S. Déoux, Les Enjeux Sanitaires de la Qualité de l'air Intérieur

, Cité des Sciences et de l'industrie, 2013.

, Development of WHO Guidelines for Indoor Air Quality, p.10, 2014.

, WHO Guidelines for Indoor Air Quality, p.10, 2014.

, World Health Organization. WHO Guidelines for Indoor Air Quality: Dampness and Mould, 2009.

, World Health Organization. WHO Guidelines for Indoor Air Quality: Selected Pollutants, 2010.

J. D. Cooley, W. C. Wong, C. A. Jumper, and D. C. Straus, Correlation between the prevalence of certain fungi and sick building syndrome, Occup. Environ. Med, vol.55, pp.579-584, 1998.

C. S. Li, C. W. Hsu, and M. L. Tai, Indoor pollution and sick building syndrome symptoms among workers in day-care centers, Arch. Environ. Health, vol.52, pp.200-207, 1997.

, Contaminations Fongiques en Milieux Intérieurs. Diagnostic, Effet sur la Santé Respiratoire, Conduite à Tenir, 2006.

N. Nolard and H. Beguin, Moisissures. Traité D'Allergologie Paris Médecine-Sci, pp.441-461, 2003.

B. Gutarowska and Z. ?akowska, Elaboration and application of mathematical model for estimation of mould contamination of some building materials based on ergosterol content determination, Int. Biodeterior. Biodegrad, vol.49, pp.299-305, 2002.

, Recommended Best Practices for Mold Investigations in Minnesota Schools; MDH, Environmental Health Division, Indoor Air Unit, 2001.

G. Reboux, A. Bellanger, S. Roussel, F. Grenouillet, and L. Millon, Moisissures et Habitat: Risques Pour la Santé et Espèces Impliquées, Rev. Fr. Allergol, vol.50, pp.611-620, 2010.

, ASEF Pollution de l'air intérieur de l'habitat, p.30, 2013.

F. Fung and W. G. Hughson, Health Effects of Indoor Fungal Bioaerosol Exposure. Appl. Occup. Environ. Hyg, vol.18, pp.535-544, 2003.

R. Santucci, O. Meunier, M. Ott, F. Herrmann, A. Freyd et al., Contamination fongique des habitations: Bilan de 10 années d'analyses, Rev. Fr. Allergol. Immunol. Clin, vol.47, pp.402-408, 2007.

K. F. Nielsen, G. Holm, L. P. Uttrup, and P. A. Nielsen, Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism, Int. Biodeterior. Biodegrad, vol.54, pp.325-336, 2004.

J. D. Spengler and Q. Chen, Indoor Air Quality Factors in Designing a Healthy Building, Annu. Rev. Energy Environ, vol.25, pp.567-600, 2000.

T. Tuomi, K. Reijula, T. Johnsson, K. Hemminki, E. Hintikka et al., Mycotoxins in Crude Building Materials from Water-Damaged Buildings. Appl. Environ. Microbiol, vol.66, pp.1899-1904, 2000.

A. Bellanger, G. Reboux, S. Roussel, F. Grenouillet, E. Didier-scherer et al., Indoor fungal contamination of moisture-damaged and allergic patient housing analysed using real-time PCR, Lett. Appl. Microbiol, vol.49, pp.260-266, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00449223

M. A. Andersson, M. Nikulin, U. Köljalg, M. C. Andersson, F. Rainey et al., Salkinoja-Salonen, M. Bacteria, molds, and toxins in water-damaged building materials, vol.63, pp.387-393, 1997.

H. K. Dillon, J. D. Miller, W. G. Sorenson, J. Douwes, and R. R. Jacobs, Review of methods applicable to the assessment of mold exposure to children, Environ. Health Perspect, vol.107, pp.473-480, 1999.

E. Torvinen, T. Meklin, P. Torkko, S. Suomalainen, M. Reiman et al., Mycobacteria and Fungi in Moisture-Damaged Building Materials. Appl. Environ. Microbiol, vol.72, pp.6822-6824, 2006.

, Health Implications of Fungi in Indoor Environments

R. A. Samson, B. Flannigan, M. E. Flannigan, A. P. Verhoeff, O. C. Adan et al., , 1994.

B. F. Flannigan, R. A. Samson, and J. D. Miller, Microorganisms in Home and Indoor Work Environments: Diversity, Health Impacts, Investigation and Control

T. Group, , 2001.

S. Parat, A. Perdrix, S. Mann, and C. Cochet, A Study of the Relationship between Airborne Microbiological Concentrations and Symptoms in Office in Buildings, Proceedings of the Healthy Building, pp.10-15, 1995.

I. J. Williamson, C. J. Martin, G. Mcgill, R. D. Monie, and A. G. Fennerty, Damp housing and asthma: A case-control study, Thorax, vol.52, pp.229-234, 1997.

D. Mudarri and W. J. Fisk, Public health and economic impact of dampness and mold, Indoor Air, vol.17, pp.226-235, 2007.

E. Johanning, I. Mycotoxin, and . Health, Proceedings of the Sixth VI International Conference on Mycotoxins in the Environment of People and Animals, pp.25-27, 2002.

B. Gutarowska and M. Piotrowska, Methods of mycological analysis in buildings, Build. Environ, vol.42, pp.1843-1850, 2007.

T. Verdier, M. Coutand, A. Bertron, and C. Roques, A review of indoor microbial growth across building materials and sampling and analysis methods, Build. Environ, vol.80, pp.136-149, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01850781

M. N. Chong, B. Jin, C. W. Chow, and C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res, vol.44, pp.2997-3027, 2010.

J. Gamage and Z. S. Zhang, Applications of Photocatalytic Disinfection, Int. J. Photoenergy, 2010.

O. K. Dalrymple, E. Stefanakos, M. A. Trotz, and D. Y. Goswami, A review of the mechanisms and modeling of photocatalytic disinfection, Appl. Catal. B Environ, vol.98, pp.27-38, 2010.

H. A. Foster, I. B. Ditta, S. Varghese, and A. Steele, Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity, Appl. Microbiol. Biotechnol, vol.90, pp.1847-1868, 2011.

C. Wei, W. Y. Lin, Z. Zainal, N. E. Williams, K. Hemminki et al., Bactericidal Activity of TiO 2 Photocatalyst in Aqueous Media: Toward a Solar-Assisted Water Disinfection System, Environ. Sci. Technol, vol.28, pp.934-938, 1994.

K. Sunada, T. Watanabe, and K. Hashimoto, Bactericidal Activity of Copper-Deposited TiO 2 Thin Film under Weak UV Light Illumination, Environ. Sci. Technol, vol.37, pp.4785-4789, 2003.

T. Saito, T. Iwase, J. Horie, and T. Morioka, Mode of photocatalytic bactericidal action of powdered semiconductor TiO 2 on mutans streptococci, J. Photochem. Photobiol. B, vol.14, pp.369-379, 1992.

G. Gogniat, M. Thyssen, M. Denis, C. Pulgarin, and S. Dukan, The bactericidal effect of TiO 2 photocatalysis involves adsorption onto catalyst and the loss of membrane integrity, FEMS Microbiol. Lett, vol.258, pp.18-24, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00092800

D. Gumy, C. Morais, P. Bowen, C. Pulgarin, S. Giraldo et al., Catalytic activity of commercial of TiO 2 powders for the abatement of the bacteria (E. coli) under solar simulated light: Influence of the isoelectric point, Appl. Catal. B Environ, vol.63, pp.76-84, 2006.

D. Gumy, A. G. Rincon, R. Hajdu, and C. Pulgarin, Solar photocatalysis for detoxification and disinfection of water: Different types of suspended and fixed TiO 2 catalysts study, Sol. Energy, vol.80, pp.1376-1381, 2005.

Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, and A. Fujishima, Photocatalytic bactericidal effect of TiO 2 thin films: Dynamic view of the active oxygen species responsible for the effect, J. Photochem. Photobiol. Chem, vol.106, pp.51-56, 1997.

K. Sunada, T. Watanabe, and K. Hashimoto, Studies on photokilling of bacteria on TiO 2 thin film, J. Photochem. Photobiol. Chem, vol.156, pp.227-233, 2003.

V. Nadtochenko, N. Denisov, O. Sarkisov, D. Gumy, C. Pulgarin et al., Laser kinetic spectroscopy of the interfacial charge transfer between membrane cell walls of E. coli and TiO 2, J. Photochem. Photobiol. Chem, vol.181, pp.401-407, 2006.

V. A. Nadtochenko, O. M. Sarkisov, V. V. Nikandrov, P. A. Chubukov, and N. N. Denisov, Inactivation of Pathogenic Microorganisms in the Photocatalytic Process on Nanosized TiO 2 Crystals. Russ, J. Phys. Chem. B Focus Phys, issue.2, pp.105-114, 2008.

T. Martinez, Revêtements Photocatalytiques Pour les Matériaux de Construction: Formulation, Évaluation de L'efficacité de la Dépollution de l'air et Écotoxicité

G. Civil, I. Toulouse, and . Sabatier, , 2012.

T. Martinez, A. Bertron, E. Ringot, and G. Escadeillas, Degradation of NO using photocatalytic coatings applied to different substrates, Build. Environ, vol.46, pp.1808-1816, 2011.

T. Martinez, A. Bertron, G. Escadeillas, and E. Ringot, Algal growth inhibition on cement mortar: Efficiency of water repellent and photocatalytic treatments under UV/VIS illumination, Int. Biodeterior. Biodegrad, vol.89, pp.115-125, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01850753

, Japanese Industrial Standard. Antibacterial Products-Test for Antibacterial Activity and Efficacy

, Japanese Standards Association, 2010.

, Advanced Technical Ceramics)-Test Method for Antibacterial Activity of Semiconducting Photocatalytic Materials, ISO 27447 Fine Ceramics (Advanced Ceramics, 2009.

L. Liu, B. John, K. L. Yeung, and G. Si, Non-UV based germicidal activity of metal-doped TiO 2 coating on solid surfaces, J. Environ. Sci, vol.19, pp.745-750, 2007.

S. De-niederhãusern, M. Bondi, and F. Bondioli, Self-Cleaning and Antibacteric Ceramic Tile Surface, Int. J. Appl. Ceram. Technol, vol.10, pp.949-956, 2013.

Y. Horie, D. A. David, M. Taya, and S. Tone, Effects of Light Intensity and Titanium Dioxide Concentration on Photocatalytic Sterilization Rates of Microbial Cells, Ind. Eng. Chem. Res, vol.35, pp.3920-3926, 1996.

P. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum et al., Bactericidal Activity of Photocatalytic TiO 2 Reaction: Toward an Understanding of Its Killing Mechanism, Appl. Environ. Microbiol, vol.65, pp.4094-4098, 1999.

Z. Huang, P. Maness, D. M. Blake, E. J. Wolfrum, S. L. Smolinski et al., Bactericidal mode of titanium dioxide photocatalysis, J. Photochem. Photobiol. Chem, vol.130, pp.163-170, 2000.

A. G. Rincón and C. Pulgarin, Photocatalytical inactivation of E. coli: Effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO 2 concentration, Appl. Catal. B Environ, vol.44, pp.263-284, 2003.

P. S. Dunlop, J. A. Byrne, N. Manga, and B. R. Eggins, The photocatalytic removal of bacterial pollutants from drinking water, J. Photochem. Photobiol. Chem, vol.148, pp.355-363, 2001.

V. Caratto, B. Aliakbarian, A. A. Casazza, L. Setti, C. Bernini et al., Inactivation of Escherichia coli on anatase and rutile nanoparticles using UV and fluorescent light, Mater. Res. Bull, vol.48, pp.2095-2101, 2013.

A. K. Benabbou, Z. Derriche, C. Felix, P. Lejeune, and C. Guillard, Photocatalytic inactivation of Escherischia coli: Effect of concentration of TiO 2 and microorganism, nature, and intensity of UV irradiation, Appl. Catal. B Environ, vol.76, pp.257-263, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00179249

T. Matsunaga, R. Tomoda, T. Nakajima, N. Nakamura, and T. Komine, Continuous-sterilization system that uses photosemiconductor powders, Appl. Environ. Microbiol, vol.54, pp.1330-1333, 1988.

D. S. Kim and S. Kwak, Photocatalytic Inactivation of E. coli with a Mesoporous TiO 2 Coated Film Using the Film Adhesion Method, Environ. Sci. Technol, vol.43, pp.148-151, 2009.

L. Caballero, K. A. Whitehead, N. S. Allen, and J. Verran, Inactivation of Escherichia coli on immobilized TiO 2 using fluorescent light, J. Photochem. Photobiol. Chem, vol.202, pp.92-98, 2009.

W. A. Pryor, Oxy-Radicals and Related Species: Their Formation, Lifetimes, and Reactions, Annu. Rev. Physiol, vol.48, pp.657-667, 1986.

C. Guillard, T. Bui, C. Felix, V. Moules, B. Lina et al., Microbiological disinfection of water and air by photocatalysis, Comptes Rendus Chim, vol.11, pp.107-113, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00474598

R. Cai, K. Hashimoto, K. Itoh, Y. Kubota, and A. Fujishima, Photokilling of malignant cells with ultrafine TiO 2 powder, Bull. Chem. Soc. Jpn, vol.64, pp.1268-1273, 1991.

A. Rincón and C. Pulgarin, Effect of pH, inorganic ions, organic matter and H 2 O 2 on E. coli K12 photocatalytic inactivation by TiO 2 : Implications in solar water disinfection, Appl. Catal. B Environ, vol.51, pp.283-302, 2004.

O. Carp, C. L. Huisman, and A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem, vol.32, pp.33-177, 2004.

S. Okazaki, T. Aoki, and K. Tani, The Adsorption of Basic α-Amino Acids in an Aqueous Solution by Titanium(IV) Oxide, Bull. Chem. Soc. Jpn, vol.54, pp.1595-1599, 1981.

D. Mitoraj, A. Ja?czyk, M. Strus, H. Kisch, G. Stochel et al., Visible light inactivation of bacteria and fungi by modified titanium dioxide, Photochem. Photobiol. Sci, vol.6, pp.642-648, 2007.

A. Rincón and C. Pulgarin, Use of coaxial photocatalytic reactor (CAPHORE) in the TiO 2 photo-assisted treatment of mixed E. coli and Bacillus sp. and bacterial community present in wastewater, Catal. Today, vol.101, pp.331-344, 2005.

P. Muranyi, C. Schraml, and J. Wunderlich, Antimicrobial efficiency of titanium dioxide-coated surfaces, J. Appl. Microbiol, vol.108, pp.1966-1973, 2010.

A. I. Gomes, J. C. Santos, V. J. Vilar, and R. A. Boaventura, Inactivation of Bacteria E. coli and photodegradation of humic acids using natural sunlight, Appl. Catal. B Environ, vol.88, pp.283-291, 2009.

C. Pablos, R. Van-grieken, J. Marugán, and B. Moreno, Photocatalytic inactivation of bacteria in a fixed-bed reactor: Mechanistic insights by epifluorescence microscopy, Catal. Today, vol.161, pp.133-139, 2011.

R. Van-grieken, J. Marugán, C. Sordo, and C. Pablos, Comparison of the photocatalytic disinfection of E. coli suspensions in slurry, wall and fixed-bed reactors, Catal. Today, vol.144, pp.48-54, 2009.