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concrete structures are significantly affected by cracking. This structural dis-
al path for the penetration of fluids and may accelerate the material deterio-
ates the mechanical damage and permeability interactions in geomaterials
stress inducing cracking. The development reported here is implemented
age model able to compute plastic dilatancy. The model assumes an initial
r which becomes anisotropic with non-isotropic expansion. The model capa-
imulating uniaxial and triaxial compression tests. The simulation results are
al data.
1. Introduction

Cracking in civil engineering structures significantly affects
their durability and ultimately their safety. When cracks reach
the reinforcement, the load-bearing capacity is decreased and the
material deterioration can accelerate. Regarding the transfer prop-
erties, cracking leads to leaks and loss of containment ability
induced by the increasing permeability as cracks open.

Several experimental studies have been carried out in order to
predict the change of permeability caused by damage. For instance,
in the case of a localized crack initiated by a split test, it has been
shown that permeability variations can be expressed as a function
of crack opening [1–6]. When a laminar flow of water or gas is con-
sidered, Poiseuille’s law has been found appropriate to predict flow
rate through the macroscopic crack [3–6].
On the other hand, diffuse cracking, which is the focus of this
paper, is usually generated by uniaxial or deviatoric loading
[7–15]. In this situation, it has been shown that the change of per-
meability can be expressed as a function of a damage parameter, D,
proportional to the variation of Young’s modulus [10,12,16]. This
parameter quantifies the loss of stiffness induced by cracking.
It is a scalar quantity, the value of which can range between 0
(healthy material) and 1 (completely damaged material). For
instance, exponential [10,12] and logarithmic [16] empirical func-
tions have been proposed to manage permeability variations with
respect to the variable, D.

The experimental results found in [10,12,13] are plotted in
Fig. 1 and compared to the proposed empirical functions with
respect to D. These relationships were assumed to be appropriate
only when D 2 ½0� 0:15�. As shown in Fig. 1, the ratio of permeabil-

ities between the damaged and healthy samples k=k0
� �

remains

lower than 9 in the pre-peak phase, and does not change signifi-
cantly with the type of concrete: plain concrete (OC), high-
performance concrete (HPC) or high-performance fibre-reinforced
concrete (HPFRC) [10]. Other authors [12,13] have found that the



Nomenclature

Name Symbol
C fourth-order stiffness tensor
ee elastic strain tensor
epl;s plastic strain tensor including dilatancy
r total stress tensorer undamaged stress tensorerd deviatoric part of the undamaged stress tensor er
keq;s induced anisotropic permeability tensor due to dila-

tancy
fDP Drucker–Prager plastic criterion
d Drucker–Prager coefficient
/ friction angle
FDP non-associated Drucker–Prager yield function
b dilatancy coefficient
ds isotropic shear damage
eth;s dilatancy threshold used to compute ds

ek;s characteristic strain used to compute ds

eth;p strain percolation threshold used to compute keq;s

Djj equivalent crack spacing in the j direction
D isotropic equivalent crack spacing used to compute keq;s

k0 initial isotropic permeability
kFi permeability of the ith crack
wi

jj crack opening of the ith crack in the j direction

Q tot
j total flow in the j direction

Q0
j flow through the healthy part of the material in the j

direction
QF

j flow through the cracks in the j direction
‘jj size of the finite element in the j direction
n number of cracks
E0 initial isotropic Young’s modulus
m0 initial isotropic Poisson’s ratio
Rc
0 threshold stress to initiate plastic dilatancy

Rc compression peak strength
epeak;c strain at Rc

r0 confining pressure
ratio k=k0
� �

remains lower than 4 (for plain concrete). As will be

shown in the next section, these differences can be attributed to
the directions of flowmeasurements (according to the induced ani-
sotropy of cracking in a uniaxial compression test). For instance, in
reference [10], the measurements were carried out in the same
direction as loading, while in references [12,13], the authors made
them in the direction perpendicular to the loading.

When D 2 ½0:15� 1�, especially after the peak of the behaviour
law, the literature provides a group of empirical relationships
which have to be fitted according to experimental results and finite
element sizes in order to predict realistic permeability variations
[17,20,19]. As shown in Fig. 2, the empirical logarithmic function
proposed in [19] gave a reasonable fit for the experimental perme-
ability variations under the uniaxial compression test found in
[12]. The relationship proposed in [16], which was fitted on tensile
test [18,21] (see [21] for more details on the experimental device)
also seemed to give good agreement with measurements too. We
recall that, in pre-peak phase, this relation was fitted on a uniaxial
compression test [10].
Fig. 1. Predicted variations of permeability ratio k=k0
� �

[10,12,16] with respect to
the damage parameter: comparison with experimental permeability measurements
[10,12].
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In a first step, the mechanisms observed to be involved during
uniaxial compression or deviatoric loading leading to increased
permeability are highlighted and the drawbacks of previous sim-
plified damage formulations are pointed out. The second step of
this work focuses on the proposed anisotropic permeability model,
which is fundamentally based on the damage model [22] enhanced
by a coupling with non-standard plasticity (implemented in
CAST3M finite element program [23]). The model results are com-
pared to mechanical and permeability measurements. Finally, tri-
axial tests are simulated in order to demonstrate the relevance of
such modelling.
2. Change of permeability under compression loading

2.1. Drawback of damage-permeability relationship

As suggested by experimental results [10,12,14] and usually
adopted in numerical modelling, the change of permeability can
Fig. 2. Predicted variations of permeability ratio k=k0
� �

[17–19,16] with respect to
the damage parameter: comparison with experimental permeability measurements
[18,12].



Fig. 3. Schematic comparison between elastic and elasto-plastic damage parameter
under compressive or deviatoric loading.
be expressed as a function of an isotropic [19,24,12,16,25] or aniso-
tropic [26,18,27,28] damage parameter.

Therefore, the damage state when D ! 1 is not unique regard-
ing crack opening, which makes these models inappropriate for
computing permeability in strongly damaged materials. Moreover,
the law will be different according to whether the damage
model is elastic or elasto-plastic. Fig. 3 shows the conventional
nature of damage and consequently the limit of considering a
permeability-damage relationship.

For instance, let us consider the function proposed in [16] to
predict permeability. If the damage parameter is overestimated,
an error of 0.1 leads to a permeability being misestimated by a
factor greater than 7. This error might increase exponentially
according to the evolution of permeability.

More particularly, computing the damage parameter according
to the slope from the origin of the stress–strain curve (elastic dam-
age formulation) leads to De ¼ 0:42ð Þ at the peak of the behaviour
law in the case of a uniaxial compression test (considering an
ordinary concrete with: E0 ¼ 18000 MPa, Rc ¼ 28 MPa and
epeak;c ¼ 2:7� 10�3 [12]):
De ¼ E0 � ED

E0 ¼ E0 � Rc=epeak;c

E0 ¼ 0:42 ð1Þ

On the other hand, if permanent strains are assumed (as
observed experimentally), the measured damage during unloading
was close to 0.15 [10,12]. As a result, the permeability will be over-
estimated 200 times at the peak of the behaviour law in the elastic
Fig. 4. Typical permeability evolution under compressive
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damage formulation. Consequently, resorting to a more objective
variable than D, such as plastic strains or crack openings, could
be more realistic.

The next section presents the different phases for permeability
evolution evidenced under/after loading according to a review of
the literature. These phenomena have to be taken into account
when modelling permeability variation under compressive or devi-
atoric loading.

2.2. Experimental observations

Experimental results on concrete [7,12], mortar [8,9], rock salt
[11] and granite [14,15] suggest a behaviour under compressive
or deviatoric loading that can be divided into 3 parts:

1. When loading begins, the permeability decreases slightly. This
phenomenon is usually attributed to the reduction of porosity
and/or to the closure of initial microcracks induced by the dry-
ing procedure (associated with gas permeability measure-
ments). This phase corresponds to the material elasticity
(volumetric strain contractancy).

2. In the second phase, expansion increases slightly and perme-
ability remains relatively constant. This seems to indicate that
there is a balance between the consolidation due to the mean
stress and the occurrence of new microcracks.

3. In the last phase, dilatancy increases more significantly, and a
noticeable increase in permeability is observed. This situation
occurs at approximately 70–90% of the peak strength.

These phases are summarized in the scheme presented in Fig. 4.
When phases 1 and 2 are considered, a model including a

threshold parameter as proposed in [16,14,28] is realistic. On the
other hand, a model including plastic dilatancy might be more
appropriate for phase 3. The next section presents the mechanical
model that allows permeability variations to be computed
anisotropically thanks to plastic dilatancy.

2.3. Description of the elasto-plastic damage model

The mechanical model presented below is based on the initial
formulation, as described in [22], to which additional plastic
strains are added. With these modifications, the model is especially
suited to managing the 3 phases as described previously.

1. When loading begins and does not exceed the initial threshold

needed to initiate plasticity, eRc
0 (which will be defined in 2,

below), the mechanical behaviour is purely elastic:
or deviatoric loading as observed in the literature.



Fig. 5. Schematic representation and physical interpretation of the dilatancy coefficient b.
der ¼ C : dee ð2Þ
where C is the fourth-order stiffness tensor, er is the undamaged
stress tensor and ee is the elastic strain tensor.

2. When the initial threshold, eRc
0, is exceeded and before the peak

of the behaviour law, diffuse micro-cracking is initiated. In this
stage, a positive parabolic hardening is used. The parabolic
hardening function is adjusted in such a way that the stress–
strain curve reaches the peak point of the behaviour law
Rc; epeak;c
� �

in the case of a uniaxial compression test. In multi-
axial conditions, the peak depends on the hydrostatic pressure.
This phenomenon is modelled using the Drucker–Prager plastic

criterion, f DP, defined as follows:
Fig
volu
fDP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffierd : erd

2

r
þ d
3
Tr er!� eRc

ffiffiffi
3

p

3
� d
3

!
ð3Þ

where erd is the deviatoric part of the undamaged stress tensorer; Tr er represents its trace and d corresponds to the Drucker–
Prager coefficient. As shown in Eq. (3), in the case of a uniaxial

compression test in the z direction, it leads to f DP ¼ erzz � eRc
� �

.

In this phase, a non-associated Drucker–Prager yield function,
FDP; is used to compute dilatancy:

FDP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffierd : erd

2

r
þ b
3
Tr er ð4Þ
. 6. Evolutions of the axial stress, rzz , with respect to the axial, ezz , radial, exx , and
metric strains, ev , in uniaxial compression test. b 2 0; 0:2; 0:4;0:6f g.

4

where b is the dilatancy coefficient. It was introduced to manage
the increase of volumetric strain in function of the deviatoric
strain. The dilatation is the consequence of the change of inelas-
tic volume due to plastic deviation. Fig. 5 represents the dila-
tancy coefficient in the equivalent Drucker–Prager stress/mean
stress plane as defined in Eq. (4).
The Lagrange multiplier increments, dk, are computed with
respect to classical Kuhn–Tucker conditions and allow the
plastic strain tensor increment, depl;s, to be deduced:

depl;s ¼ dk
@FDP

@er ð5Þ

Fig. 6 presents the evolutions of the axial stress, rzz, with respect
to the axial, ezz, radial, exx, and volumetric, ev , strains for the case
of a uniaxial compression test in the z direction (compression
and contraction are assumed positive here for readability). The
fixed material properties considered for the parametric study
are written in Fig. 6 and they corresponded to those found
for an ordinary concrete in [12]. The uniaxial test was performed
4 times, changing the value of dilatancy coefficient
b 2 0;0:2;0:4;0:6f gð Þ. As shown by this Figure, the increasing
dilatancy coefficient affects the radial strain behaviour (and con-
sequently the volumetric strain variation) only by increasing
expansion.

3. Plasticity was used to limit the undamaged stress tensor, er (see
Fig. 6). If some residual material remains undamaged during the
damage process, this means that its effective strength is greater
than that of the material already damaged. The computed dam-
age associated with the Drucker–Prager criterion is assumed to
be increased by volumetric dilatancy, Trepl;s

� �
. The model

assumes that dilatancy leads to isotropic damage, noted ds, only
if it is greater than a dilatancy threshold, eth;s, which corre-
sponds to the trace of the plastic strain tensor at the peak of

the behaviour law, Trepl;speak

� �
, in the case of a uniaxial compres-

sion test. The shear damage density, ds, is defined as follows:
ds ¼ 0 if Trepl;s 6 eth;s
Tr epl;s�eth;s

Tr epl;s�eth;sþek;s if Trepl;s > eth;s

(
ð6Þ

where ek;s is the characteristic strain used to control the dam-
age evolution versus dilatancy. Obviously the damage ds could
be computed before the peak of the behaviour law too (since
dilatancy is also available in this phase). However, this was
not considered in the present modelling because pre-peak
non linearity was modelled in a simplified way using plastic-
ity. On the other hand, the induced loss of stiffness has been



Fig. 7. Evolutions of the axial stress, rzz , with respect to the axial, ezz , radial, exx , and
volumetric strains, ev , in uniaxial compression test. ek;s 2 2:5;3:0;3:5;4:0f g � 10�3.
found almost negligible before the peak of the behaviour law
in uniaxial compression tests (ds

< 0:15 according to [10,12]).
Fig. 7 presents the evolutions of the axial stress, rzz, with
respect to the axial, ezz, radial, exx, and volumetric, ev , strains,
for a uniaxial compression test in the z direction. The uniaxial
test was performed 4 times (assuming b ¼ 0:45), changing the
value of the characteristic strain

ek;s 2 2:5;3:0;3:5;4:0f g � 10�3
� �

. As shown by Eq. (6), when

ek;s decreases, ds increases and consequently leads to increas-
ingly brittle behaviour, as shown in Fig. 7.

The elasto-plastic damage model described above is able to
compute plastic dilatancy. As explained in Section 2.2, permeabil-
ity increases when dilatancy is initiated. Consequently, permeabil-
ities should be computed with respect to the plastic strain
dilatancy provided by the model. The next section explains how
dilatancy is used to assess anisotropic permeabilities.

2.4. Permeability modelling

Fig. 8 represents a finite element including diffuse cracking per-
pendicular to the z direction. The idealized cracking scheme in
Fig. 8 could be due to compression in the x direction. In fact, com-
pression in the x direction also leads to diffuse cracking perpendic-
ular to the y direction. However, in a first step, we focus on
cracking perpendicular to the z direction.

In order to compute the flow rate in the x direction, the
contributions of the following must be considered:

– each fracture, with permeability kFi ;
– the residual healthy material between cracks, with permeability

k0.

Regarding the fracture permeabilities, for the case of one local-
ized crack initiated by a split test, it has been shown that perme-
ability can be computed according to Poiseuille’s law
(considering laminar flow) [3–6]. In this work, each fracture per-
meability evolution, KF

i , is assumed to be driven by Poiseuille’s
law and is computed using the following formula:

kFi ¼
ðwi

zzÞ
2

12
ð7Þ
5

where wi
zz represents the crack opening of each fracture. Using the

equivalence principle, it is possible to consider only a homogeneous
equivalent material with permeability, keq;sxx , in the x direction (see
Fig. 8).

The total flow in the x direction, Q tot
x , corresponds to the sum of

flow through the cracks, Q F
x , and flow through the healthy part, Q0

x :

Q tot
x ¼ Q0

x þ QF
x ð8Þ

The equivalent permeability, keq;sxx , can be deduced by writing
Darcy’s law and considering the flow rate in the x direction:

keq;sxx ð‘yy‘zzÞ ¼ k0‘yy ‘zz �
Xn
i¼1

wi
zz

 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{healthy part

þ
Xn
i¼1

‘yy
12

wi
zz

� �3zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{cracks contribution

ð9Þ

Without information on the distribution of the cracks and their
apertures, all crack openings are assumed to be equal to wzz and a
homogeneous cracking distribution is assumed (n is the number of
cracks). The mean crack spacing is Dzz ¼ ‘zz=nð Þ and leads to:

keq;sxx ¼ k0
‘zz � n �wzz

‘zz

� 	
þ n
‘zz

� ðwzzÞ3
12

ð10Þ

Assuming that crack widths are smaller than the finite element
size nwzz � ‘zzð Þ, the equivalent permeability, keq;sxx , can be deduced:

keq;sxx ¼ k0 þ ðwzzÞ3
12Dzz

ð11Þ

The following approximation involving plastic dilatancy in the z

direction, epl;szz , is used to compute crack opening:

wzz ¼ Dzz epl;szz � eth;p

 �

þ ð12Þ
here h iþ is the function of the positive part. It is defined such that
jh iþ ¼ maxð0;jÞ and was introduced to consider the strain percola-
tion threshold, eth;p, used to compute permeability as observed in
phases 1 and 2 described in Section 2.2.

Finally, the equivalent permeability, keq;sxx , is deduced using the
following formula:

keq;sxx ¼ k0 þ D2
zz

epl;szz � eth;p
D E3

þ
12

ð13Þ

Eq. (13) is valid in the x direction. However this approximation
is also appropriate in the y direction and leads to:

keq;syy ¼ k0 þ D2
zz

epl;szz � eth;p
D E3

þ
12

ð14Þ

In the z direction, we must consider the equality of flow rates,
which does not modify the flow perpendicular to the cracks. As
mentioned previously, compression in the x direction would lead
to cracking perpendicular to the y direction too. These cracks are
assumed to be separated by an equivalent spacing, Dyy. However,
in initially isotropic materials, the aggregates are usually randomly
distributed and it is possible to consider an isotropic equivalent
crack spacing, D Dyy ¼ Dzz ¼ D

� �
. In this situation, permeability in

the z direction, keq;szz ; is increased and computed according to the
following formula:

keq;szz ¼ k0 þ D2
epl;syy � eth;p
D E3

þ
12

ð15Þ
As a result, the permeability in the x direction becomes:

keq;sxx ¼ k0 þ D2
epl;szz � eth;p
D E3

þ
12

þ D2
epl;syy � eth;p
D E3

þ
12

ð16Þ



Fig. 8. Idealized finite element subjected to parallel diffuse cracking. wi
zz is the crack aperture of each crack in the z direction, Dzz is the equivalent crack spacing, ‘xx; ‘yy and ‘zz

are the finite element sizes in the corresponding directions.

Table 1
Mechanical parameters for the uniaxial compression test simulation. � corresponds to
the parameters estimated to fit the experimental results.

Mechanical parameter Symbol Value Unit

Initial Young’s modulus E0 18000 MPa

Initial Poisson’s ratio m0 0.2
Threshold stress to initiate dilatancy⁄ Rc

0 14 MPa
Compression peak strength Rc 28 MPa
Strain at Rc epeak;c 2:7� 10�3

Characteristic strain⁄ ek;s 3:5� 10�3

Dilatancy coefficient⁄ b 0.45
Drucker–Prager coefficient⁄ d 0.72
Finally, the following general form is used to compute anisotro-
pic permeabilities related to shear damage:

keq;sxx ¼ k0 þ D2 epl;syy �eth;ph i3þ
12 þ epl;szz �eth;ph i3þ

12

� 	
keq;syy ¼ k0 þ D2 epl;sxx �eth;ph i3þ

12 þ epl;szz �eth;ph i3þ
12

� 	
keq;szz ¼ k0 þ D2 epl;sxx �eth;ph i3þ

12 þ epl;syy �eth;ph i3þ
12

� 	

8>>>>>>>><>>>>>>>>:
ð17Þ

The equations defined in system (17) are written in the princi-
pal directions of the plastic strain tensor including dilatancy, epl;s.
Consequently, the directions x; y and z represent the main direc-
tions of irreversible strains (eigenvalues). Once the permeability
components are computed in the principal directions of the plastic
strain tensor, the permeability tensor is then changed in the global
basis. As the permeabilities are computed at the Gauss points, in
the case of non-uniform plastic strains in the element, the perme-
ability components also become a non-uniform field in accordance
with the non-uniform plastic strains.

The next section tests the model, with uniaxial and triaxial
tests. The model results are compared to experimental permeabil-
ity measurements found in the literature.
Fig. 9. Evolutions of the axial stress with respect to the axial, radial and volumetric
strains: comparison with experimental measurements (dashed points) found in
[12].
3. Model validation and capability

3.1. Change of permeability under uniaxial compression test

In order to demonstrate the relevance of the permeability
model (17), a uniaxial compression test was used to predict axial
and radial permeabilities. The uniaxial compression test corre-
sponded to the one presented in [12] on ordinary concrete (hollow
cylindrical specimen with external/internal diameters of
110/14 mm and height of 220 mm).

The mechanical parameters used for this study are given in
Table 1. Three parameters (ek;s; b and d) were fitted according to
experimental mechanical results (the others were provided by
[12]). The influence of each parameter, especially b and ek;s was
highlighted previously in Figs. 6 and 7.

As shown in Table 1, the concrete Young’s modulus seems
rather low. This could be explained by the use of an important
water/cement ratio in [12,13] (w/c = 0.6), leading to reduce
mechanical performances. In addition, the value of 18000 MPa cor-
responded to the one measured on a specimen after drying at
105 �C, while the initial Young’s modulus was 23000 MPa 1 month
after wet cure [13]. The effect of drying on mechanical behaviour
was evidenced in [29]. It led to a decreasing stiffness due to the
development of microcracks.
6

In this modelling, a friction angle / ¼ 31degð Þ is assumed for
normal strength concrete as found in [30], which allows the
Drucker–Prager coefficient, d, to be computed:
d ¼ 2
ffiffiffi
3

p
sinð/Þ

3� sinð/Þ ¼ 0:72 ð18Þ

However, in a uniaxial compression test as simulated here, the
coefficient, d, has no incidence on the mechanical behaviour; only
the dilatancy coefficient, b, is of importance.

Fig. 9 presents the evolutions of the computed axial stress with
respect to the computed axial, radial and volumetric strains for a
uniaxial compression test. Fig. 9 indicates good agreement with
experimental strain measurements thanks to the fact that the



plastic-damage model allows both damage ek;s ¼ 3:5� 10�3
� �

and

dilatancy b ¼ 0:45ð Þ to be fitted.
As explained in [12], gas permeability measurements were con-

ducted while the specimen was loaded and unloaded. In these
tests, the flow measurements were made radially. The change of
radial permeability ratio (damaged material permeability/initial
material permeability) in function of the uniaxial strain ratio
eaxial=epeak;c
� �

is plotted in Fig. 10 as found in [12] (the initial intrin-

sic permeability was ðk0 ¼ 9:10�17 m2Þ [12]). In this simulation, the
value of the threshold parameter, eth;p, was chosen to make the
increasing value of strain ratio compatible with permeability mea-
surements, thus leading to eth;p ¼ 0:13epeak;c

� �
. In order to compute

the equivalent crack spacing from experimental results, the perme-
ability measurements were expressed with respect to plastic dila-
tancy. Fig. 11 represents the evolution of plastic dilatancy with
respect to the uniaxial strain ratio. In this figure, the experimental
data were projected on numerical results (to extract the contribu-
tion of dilatancy) and allowed the computation of the equivalent
Fig. 10. Evolutions of the computed intrinsic axial and radial permeability ratios
under uniaxial compression with respect to the uniaxial strain ratio: comparison
with experimental radial permeability measurements [12].

Fig. 11. Evolution of plastic dilatancy with respect to the uniaxial strain ratio for
concrete: projection of experimental data on numerical results.

7

crack spacing, Di, for each experimental point using the following
formula in Eq. (19) obtained by inversion of Eq. (17):

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

kradiali � k0

epl;si � eth;p
� �3

vuuut with
kradiali � k0 P 0

epl;si � eth;p > 0

(
ð19Þ

Fig. 12 represents the evolution of the computed equivalent
crack spacings, Di, with respect to plastic dilatancy. The values of
Di ranges between [0.9–3.2] mm when the value of plastic dila-
tancy is lower than 0.3%. When plastic dilatancy is greater than
0.3%, Di remains between the interval of [2.0–2.4] mm. As Di was
randomly distributed around the average value of 2.2 mm (see
Fig. 12), this value was assumed in the simulation and it allowed
(as shown in Fig. 10) to obtain a good agreement with the experi-
mental radial permeability measurements [12]. The parameter D
could be considered as a material property, certainly depending
on the proportion and the shape/size of the concrete aggregates.

Obviously, experimental cracks were not uniformly spaced and
the crack openings varied as did the cracking tortuosity, which was
not considered here. The random nature of cracking could be taken
into account for permeability using homogenization theory (see
[31,27,32] for examples).

In fact, the effects of roughness and tortuosity of cracks could be
roughly accounted for by introducing a reduction factor, n, when
computing the crack permeability in Eq. (7), as is usually done
for tensile cracking that has been initiated by a split test [3–6]:

kF ¼ n
w2

12
ð20Þ

For instance, in the case of ordinary concrete (OC), n, was found
to be 0.03 [4]. This assumption would lead the crack spacing to
increase to (D ¼ 12:7 mm), which might be more realistic because
it is closer to the aggregate sizes used in [12] [4–12.5] mm. With
this assumption on n, the crack spacing could be controlled by
the aggregate size, which is physically acceptable in the sense that
cracks propagate avoiding aggregates. However, it is quite impos-
sible to accurately separate the contributions of crack spacing
and tortuosity. Furthermore, it would have no incidence on the
shape of permeability curves. For these reasons, the model was
not modified, and the idealized parallel crack spacing was kept.

Despite these approximations, Fig. 13, which illustrates the

effect of dilatancy on the axial permeability ratio, kaxial=k0
� �

,

indicates reasonable agreement with the experimental axial
ig. 12. Evolution of the equivalent crack spacing for concrete with respect to
lastic dilatancy.
F
p



ig. 14. Evolution of the absolute permeability variation kaxial � k0
� �

with respect
the uniaxial strain ratio: comparison with experimental axial permeability

easurements [10].
permeability measurements found in [10] (cylinders of 110 mm
diameter and 50 mm height), which were conducted on ordinary
concrete (OC), high-performance concrete (HPC) and high-
performance fibre reinforced concrete (HPFRC). The results pre-
sented were obtained with the same set of parameters, without
any additional fitting. However, the predicted axial permeability
ratio seems to be slightly underestimated with regard to measure-
ments. In fact, the experimental points plotted in Fig. 13 have to be
taken cautiously as far as the predicted permeability ratio,

kaxial=k0
� �

, is concerned because the initial permeability used in

the uniaxial test simulation was k0 ¼ 9:10�17 m2
� �

as found in

[12], while it was slightly different in [10] k0 ¼ 5:10�17 m2
� �

;

k0 ¼ 2:10�17 m2
� �

and k0 ¼ 2:10�17 m2
� �

; for OC, HPC and HPFRC,

respectively.
In order to compare the simulation results and measurements

objectively, the predicted absolute axial permeability variation,

kaxial � k0
� �

, is plotted in Fig. 14 and compared to the absolute

experimental permeability variation as found in [10]. In this case,
a better correspondence with measured values is obtained, espe-

cially for ordinary concrete (OC). The variation kaxial � k0
� �

repre-

sents the contribution of cracking only (independently of k0) to
axial permeability.

The mean value of 2.2 mm for D was computed using the per-
meability measurements obtained on an ordinary concrete with a
Young’s modulus of 18000 MPa and a compressive peak strength
of 28 MPa (w/c = 0.6) [12,13]. With the value of 2.2 mm, it was also
possible to predict the permeability variations measured on
another ordinary concrete with a Young’s modulus of 42000 MPa
and a compressive peak strength of 65 MPa (w/c = 0.49) [10]. The
average distribution of aggregates seems to be the main factor that
affects crack spacing in concrete. Perhaps some homogenization
method considering the aggregate sizes could explain this
phenomenon.

In this study, D was not recalibrated for all types of concrete,
because it would require the recalibration of the mechanical
parameters too, and the necessary informations were not provided
in [10]. However, we can see in Fig. 14 that permeability variations
were smaller in the case of a high-performance fibre reinforced
concrete (HPFRC). This could be explained by the effect of fibres
that diffuse the cracking, thus, leading to a greatest number of
Fig. 13. Evolutions of the computed intrinsic axial and radial permeability ratios
under uniaxial compression with respect to the uniaxial strain ratio: comparison
with experimental axial permeability measurements [10].
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smaller cracks and, as a consequence, a reduction of the
permeability.

Finally, the proposed application gives an understanding of how
anisotropy is initiated for permeability in a uniaxial compression
test.

Dilatancy was able to explain the anisotropy for permeability
components in a uniaxial compression test. The model could be
used to predict permeability and its anisotropy for other types of
loading able to create expansion. The next section tests the model
for the case of triaxial loading.
3.2. Change of permeability under triaxial loading

This section investigates the damage and permeability interac-
tions in the case of triaxial tests. The simulation results highlight
the main mechanisms taken into account by mechanical and per-
meability models. The tests were carried out on two different geo-
materials, the first triaxial test simulation was performed on
mortar and corresponded to the one carried out in [9], the second
was performed on granite and corresponded to the one carried out
in [32].
3.2.1. Mortar triaxial test simulation
As explained previously, a non-associated Ducker–Prager crite-

rion is used to manage dilatancy and allows the effect of confine-
ment to be considered. Since permeability increases with respect
to damage and crack openings, if the peak strength increases with
confinement, the permeability should be affected by confinement
too. This phenomenon has been observed for granite [14,32] sub-
jected to triaxial loading, it leads to decreasing permeability (at
the same axial deformation state or deviatoric stress) when con-
finement increases.

In the following, a triaxial test is simulated. It takes an initial
hydrostatic pressure and then increases axial stress while radial
stresses remain constant and equal to the imposed hydrostatic
pressure (see Fig. 15).

In this section, the triaxial test performed on mortar is
described. As explained in [9], axial gas permeability measure-
ments were performed on mortar specimens under triaxial load.
The mortar mechanical parameters (which are not provided in
[9]) are noted in Table 2. The Young’s modulus, E0, and Poisson’s
ratio, m0, were deduced from the slope of deviatoric stress/axial
strain curves (in the elastic phase).



Fig. 15. Principle of triaxial test.

Table 2
Mechanical parameters for simulation of triaxial test on mortar.

Mechanical parameter Symbol Value Unit

Initial Young’s modulus E0 32000 MPa

Initial Poisson’s ratio m0 0.15
Compression peak strength Rc 84.4 MPa
Strain at Rc epeak;c 5:5� 10�3

Characteristic strain ek;s 3:5� 10�3

Dilatancy coefficient b 0.45
Drucker–Prager coefficient d 1.16

Fig. 16. Evolutions of mortar deviatoric stress with respect to axial and radial
strains for different confining pressures (5 and 10 MPa). Comparison with
measurements [9].

Table 3
Hydraulic parameters for simulation of mortar triaxial test.

Hydraulic parameter Symbol Value Unit

Intrinsic permeability (r0 = 5 MPa) k0 2.6 � 10�17 m2

Intrinsic permeability (r0 = 10 MPa) k0 1.5 � 10�16 m2

Strain percolation threshold eth;p 0.13epeak;c

Equivalent crack spacing D 0.14 mm
When the confining pressure was 5 MPa, the experimental
deviatoric peak strength was 114.5 MPa, but, when the confining
pressure was 10 MPa, the experimental deviatoric peak strength
was 144.6 MPa [9]. According to the Drucker–Prager criterion, this
leads to Rc ¼ 84:4 MPa and allows the friction angle to be deduced:
/ ¼ 48:65deg, giving d ¼ 1:16. Here, Rc might seem excessively
high, especially for mortar. This could be the consequence of:

1. the small size of the samples (cylinders of 37 mm diameter and
70 mm height), since the probability of defects decreases when
specimen size decreases, and consequently peak strength
increases [33],

2. the compression peak strength, Rc , which was computed
according to the peak strengths obtained under two different
confining pressures (5 and 10 MPa), as found in [9]. This is
not enough to predict accurately Rc , therefore, a third confining
pressure would probably provide more informations,

3. the friction between the mechanical device and the mortar
sample, which was not considered in the modelling. This phe-
nomenon may increase the apparent strength.

However even the Young’s modulus was found to be high for a
mortar (see Table 2). This suggests the third assumption to be more
relevant.

Here epeak;c was chosen to fit the axial experimental results (pos-
itive parabolic hardening behaviour) and b was chosen to make
dilatancy compatible with the radial measurements (expansion);
it led to the same as found before for concrete b ¼ 0:45ð Þ. Since b
was found to be equal for both concrete and mortar, the value of
ek;s, which controls the evolution of damage with respect to
dilatancy was kept unchanged.
9

Fig. 16 presents the evolutions of deviatoric stress with respect
to axial and radial strains, obtained under different confining
pressures, r0 (5 and 10 MPa). This figure highlights the same phe-
nomena as those usually observed for concrete under the same
loading condition [30]. The mechanical model thus showed reason-
able agreement with experimental data [9].

Table 3 introduces the hydraulic parameters considered for this
study. This table indicates that the initial intrinsic permeabilities
were not the same for the two specimens tested as mentioned in
[9]. For this reason, the predicted axial permeabilities are com-
pared to measurements in terms of absolute variation

kaxial � k0
� �

in Fig. 17.



Fig. 17. Evolutions of mortar absolute axial permeability kaxial � k0
� �

with respect
to radial strain (expansion) for different confining pressures (5 and 10 MPa).
Comparison with measurements [9].

Fig. 19. Evolution of the equivalent crack spacing for mortar with respect to plastic
dilatancy.
Fig. 17 presents the experimental evolutions of the absolute
permeability variations as found in [9], with respect to radial
strain (expansion). These variations represent the contribution of
cracking to axial permeability. As shown in Fig. 17, there was a
very close accordance between both experimental results regard-
less of the confining pressure (5 and 10 MPa). Initial permeabilities
were quite different (see Table 3), thus, permeability variations

have to be modelled independently of k0 as proposed in system
(17) and contrary to what has been done previously
[10,19,12,16,14,28]. Therefore, if the change of dilatancy with
regard to the confining pressure was correctly considered by the
mechanical model, then a permeability model based on plastic
dilatancy can be used to predict the permeability variations what-
ever the loading condition and, thus, it justifies the equations pro-
posed in system (17).

In the same way as described for concrete, the equivalent crack
spacing was computed for each experimental point. To do so, the
experimental permeability measurements initially expressed with
respect to the total expansion were projected on plastic dilatancy
predicted by modelling in Fig. 18 and allowed the computation
of the equivalent crack spacing for each experimental point.

Fig. 19 represents the evolution of the computed equivalent
crack spacings with respect to plastic dilatancy. In this figure, D
Fig. 18. Evolution of plastic dilatancy with respect to the total expansion for
mortar: projection of experimental data on numerical results.
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decreases significantly when plastic dilatancy was lower than
0.3%. When dilatancy was greater than 0.3%, a asymptotic value
of 0.14 mm was reached.

The stage where D decreases can be attributed to the increasing
number of cracks, n, for a small loading rate. After this stage, the
number of cracks does not increase any more. In this situation,
the increase of permeability can be attributed to the increase of
crack openings only (considering D constant).

Fig. 17 represents the evolution of the permeability variations
with respect to the total expansion considering the asymptotic
value of 0.14 mm for D. This led to a permeability being slightly
underestimated when radial strain was lower 0.3%. However, it
could be possible to improve these results by considering D as a
function of dilatancy as shown in Fig. 20.

We recall that the effects of crack tortuosity were not consid-
ered but could be roughly taken into account by introducing a
reduction factor, n, when computing the crack permeability (20).
For instance, for ordinary mortar (OM), n, was found to be equal
0.229 [5]. This assumption would increase the asymptotic crack
spacing to (D ¼ 0:3 mm), which might be more realistic because
it is closer to the size of grains of sand. For instance, the size of fine
sand and coarse sand used in [9] were [0.16–2] and [0.8–3.15] mm,
respectively.
Fig. 20. Evolution of the absolute permeability variation for mortar with respect to
the total expansion: D was assumed function of dilatancy.



Table 4
Mechanical parameters for simulation of triaxial test on granite.

Mechanical parameter Symbol Value Unit

Initial Young’s modulus E0 46000 MPa

Initial Poisson’s ratio m0 0.15
Compression peak strength Rc 230.4 MPa
Strain at Rc epeak;c 9:10�3

Characteristic strain ek;s 3:5� 10�3

Dilatancy coefficient b 0.45
Drucker–Prager coefficient d 1.15

Table 5
Hydraulic parameters for simulation of triaxial test on granite.

Hydraulic parameter Symbol Value Unit

Intrinsic permeability (r0 = 8 MPa) k0 4.6 � 10�19 m2

Intrinsic permeability (r0 = 10 MPa) k0 7.1 � 10�20 m2

Strain percolation threshold eth;p 0.13epeak;c

Equivalent crack spacing D 0.145 mm
3.2.2. Granite triaxial test simulation
This section reports a triaxial test performed on granite. In a

manner comparable to the one described in [9], axial gas
permeability measurements were performed on Beishan granite
(a rock located in China and extracted at 500 m depth, intended
for a nuclear waste repository). Cylindrical specimens 50 mm in
diameter and 100 mm height were subjected to triaxial load [32].

The granite mechanical parameters considered for this study
are noted in Table 4.

When the confining pressure was 8 MPa, the experimental devi-
atoric peak strength was 277.6 MPa, but, when the confining pres-
sure was 10 MPa, the experimental deviatoric peak strength was
289.4 MPa [32]. According to the Drucker–Prager criterion, this
led to Rc ¼ 230:4 MPa and allowed to the friction angle to be
deduced: / ¼ 48:32deg, and so d ¼ 1:15. As, for this simulation,
epeak;c was chosen to fit the axial experimental results (positive
parabolic hardening behaviour) and b was chosen to make dila-
tancy compatible with radial measurements (expansion), the same
values as before were found for concrete and mortar: b ¼ 0:45.
Since b was found to be equal for concrete, mortar and granite,
the value of ek;s, controlling the evolution of damage with regard
to dilatancy was kept unchanged.

Fig. 21 presents the evolutions of deviatoric stress with respect
to axial and radial strains obtained under different confining pres-
sures, r0, (8 and 10 MPa). The mechanical model was then able to
give moderately good agreement with experimental data [32]. The
results were not as relevant as those obtained for concrete and
mortar in Figs. 9 and 16, as the granite samples were taken at
500 m depth, where the stress field was close to 9, 13 and
13.5 MPa, in the minor horizontal, rh, major horizontal, rH , and
vertical, rv , directions, respectively [32]. Consequently, the decon-
Fig. 21. Evolutions of granite deviatoric stress with respect to axial and radial
strains for different confining pressures (8 and 10 MPa). Comparison with
measurements [9].
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finement process during extraction of specimens may have led to
increased initial microcracking and thus to more pronounced stiff-
ness restitution in the axial stress–strain curve, as shown in Fig. 21,
corresponding to phase 1 described previously in Section 2.2. On
the other hand, the radial strains predicted in Fig. 21, which were
not affected by reclosure of microcracks, provided better agree-
ment with measurements. In this case, radial strains were of
greater importance because permeability measurements were
made in the axial direction.

Table 5 introduces the hydraulic parameters considered for this
study. This table indicates that the initial intrinsic permeabilities
were not the same for both specimens tested in [32]. For this rea-
son, the predicted axial permeabilities are compared to measure-

ments in terms of absolute variation kaxial � k0
� �

in Fig. 22, as

adopted for the mortar triaxial test, to extract the contribution of
cracking independently of initial permeability.

Fig. 22 presents the experimental evolutions of the absolute
permeability variations as found in [32], with respect to deviatoric
stress. This figure indicates:

1. An increasing percolation threshold (with respect to deviatoric
stress) for permeability (when r0 increases). In a previous study
on granite using an empirical damage permeability relation-
ship, this phenomenon was taken into account by increasing
the threshold damage parameter when r0 increased, in order
to delay the initiation of permeability variation [14]. The pro-
posed model takes this phenomenon into account implicitly,
through the Drucker–Prager criterion (3), which delays the ini-
tiation of plastic dilatancy when r0 increases.

2. The decreasing permeability with respect to confinement also
observed in experimental results [14,32] (for the same devia-
toric stress) is again taken into account through the Drucker–
Prager criterion.
Fig. 22. Evolutions of granite absolute axial permeability kaxial � k0
� �

with respect
to deviatoric stress for different confining pressures (8 and 10 MPa). Comparison
with measurements [9].



Table 6
Summary of the main parameters affecting mechanical and hydraulic responses

Rc (MPa) d b Size of inclusions (mm) D (mm)

Concrete 28.0 0.72 0.45 [4–12.5] 2.200
Mortar 84.4 1.16 0.45 [0.16–3.15] 0.140
Granite 230.4 1.15 0.45 [0.5–2.0] 0.145
It is worth noting that confinement affected permeability vari-
ations for granite because the results were represented in function
of the deviatoric stress in Fig. 22. If the results were plotted in
function of the expansion as in the previous study for mortar, the
differences would disappear.

In order to fit the experimental permeability results in Fig. 22,
an equivalent crack spacing (D ¼ 0:145 mm) was found. As indi-
cated in [32], granite is mainly made of 52% plagioclase (Pl), 17%
quartz (Qtz), 15% K-feldspar (Kfs), 12% biotite (Bt), 3% albite (Ab)
and 1% myrmekite (My) [14], where the size of minerals commonly
ranges between 0.5 and 2 mm [32].

As mortar and granite have almost the same mineralogical
heterogeneity, their permeability variations were found to be rea-
sonably estimated considering a crack spacing of 0.140 mm and
0.145 mm, respectively.

Finally, the assumption that crack spacing increases with the
size of ‘‘inclusions” was justified, as evidenced in Table 6.

4. Conclusions

This work has been devoted to the damage and permeability
interactions induced by plasticity in the case of damage leading
to diffuse cracking.

In a first step, the literature review highlighted the necessity to
consider plasticity, especially, dilatancy when modelling perme-
ability variations under compression or deviatoric loading.

The proposed development was then embedded in an elasto-
plastic damage model allowing irreversible strains and dilatancy to
be computed thanks to a non-associated Drucker–Prager criterion.

In a uniaxial compression test simulation, the permeability
model was able to predict realistic results, as observed in the liter-
ature, especially for the anisotropy ratio of axial and radial perme-
abilities. More particularly, the axial permeability was found to be
higher than the radial ones, as a consequence of expansion (dila-
tancy) leading to a diffuse crack pattern preferentially oriented
parallel to the loading direction.

In triaxial test simulations, the permeability model was able to
predict realistic results for both mortar and granite materials.

For mortar, the absolute permeability variations were found to
be almost independent of the confining pressure, r0, when these
variations were plotted versus radial strain. This justified the com-
puting of permeability in function of dilatancy, according to Poi-
seuille’s law in system (17).

For granite, the decreasing permeability with respect to confin-
ing pressure, r0, was found as observed experimentally.

Finally, a correlation between the size of ‘‘inclusions” in geoma-
terials and crack spacing can be proposed as an explanation for D. It
led to a decreasing crack spacing when the size of the ‘‘inclusions”
decreases and this was in agreement with the size of concrete
aggregates, grains of sand and granite minerals. However further
investigation are required (experimental plan and/or homogeniza-
tion method) in order find an appropriate relation that may predict
an estimation of crack spacing according to the average distribu-
tion of ‘‘inclusions”.
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