* X«Iis the distance between the considered thaated the previouk - 1 in thex

direction,

« k¢ is the section modulus coefficient.

The bending deflection of the sleeve and shﬁf}, at node j, is calculated using the

second derivative of the bending moment

’ ngk
(Uf;,j) =ZE|';~ (5)

14



where

. M,;fk Is the bending moment per unit width, which carekpressed by

Shx fe gr:er .
i =53 (s M |

where

0 fq‘(is the force per unit width applied on segmegnt

£ :[%{asir(%j —asirES—;H A%Naz SRRE: ﬂ}

o |.is the second moment of area expressed wheredivent is applied.

According to Cornell [15] and working per unit whgit,* can be expressed

|62 2 _ (h;( E+1)3

’ 13+ 13_6(h§3+ {+13)'
I

o | is the distance between the foundation, the fieeth extremity and the

point where the moment is applied in thdirection

_o-1,
5= (R-R)+E,

where
+ 13=R-R.,
* I:i;\: Ri-R,
0 Ii‘;ter'q is the distance between the foundation, the fieeth extremity, and

the point where the forcfg‘(is applied in thex direction

I
+

| é lq | g+l
inter,q 2 '

1t



o K., isthe height of the tooth, where the foﬁgf(e's applied in theg

nter,q

direction

é '3
S hﬂ + +1
nter,q 2 .

To conclude, the deflection due to bending and rsisethe sum ofuf ; and ug ;. To

find the section modulus coefficients of the sheaflection, a confrontation between
analytical results and finite elements was perfatmésing FE analysis, it is impossible to
separate the effects of bending and shear so theartson must take both into account. The
2D FE model used to determine these coefficientgyiven in section 8.1 (Fig. 10).
Introducing the torque at the sleeve external diamand clamping the shaft root diameter, it
is possible to obtain the coefficienf,khe tooth foundation rotation being annihilatediich
a configuration. Deflection is evaluated along gymmetry axis of the shaft tooth. An
equivalent approach where the sleeve root dianet#amped and the shaft internal diameter
is loaded allows & to be calculated. These evaluations were made farge set of spline
couplings (different pitches and different toothnrhers), and for various torques, leading
always to the same value of the section modulufficeats: kf=0.94 and & = 0.8. Fig. 7
shows the results obtained with: P = 7.85mm, N te&8h, Ry = 35mm, Ry =2mm and T =
7.2N, E = 207GPa and G = 80.1GPa.
5.2. Teeth compression
The compression equation derives from Marmol's wtug’ is the compression

deflection on the contact at pitch diameter

& e
T L S (6)
d E cos@; )
where
e j=n/2,
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« kS is a corrective coefficient,
, - , , SRR
* dis the curvilinear length, Wheféls appliedd :—2 :

To find the corrective coefficients of the compiessdeflection, a comparison
between analytical results and finite elements wagormed leading tdk.°= 0.531 and

ks = 0.406.

5.3. Foundation teeth rotation
Distortion creates a foundation rotation. This pimaenon has been studied by a
number of researchers, assuming different stressikditions. One of these studies was
developed by O’Donnell [16, 17], who found a re#disolution based on a cubic distribution

of stress.

According to O’Donnell, the foundation deflectioft is valid only on the beam

support, near the neutral axis.

- 1867(1)M,  (1-v-v3)V
nEh? Eh’

where
* h’is the effective height, which is equal to 1.5d81the beam height,
» Qdis the deflection of a cantilever due to the ét#gtsupport,
* Vis the shear load at the support per unit width,
* Mg is the torque at the support per unit width.
It is then possible to apply this theory to the rfdation rotation of the spline. The

foundation rotation becomes:

F KEMT (Lv-V)VE
g; = e + £ withj =0, (7)
j

J
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where

. Mff is the foundation moment per unit width for theafshor the sleeve. This
momentMs* is found by applying the equilibrium law to theafthor the sleeve at
the crossing pointf between the mid-tooth height and the foundatiaméter as

shown in Fig. 5,
M¢=F M o H¢ T withj =n/2
{= (-Esmqop,j © cogy, | T withj =n/2,

where
0 hyis the tooth height at the pitch radius. Thiis $ame both for the sleeve

and the shaft
P . o
,=— Nsin(, ), withj =n/2,
T :

o |,%is the distance between the foundation radiusttagitch radius

I°=R-R, and

I'=R;-R,
o @,;is the contact load angularity with pressp(g), @, =T1- & j,
+ ko is the influence coefficient. The value given biDénnell, for a half plane
support is

_16.67(1+°)

o =

This value is not available for the spline coupli@@mparisons between FE model
results and analytical model results allow thiduahce coefficient for the shaft

and the sleeve to be determined

6(1-v?)
°=—" 7 and
% tEh'

18



. 8(1-v?)
o= TEh?’

5.4. Sliding
Sliding has never before been taken into accountiatermining spline coupling
torsional stiffness. Sliding can be calculated gsincomparison between this phenomenon
and the radial compression / extension of a hokbaft. Indeed, the radial component of the
contact teeth pressure creates a body compressithre ghaft and a body expansion of the
sleeve as shown in Fig. 8. These new radial dispt@nts lead to an orthoradial displacement

along the contact surface of the teeth.

To solve this problem, the shaft and the sleeveansidered to be a hollow shaft. For
the external spline, the maximum radius is the fation radius of the shaft teefRe. For the
internal spline, the minimum radius is the founolatiadius of the sleeve tee®;. The radial
component of the contact pressure is distributatbumly over the outside diameter for the

shaft and inside diameter for the sleeve. For hiadt sthe resulting equivalent presspyeis

F sin(g, .
pe=F SN@) i =2,

' [
2 sm(Nj R.

for the sleeve the resulting equivalent presguris

o= F sin(qop,j)
T (
25|n(Nj R,

The radial displacement created by the sliding phemon is a superposition of shaft

with j = n/2.

and sleeve displacements. From Lame’s equatioesttaft and sleeve radial displacements

are

19



Vaia :%((1'0 ) Re2+(1+v) thz) '

(- pi R 2 2
4= —7—=5"—x((1-v) R“+(1+ ,
VS“d E( REXtZ_ RiZ) (( U) Rl ( U) FSXt )
where
* Rexis the external radius of the sleeve,

* Ryt is the hole radius of the shaft.

Finally these displacements create an orthora@alatement at the pitch diameter

T 42 (tan@ )4 )

Ugjig = (Vglid + Vislid) tan g+ 4 with j =n/2. (8)

6. Definingtilted angle
The tilted angle is the angle between the contadase of the sleeve and the shaft.

For readier comprehension, the shaft and sleeverdations are separated.

One method to obtain the teeth rotations is torassthat the deflection of the contact
line is the same at deflection of the neutral aiig. 9a shows a tooth sleeve before and after
loading. After distortion, the extremity points thie contact surface C and D become C’ and
D’ and form a lineA’’. The angle between the line (CD) and the ixikis 4. Only the
deflections determined on the neutral axis arertahi® account in thé' determination

u. +u

6ti= s,n b,n_'_eif )
R-R

20



Fig. 9b shows the shaft before and after loadinge deformation imposes a rotation

@°, which is the rotation of the lins®

e e
He_ us,n-'-ub
=

246y
R-R

These rotations and the local distortion on thdaxin(sliding and compression) create
a body rotation of the sleeve. This global rotat&ig,a, that does not appear on the figures,
transforms the lind'' to A'. The expression of the global rotation is
i . . 6 &)\ on
6 |oba|:(u sig TUF WU o+ U+ Uy + '-‘ib/a"“_f +— J

° 12 PN

p

The tilted anglex is the angle betwee)f andA'. a= @e-(d‘+6?g,oba|). (9)

7. Determining torsional stiffness
All the parameters for torsional stiffness deteration are defined. It is now possible

to formulate precisely torsional stiffnesgsas

c,= Tea iy [N/rad]. (10)

global

8. Finiteelement modelling and results
A comparison between analytical results and 2D &&ults will now be given. The
spline dimensions are standard and the sleevenaktélameter is chosen to obtain a second
moment of area bigger than the shaft's. To scaferéit configurations, three different

circular pitches, three teeth numbers and variatiside torques are taken into account.
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8.1. Description of finite element models

In order to validate the study, two-dimensionahglatrain finite element models were
made of different involute spline couplings and gbs was used to perform calculation. The
meshing used to model the two parts constitutivéhefcoupling, the shaft and sleeve, are
shown in Fig. 10. The final model is the sum ofsithéwo parts. The boundary conditions are
defined as follows: contact is specified on theéhdkanks (but no friction), nodes located on
the shaft internal diameter are locked but thalialaexpansion is kept possible and torque is
applied to the external edge of the sleeve. Cygfimmetry conditions are used on the two

lateral edges to simulate the behaviour of the detaspline coupling.

8.2. Adequacy between analytical model and FE model
Fig. 11 shows the comparison between finite elemestilts and analytical model
results. The characteristics of the involute splmoeipling considered in this example are:
P =3.93mm, N =18 teeth, (R=17.5mm, R;=1mm, Text=5N, E = 207GPa and

G = 80.1GPa.

The variations between both models are shown in Tathe reference for variations
being the analytical model. The two nodes locatetha ends of the contact edge are not
considered in this comparison because the andlytteasure is theoretically equal to infinity
whens=a or s=-a (See Eq. 3 and Fig. 11). Using FE models, suchiegalwould be
approximated only by significantly refining the rmasy. The average variation, calculated on
the remaining contact length, which correspond$Q@&6 of the entire length, is 3%. The

maximal variation is about 6%.

The analytical model's precision is then sufficignt consider that radial pressure

distribution is correctly calculated.
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Tab. 2 allows the analytical torsional stiffnessl dhe FE results for different spline
couplings to be compared, the characteristics efntlaterial being the same as those of the
model presented above. In this table, the finieament torsional stiffness is calculated by
dividing the external torque by the difference betw the rotations at the foundation radius of

the sleeve and the shaft. The reference used toatgavariations is the analytical model.

Tab. 2 shows precision of the analytical model.ebdl precision on the torsional

stiffness is greater than 93%.

For the same couple of circular pitch and numbeteeth, teeth stiffness is identical
whatever the torque applied, this being normal praving that the analytical model gives

coherent results.

The different phenomena involved in the problemndo have the same influence on
stiffness or pressure distribution. The contribasionade by the various phenomena on the
torsional stiffness value for the spline couplimggented above in this section are:

- 58% is due to sliding,
- 29% is due to the combined effect of shear amdiiog,
- 8% is due to compression,

- 5% is due to foundation rotation.

From these contributions it is now possible to gsmlthe influence of the different
corrective coefficients used in the analytical Mo&#ding was evaluated without using the
corrective coefficientks shear and bending coefficients appeared to béestriing all the
various tests carried out. Modelling of these thpbenomena, which account for 87% of
torsional stiffness, is thus extremely robust as itot dependent on variations in corrections.
The values provided above fdé&® compression coefficients ank® foundation rotation

coefficients are average values. Indeed, thesdicieets may vary slightly with the geometry
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and the materials considered in the problem. Bair ttinor variations have only a slight
effect on the total value for stiffness since theemomena concerned account for only

approximately 13% of the total.

A confrontation between the results given by thalyital model and the results
given by 3D FE analyses was also conducted. Thadees showed that good correlations are
achieved between results, especially at the endweofcoupling that are the most critical

Zones.

9. Conclusion
Sackfield’s punch model was combined with more emiwnal teeth distortion
analyses to evaluate analytically the pressureilligion taking place between the teeth of
involute spline couplings. The field of validity d¢lie proposed method is defined by the
following assumptions: that teeth geometry is infoomity with standardisation, dimensions

are nominal (no defect), there is no friction alnel load is a pure torsional torque.

Whereas previous studies have attempted to finthdtae for teeth stiffness and
pressure distribution separately, this paper takéis phenomena into account to manage their
mutual influence. A new analytical method to defowh spline torsional stiffness and radial
pressure distribution is thus proposed. It considifferent teeth distortions, due to bending,

shear, compression, foundation rotation, and gjidincontact.

The results obtained from the study are comparetth @D FE models. These
confrontations show that a good estimation of teiffness can be found analytically. They
also prove that the phenomena have varying degreesfluence on the stiffness value.
Sliding, which has until now never been taken @toount, appears to be the most significant

parameter in determining torsional stiffness arebsgure distribution.
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