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H I G H L I G H T S

• Anaerobic digestion is a microbial waste

treatment producing energy.

• Microbial activity during digestion

causes deterioration of concrete di-

gesters.

• The biodeterioration of cement paste in

anaerobic digestion bioreactors is eval-

uated.

• Cement paste biodeterioration com-

bines calcium leaching and carbonation

in bioreactors.

• Microorganisms should be considered

as aggressive for concrete in European

standards.

G R A P H I C A L A B S T R A C T

a b s t r a c t

Digesters produce biogas from organic wastes through anaerobic digestion processes. These digesters, often

made of concrete, suffer severe premature deterioration causedmainly by the presence of fermentativemicroor-

ganisms producing metabolites that are aggressive towards cementitious materials.

To clarify the degradation mechanisms in an anaerobic digestion medium, ordinary Portland cement paste spec-

imens were immersed in the liquid fraction of a running, lab-scale digester for 4 weeks. The anaerobic digestion

mediumwas amixture of a biowaste substrate and sludge frommunicipal wastewater treatment plant used as a

source of anaerobic bacteria.

The chemical characteristics of the anaerobic digestion liquid phasewere monitored over time using a pHmetre,

highperformance liquid chromatography (HPLC) and ion chromatography (HPIC). An initial critical period of low

pH in the bioreactors was observed before the pH stabilized around 8. Acetic, propionic and butyric acids were

produced during the digestion with amaximum total organic acid concentration of 50mmol L−1. The maximum

ammonium content of the liquid phase was 40 mmol L−1, which was about seven times the upper limit of the

highly aggressive chemical environment class (XA3) as defined by the European standard for the specification

of concrete design in chemically aggressive environments (EN 206).

The changes in the mineralogical, microstructural and chemical characteristics of the cement pastes exposed to

the solid and liquid phase of the digesters were analysed at the end of the immersion period by X-ray diffraction

(XRD), scanning electronmicroscopy (SEM) coupled with energy dispersive X-ray spectrometry (EDS) and elec-

tron-probe micro-analysis (EPMA). A 700-μm thick altered layer was identified in the cement paste specimens.
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The main biodeterioration patterns in the bioreactors' solid/liquid phase were calcium leaching and carbonation

of the cement matrix.

1. Introduction

Microbial production of sustainable energy, such as biogas, is possi-

ble through the natural biodegradation of organic matter in anaerobic

conditions, also called anaerobic digestion (Frank and Smith, 1988).

The anaerobic digestion process consists of four consecutive degrada-

tion reactions called hydrolysis, acidogenesis, acetogenesis, and

methanogenesis. The methanogenesis step is responsible for the pro-

duction of biogas, mainly composed of 65%methane (CH4) and 35% car-

bon dioxide (CO2), and of co-products such as digestate, which is used

as agricultural fertilizer (Evans and Furlong, 2003).

Biogas is a cheap and locally available renewable energy resource.

Therefore, the industrial development of the anaerobic digestion pro-

cess has become worldwide, permitting the valorization of many

sources of organic wastes.

In a biogas plant, biogas production is carried out in anaerobic di-

gesters for the conversion of large volumes of organic wastes (Fig. 1).

The converted biogas is used either directly for heating the digester or

for local distribution, e.g. gas and electricity in a nearby city.

The constructionmaterial commonly used for the digester structures

is concrete. Concrete is economically competitive and shows high per-

formance in terms of water- and air-tightness, and thermal inertia.

Structural concrete in digesters is exposed to digesting organic

waste, the solid/liquid phase (in the submerged part of the structure),

and to the resulting biogas, the gas phase (mainly in the emerged

part) (Fig. 1). Many chemical and biological agents in the gas and in

the solid/liquid phases of the digester may lead to irreversible damage

on cementitious materials, which consequently threaten the durability

of the concrete structures. The main consequences of the deteriorations

of structural concrete arefinancial and environmental. On the one hand,

the income from biogas production is reduced because of (i) the

lowered production yield caused by the biogas leakage and (ii) the

structural repairs, which require production to be stopped. On the

other hand, the leakage of polluting effluents into the nearby environ-

ment becomes possible through sealing defects.

One recent study reports observations of deterioration patterns

of concrete that are probably due to the microbial deterioration pro-

cesses in a biogas digester fed with silage as the biowaste (Koenig

and Dehn, 2016). The authors conclude that concrete deteriorations

were caused by biogenic sulfuric acid attack in the gas phase and ero-

sion of the concrete skin, slight leaching and carbonation in the solid-

liquid fermenting waste. The altered layer of concrete samples in the

solid-/liquid phase after one year and a half of exposure was around

1 mm thick, independently of the concrete mixes used for the sam-

ples, which were designed according to European standard EN 206

(Koenig and Dehn, 2016).

However, the solid/liquid phase in a biogas digester contains several

aggressive agents: (i) amix of volatile fatty acids (VFA) (Breure and Van

Andel, 1984; Lata et al., 2002, Koenig and Dehn, 2016), and ammonium

(Karakashev et al., 2005; Yenigün and Demirel, 2013), which can be re-

sponsible for concrete leaching (Bertron et al., 2005; Escadeillas, 2013),

and (ii) CO2 (Cohen et al., 1979) which can lead to concrete carbonation

(Magniont et al., 2011) (Fig. 2). These chemical compounds are pro-

duced in large quantities by cooperating microbial communities in-

volved in the anaerobic digestion process (Fernández et al., 2008).

They are able to structure their biofilms “intelligently”, i.e. to self-orga-

nize into biofilms that optimize the exchange of substances (metabo-

lites, ions, etc.) and to create an environment in which local

physicochemical conditions are favourable to microbial cooperation.

The biofilm organization contributes to a more efficient degradation of

organic substrates and to a higher biogas yield (Ahring, 2003; Langer

et al., 2014). But biofilm formation on cement paste intensifies the dete-

rioration kinetics and phenomena (Magniont et al., 2011) (Fig. 2).

Table 1 illustrates the diversity of maximal concentrations of volatile

fatty acids during anaerobic digestion of various substrates as reported

in the literature. The concentrations of organic acid during anaerobic di-

gestion vary considerably according to the substrates fermented (Table

1).

The ammonium concentration in anaerobic digesters can reach

55 mmol L−1 (1000 mg L−1) (McCarty, 1964). McCarty highlighted

that the concentrations of ammonium should not exceed 1500 mg L−1

otherwise the anaerobic digestion is inhibited. However, other authors

have measured concentrations of a few grams per litre (Karakashev et

al., 2005; Yenigün and Demirel, 2013).

Finally, dissolved CO2, mainly in the form of bicarbonate, is present

in the fermented biowaste and is monitored to control operating indus-

trial digesters (Cohen et al., 1979; Jenkins et al., 1991). Considering all

the studies on concrete aggressive agents in anaerobic digestion, the an-

aerobic digestion liquid phase appears to lead to highly variable envi-

ronments that are harmful for cementitious materials.

Environments aggressive towards concrete are classified in the Eu-

ropean standard EN 206. Chemically aggressive aqueousmedia are clas-

sified in three classes of increasing aggressiveness: XA1, XA2 and XA3,

according to the aggressive agents identified in themedia and their con-

centrations. As far as biowastes are concerned, the standards notably

consider the following criteria in the classification of chemically aggres-

sive media: the pH, the aggressive carbon dioxide concentration (ag-

gressive CO2) and the ammonium ion concentration (NH4
+).

The present study aimed to (i) identify the chemical composition of

the liquid fraction of the waste according to time during the anaerobic

digestion process (in terms of pH, and concentrations of volatile fatty

acids and ammonium), (ii) evaluate the capability of the microorgan-

isms in the biowaste to colonize the cementitious material in the form

of a biofilm, and (iii) characterize the mechanisms of biodeterioration

of cementitious materials in contact with the solid/liquid phase of an

anaerobic digester. Ordinary Portland cement paste samples were im-

mersed in biowaste in anaerobic batch conditions for 4 weeks, which

is the time required to achieve complete digestion of a biowaste. The

concentrations of organic acids and ammonium, and the pH in the liquid

phaseweremonitored over timeduring the experiment. The concentra-

tion of CO2 in the liquid phase was measured occasionally. The biofilm

on the specimen surface was observed by Field Emission Gun Scanning

ElectronMicroscope (FEGSEM). The chemical, mineralogical andmicro-

structural changes of the cement pastes after immersion in the solid/liq-

uid phase were explored by Scanning Electron Microscopy (SEM)

coupled with Energy Dispersive Spectrometry (EDS), X-ray Diffraction

(XRD) and Electron Probe Micro-Analysis (EPMA).Fig. 1. Anaerobic digester scheme.



2. Materials and methods

2.1. Cementitious materials

Samples of ordinary cement pastes (CEM I 52.5 R CE CP2 NF; Lafarge,

factory of Le Teil, France) weremade with a water/cement ratio of 0.40.

Cylindrical moulds (height 75 mm, diameter 25 mm) were used to cast

the specimens. After the pastes had been removed from their moulds

(24 h after pouring), the curing period of the specimens was 28 days

in water at 20 °C.

2.2. Preparation of synthetic biowaste

The composition of a synthetic biowaste representative of the pro-

portions of organic domestic waste was provided by IRSTEA of Antony

(France). The composition is given in Table 2.

The biowaste was homogenized by blending for 10 min at 20 °C. It

was then inoculated in order to initiate the anaerobic digestion process

(Neves et al., 2004). Here, the inoculum was a sludge sampled from a

municipal wastewater treatment plant in Toulouse (France). The organ-

ic loads, expressed as chemical oxygen demands (COD), were 50 g L−1

for the substrate (biowaste) and 20 g L−1 for the inoculum (sludge).

Proper establishment of the anaerobic digestion process depends on

the inoculum/substrate (biowaste) quantity ratio (Elbeshbishy et al.,

2012). The inoculation was operated with an optimal ratio of 1 g

COD(inoculum)/g COD(biowaste) as already reported in a previous

work (Voegel et al., 2015). Therefore, biowaste was diluted in inoculum

to reach this ratio. The immersionwas operated in anaerobic bioreactors

(usable volume: 500 mL) at 37 °C (Lettinga, 1995; Khanal, 2008) in a

thermostatically controlled incubator during the complete biowaste di-

gestion (Fig. 3).

2.3. Immersion of cement pastes in the digesting organic waste

The tests of cement paste specimen immersion were performed in

triplicate, conducted in three replicate anaerobic bioreactors containing

the inoculated biowaste, for 4 weeks at 37 °C (Fig. 3). Directly after the

inoculation of the biowaste, the cement paste specimens were

immersed in the bioreactors. The solid/liquid ratio (cement paste sur-

face area/inoculated biowaste volume) used for each bioreactor was ap-

proximately 224 cm2 L−1 (industrial scale digesters provide a lower

ratio, of about 4 cm2 L−1). Three reference bioreactors were also run

in digestionwithout cement paste specimens. The pH in the bioreactors

was monitored by a pH data acquisition system (WTW, Multi 3430)

throughout digestion (Voegel et al., 2015).

2.4. Analysis of organic acids, ammonium and dissolved carbon dioxide in

the liquid phase of the digesting biowaste

The analysis of the liquid phase required regular samplings of 1.5mL

of biowaste in digestion from the bioreactors, using sterile needles and

syringes. The nature and concentrations of the organic acidswere deter-

mined in the liquid phase of the biowaste samples by High Performance

Liquid Chromatography analysis (Thermo Fisher U3000; column:

Aminex HPX-87H BIORAD; eluant: H2SO4; flow rate: 0.6 mL min−1)

(Voegel et al., 2015). The concentrations of ammonium in the liquid

phase of the fermented biowaste samples were analysed by Ionic Chro-

matography (Thermo Electron ICS 3000, column: CS16; pre-column;

cartridge holder; eluant: 30 mM methanesulfonic acid, flow rate:

1.0 mL min−1). Moreover, some occasional analyses of total inorganic

carbon were performed with an analyser of total carbon and total inor-

ganic carbon (TOC-SHIMADZU Combustion) in order to determine the

soluble CO2 produced by the microbial activity.

2.5. Observation of microbial biofilms on cementitious materials

The surface of the cement paste specimens was observed with a

scanning electron microscope at the end of the 4 weeks of immersion

to observe any biofilm that had developed. Cement paste specimens

were first sawn carefully to avoid any damage to the surface. The ce-

ment pastes were then treated for biofilm fixation and dehydration

(Voegel et al., 2015). Firstly, the biofilms were fixed on the samples

for 20 min in aldehyde fixator solution made of glutaraldehyde (4%),

phosphate buffer (pH 7.4, 0.4M) and distilledwater. Secondly, the spec-

imens were cleaned twice for 15 min in a solution made of phosphate

buffer (pH 7.4, 0.4 M), sucrose solution (0.4 M) and distilled water.

Fig. 2. Scheme of the bio induced deterioration of concrete in the solid/liquid phase of an anaerobic digester.

Table 1

Maximumvolatile fatty acid concentrations inmmol L−1 (mg L−1) during anaerobic digestion of several substrates (nm: notmentioned) (Breure and Van Andel, 1984; Cohen et al., 1979;

Hill and Holmberg, 1988; Lata et al., 2002; Wang et al., 2009).

Authors (year of publication) Substrate Acetic acid Propionic acid Butyric acid

Cohen et al. (1979) 1% Glucose 17.55 (1054) 95 (1.28) 5673 (64.39)

Breure and Van Andel (1984) Gelatin 4.54 (20,743) 4.83 (358) 1.12 (99)

Hill and Holmberg (1988) Manure 16.49 (990) 26.38 (1954) 5.86 (516)

Lata et al. (2002) Vegetables 66.61 (4000) 20.25 (1500) 39.72 (3500)

Tea 66.61 (4000) 6.75 (500) nm

Wang et al. (2009) Mix ethanol + acetic/propionic/butyric acids 68.69 (4125) 38.55 (2856) 39.22 (3456)

26.64 (1600) 4.05 (300) 20.43 (1800)



Finally, the samples were progressively dehydrated by successive im-

mersion in solutions made of acetone and water and then

hexamethyldisilazane (HMDS) until total evaporation. The specimens

were coated with a thin layer of gold before SEM observations (Field

Emission Gun, JEOL 7100F TTLS).

2.6. Analysis of chemical and mineralogical changes in cementitious

materials

The cylindrical cement paste specimenswere sliced perpendicularly

to their longitudinal axis with a thin diamond saw. The slices of cement

paste, which were a fewmillimetres thick, were embedded in an epoxy

resin (Mecaprex MA2 by Presi) and dry-polished using silicon carbide

polishing disks (Presi) according to the procedure described in

Bertron et al. (2009). After carbon coating of the polished sections,

chemical analyses were performed with an Electron Microprobe

(Cameca SXFive, 15 kV, 20 nA, scanning area of the beam: 2 × 2 μm2)

on one hundred points on the flat, polished sections, from the surface

in contact with the liquid phase of biowaste in digestion to the centre

of the specimen. The points analysed were carefully chosen to measure

only the hydrated paste and avoid residual anhydrous grains. The fol-

lowing elements were analysed: Ca, Si, Al, Fe, S, P and Ti for each

point. The counting time was 10 s on peak and 5 s on the background

on each side for all elements but titanium. For titanium (minor element

used for the correctionmethod) the counting timewas 30 s on peak and

10 s on the background on each side (Bertron et al. 2009). Calibration

was performed on natural and synthetic standard materials before

each series of analyses. Elemental mass percentages were expressed

as mass percentages of the associated oxides. For cementitious mate-

rials, the sum of oxides is normally around 75% (Bertron et al. 2009).

The complement to 100 covers non-analysed elements, such as H, C,

and elements in small quantities that were not included in the analysis

program. It should be noted that most of the complement to 100 could

be attributed to boundwater in hydrated calcium silicate hydrates (C-S-

H), portlandite (CH), ettringite (AFt), etc. In the case of chemical attack,

such as leaching, the loss of less stable and more mobile elements (Ca,

Na and K for example) leads to an increase in the proportion of more

stable elements (Si, Al, Fe, etc.) since microprobe analysis gives the rel-

ative contents of the elements in the probed volume. To obtain the ab-

solute evolution of the element concentrations, the microprobe data

was processed according to a method detailed by Bertron et al.

(2009). The TiO2 content was used to calculate correction factors since

it has been shown that titanium present in the form of rutile titanium

oxide is very stable over the pH interval between 3 and 9.5 (Knauss et

al., 2001).

The changes in mineralogical composition in the depth of the speci-

mens were characterized by X-Ray Diffraction (Siemens D5000, Co

cathode, 40 kV, 30 nA). The preparation of the specimens is described

in Bertron et al. (2005). The plane sides of the cylinders were analysed.

The plane face of the specimen directly exposed to the biowaste in di-

gestion was first analysed. Then it was abraded and submitted to the

next analysis. A control specimen was also analysed at the end of the

curing period (four weeks).

3. Results

3.1. Production of organic acids, ammonium, dissolved carbon dioxide (car-

bonates) and evolution of the pH during the anaerobic digestion of

biowastes

Fig. 4 gives the evolution of the pH and the mean values of organic

acid concentrations in the liquid fraction contained in the bioreactors

with or without the cement paste specimens (Fig. 4). In Fig. 4 (a), the

first days of decreasing pH from 6 to 4 corresponded to a significant

Table 2

Composition of the biowaste in percentages bymass of organic substitution fractions from

organic domestic waste in (IRSTEA of Antony, France).

Organic substitution fractions Composition by mass (%)

Potatoes 8.1

Tomatoes 3.4

Minced meat 8.1

Milk powder 0.7

Crackers 4.1

Water 75.6

Fig. 3. Schematic representation of the anaerobic bioreactors placed on a magnetic plate

for mixing purposes and kept in an oven regulated at 37 °C.

Fig. 4. Evolution of the pH and the concentrations of organic acids during anaerobic

digestion of biowaste in presence (a) and in absence (b) of cement paste specimens.



production of acetic, propionic and butyric acids, which are typical vol-

atile fatty acids metabolized by microorganisms in anaerobic digestion

(Jeris and McCarty, 1965). The total maximum concentration of organic

acids reached about 50 mmol L−1 on day 9. After this first acidification

stage, the pH slowly rose to 7–8 and reached the pH conditions of

methanogenesis. After 9 days of digestion, the concentrations of acids

decreased, except for propionate, which started depleting after

15 days. The complete digestion of the substrate wasmarked by the en-

tire consumption of all the volatile fatty acids at the end of the experi-

ment. The bioreactors without cement paste samples followed the

same evolution as the bioreactors with the samples but with slightly

lower organic acid concentrations.

Fig. 5 shows the evolution of the ammonium concentration in the

fermented biowaste in presence and in absence of cement paste sam-

ples in the bioreactors. The ammonium production increased quickly

from 1 mmol L−1 (10 mg L−1) to nearly 20 mmol L−1 (500 mg L−1)

in two weeks with and without the cement paste samples in the biore-

actors. After four weeks of digestion, the ammonium content reached

nearly 40 mmol L−1 (800 mg L−1). According to Eq. (1), ammonium

should be mainly in the form of ammonium ion in the pH conditions

(7.0–8.0), which were significantly lower than the pKa of the acid and

conjugate base NH4
+/NH3, of 9.25.

NH4
þ þH2O→NH3 þH3O

þ
: pKa ¼ 9:25 ð1Þ

The ranges of ammonium concentration of the exposure classes

(markedXA1, XA2 andXA3) for chemical attacks on concrete as defined

by the European standard (EN 206) are reported in Fig. 5. The ranges are

0.83–1.66 mmol L−1 (15–30 mg L−1) for XA1, 1.66–3.33 mmol L−1

(30–60 mg L−1) for XA2 and 3.33–5.55 mmol L−1 (60–100 mg L−1)

for XA3.

The concentrations of dissolved CO2 were measured through analy-

sis of total inorganic carbon content in the fermenting medium at

3 weeks of experiment. At this time, the pH of the biowaste was 7.7.

The mean value of total inorganic carbon in the medium was 146 ±

46 mg L−1 (5 samplings). In the pH condition, the major form of dis-

solved CO2 was bicarbonate ion HCO3
– (95% by mass), according to the

predominance curve of dissolved carbonates (Eqs. (2) and (3)). Calcula-

tions gave themean amount of HCO3
– as 2.3 mmol L−1±0.2mg L−1 (or

139 ± 16 mg L−1) in the fermented media. The other form present at

pH 7.7 was carbonic acid H2CO3 (5% by mass) with a mean content of

0.1 ± 0.02 mmol L−1 (7 ± 1.7 mg L−1).

H2OþH2CO3→H3O
þ þHCO3

–
− pKa1 ¼ 6:37 ð2Þ

H2OþHCO3
−
→H3O

þ þ O3
2–
−pKa2 ¼ 10:32 ð3Þ

3.2. Microbial biofilm formation on the surface of the cementitious material

The cement paste surfaces after 4 weeks of immersion in the biore-

actors are shown in Fig. 6. The surface of the cementitious material

was entirely covered by biofilm (Fig. 6 (a)). The measurements per-

formed during the observation session suggested a total biofilm thick-

ness of about 100 μm. The biofilm contained microorganisms with

spherical (Fig. 6 (d)) and elongated shapes, called coccus and rod (bacil-

lus) morphologies.

3.3. Deterioration of cement paste immersed in the solid/liquid phase of a

biowaste in anaerobic digestion

The chemical composition profiles, analysed by EPMA, of the speci-

men as a function of the distance to the surface exposed to the solid/liq-

uid phase of the biowaste in digestion, is shown on Fig. 7. The

observation of the same specimen by SEM in back-scattered electron

(BSE) mode is also presented under the graph. A chemical zonation of

the specimen was identified and is represented on Fig. 7 (zones 1 to

5). The average chemical composition of the cementitious matrix in

the different zones is given in Table 3. Fig. 9 gives the mineralogical

characterization by XRD of the different zones of the cement pastes, as

defined on Fig. 7, after 4 weeks of exposure to the biowaste.

The chemical andmineralogical zonation from the core to the exter-

nal layer of the specimen was as follows:

Zone 1, or the sound zone, had a chemical and amineralogical com-

position identical to that of an unaltered control specimen. The typical

peaks of hydrated phases, such as portlandite and ettringite, and of an-

hydrous grains, such as tricalcium silicate or alite (3CaO SiO2),

dicalcium silicate or belite (2CaO·SiO2) and brownmillerite

(4CaO·Al2O3·Fe2O3), were present (Fig. 9). Furthermore, the density

of anhydrous residual cement grains was high (white grains on the

SEM picture) (Fig. 7).

Zone 2 showed a slight decalcification and an enrichment in sulphur

(Fig. 7),whichmay be correlatedwith the dissolution of portlandite and

the intensification of the ettringite peaks compared to zone 1 (Fig. 9).

The density of residual anhydrous grains was lower than in zone 1.

This zone was 500-μm thick (Fig. 7).

Zone 3was slightly decalcified (Fig. 7). Calcite was themain crystal-

lized phase. Ettringite was dissolved. Alite and belite peaks had disap-

peared, which was in accordance with SEM observations showing a

very low amount of residual anhydrous grains in this zone (Figs. 7 and

8). This zone was 100 μm thick.

Zone 4was just a few tens of μm thick and showed phosphorus en-

richment (Fig. 8). Phosphorus was most probably brought by the

biowaste. SEM observations coupled to EDS analyses showed some pre-

cipitates mainly composed of P, Ca and Si at different places in this thin

layer (Fig. 8). The proportions of Ca, P and Si of these precipitates (Table

3) were typical of apatite minerals (Elliott et al., 2002), which may be

confirmed by the small peaks resembling those of hydroxyapatite ob-

served on Fig. 9. Finally, the average CaO/SiO2 ratio in this zone (about

1.95, Table 3) suggested that the calcium silicate hydrates (C-S-H) had

been dissolved.

Zone 5was the outer layer (50-μm thick) previously covered by the

biofilm. This zonewas less dense than the other zones (dark zone on the

SEM picture of Fig. 7) and mainly amorphous (Fig. 9). This zone was al-

most completely decalcified and enriched in aluminium and silica com-

pared to the zones closer the specimen core. Also, the phosphorus

content in this zone, although lower than in zone 4, remained high.

Fig. 5. Evolution of the concentration of ammonium during the anaerobic digestion of

biowaste in presence (continuous line) and in absence (dotted line) of cement paste

samples in the bioreactors. Limit values of the exposure classes

(15 mg L−1
≤ XA1 b 30 mg L−1, 30 mg L−1

≤ XA2 b 60 mg L−1 and 60 mg L−1
≤ XA3)

for chemical attacks in aqueous environments in the standards (European standard EN

NF 2061 and French documentation file FD P18–011) are reported for comparison.



4. Discussion

Ordinary cement paste specimens were exposed to the solid/liquid

phase of a biowaste during a complete anaerobic digestion process.

This work aimed to quantify the concentrations of aggressive agents

against concrete in the liquid phase of fermenting biowaste, to identify

the capability of themicroorganisms in the biowaste to colonize the ce-

mentitiousmaterial in the formof a biofilm, and to determine themech-

anisms of cementitious material biodeterioration in the solid/liquid

phase of an anaerobic digester.

Fig. 6. SEM observations of ordinary cement paste surface colonized with a microbial biofilm after 4 weeks of exposure to biowaste under anaerobic digestion process. ((a) global biofilm

surface, (b) view of the cement paste under the biofilm thanks to a little nick made on the biofilm, (c,d) focus on biofilm details.)

Fig. 7. Chemical composition profile of an ordinary Portland cement paste immersed in the solid/liquid phase of a biowaste in anaerobic digestion conditions for 4 weeks according to the

distance to the surface in contact with the medium (EPMA), and SEM observations of the polished section in back-scattered electron (BSE) mode.



4.1. Composition of the liquid fraction of the fermenting biowaste and po-

tential aggressiveness for cementitious material

The growth of microorganisms in anaerobic digestion requires dif-

ferent pH ranges, e.g., a pH range of 4.0–8.5 is needed for the fermenta-

tive microorganisms producing organic substrates (e.g., fatty acids and

glucose). In particular, a more restricted pH range of 6.5–7.2 stimulates

the growth of methanogens (Zhang et al., 2014).

The evolution of organic acids, in terms of nature and concentra-

tions, and pH during the whole digestion is represented on Fig. 4, the

duration of which (4weeks) matched a whole cycle of anaerobic diges-

tion. The pH evolution suggested than anaerobic digestionwas properly

established. The presence of cement paste specimens in bioreactors did

not affect the anaerobic digestion process. pH, organic acid and ammo-

nia concentrations changed in a similar way with or without the addi-

tion of cement paste (Figs. 4 and 5).

Anaerobic digestion showed an initial pH drop (b2 days) from 6 to

4–5 before a slow pH increase, reaching the pH values corresponding

to methanogenesis conditions in 4 weeks (Fig. 4). The maximal total

concentration of volatile fatty acids, including acetic, propionic and bu-

tyric acids, was about 50 mmol L−1 in the biowaste under digestion. In

terms of ammonium content, the total ammonium production had

reached nearly 1000 mg L−1 after 4 weeks. Besides being present in

the initial biowaste before the digestion, ammonia (NH3) and ammoni-

um (NH4
+) accumulated during the breakdownof proteins andwere the

foremost inhibitors of the anaerobic digestion process. The range of con-

centrations (up to 40 mmol L−1) measured in the fermenting biowaste

was in accordance with the data available in the literature and below

critical thresholds (80mmol L−1) that can cause inhibition of the biogas

production process (McCarty, 1964). CO2 was co-produced during the

anaerobic digestion of the biowaste. Occasional analyses made on dis-

solved CO2 content in the fermenting mix showed an HCO3
– concentra-

tion of 2.3 mmol L−1 (or 140 mg L−1) (pH of 7.7 at the sampling

time). The concentration of CO2 in the bioreactor was thus much

lower than the concentrations that may be reached in industrial anaer-

obic digestion media, i.e. 2000–3000 mg L−1 (McCarty, 1964) corre-

sponding to the saturation level (the solubility of CO2 in water at 25 °

C and 1 atm is 34 mmol L−1 or 0.77 mg L−1).

Based solely on pH data collected during the anaerobic digestion of

biowaste, despite a short initial period with a pH below 7.0, anaerobic

digestion media in normal operation should not be classified as aggres-

sive environments for cement based materials, considering their stable

pH of 7.0–8.0 (N6.5 which is the upper limit of the XA1 exposure class

according to NF D 18–011). Nevertheless, when considering the ammo-

nium and the CO2 concentrations collected during anaerobic digestion

of biowaste, the anaerobic digestion media in normal operation have

to be considered as highly aggressive for cement based materials (XA3

exposure class according to EN 206 and NF D 18–011). For example,

the concentration of ammonium, from two days after the start of the ex-

periment ([NH4
+] = 9 mmol L−1) to the end ([NH4

+] = 40 mmol L−1),

was significantly higher than the concentration range of class XA3

(3.33–5.55 mmol L−1).

The concentrations of ammoniummeasured (up to 40mmol L−1) in

this study were about seven times the upper limit (5.55 mmol L−1) of

the XA3 exposure class and still lower than the anaerobic digestion in-

hibition concentration (around 80 mmol L−1) given by McCarty

(1964). It may be noted that the French documentation file FD P18-

011 recommends an external or internal protection in cases when the

concentration of an aggressive agent exceeds the upper limit of the

XA3 classification in the media.

It should additionally be noted that these standards do not consider

the nature of the acids, notably the organic acids, their concentration,

nor the specific impact of the microorganisms, individually or in the

form of a biofilm, in the classification of aggressive media. Yet, several

studies have highlighted the significant role of these two parameters

in the deterioration of the cementitious matrix in various biological

media (Nica et al., 2000; Leemann et al., 2010a; Larreur-Cayol et al.,

2011; Magniont et al., 2011; Bertron and Duchesne, 2013; Bertron,

2014).

4.2. Biofilm proliferation at the surface of the cementitious materials

The phenomena of biodeterioration are often exacerbated when a

surface layer of microorganisms, called biofilm, grows on the surface

of the altered material. The aggressive products secreted by microor-

ganisms are concentrated in the close vicinity of the material surface

and result in accelerated damage (Nuhoglu et al., 2011; Magniont et

al., 2011).

After only 4 weeks of exposure in the solid/liquid phase of the

fermenting biowaste, a rich biofilm, a hundred microns thick, was al-

ready observed by scanning electron microscopy on the cement paste

surface of the cementitious material exposed to the fermenting

biowaste. It should bementioned that the optimal pH conditions formi-

croorganisms involved in anaerobic digestion to live are 4.5–6.3 for hy-

drolytic bacteria and acidogens, 6.8–7.5 for acetogens and 6.2–7.6 for

methanogens (McCarty, 1964; Prescott et al., 1996; Evans and Furlong,

2003). However, cementitious materials have initial pH around 12–13.

The surface colonization was probably made possible because of the

production of metabolites (organic acids, CO2 and ammonium) by the

planktonic microorganisms in the first hours of the digestion process,

which caused initial deterioration of the material (calcium leaching

and carbonation, as analysed with EPMA, SEM + EDS and XRD) and

probably decreased the surface pH to suitable conditions for microbial

colonization (Magniont et al., 2011). This surface conditioning is a key

step enhancing the bioreceptivity of the cementitious material

(Guillite, 1995; Manso et al., 2014).

Table 3

Average chemical composition and standard deviations in mass percentages in the differ-

ent zones defined in Fig. 7.

Oxides

Average chemical composition by mass (%)

Zone 3 Zone 4 Zone 5

% CaO 39.22 ± 4.78 29.97 ± 6.75 5.09 ± 1.75

% Al2O3 3.92 ± 0.84 3.75 ± 0.62 5.02 ± 0.68

% SiO2 24.01 ± 8.24 15.37 ± 2.12 17.70 ± 4.82

% P2O5 1.57 ± 1.87 11.47 ± 2.15 5.66 ± 2.28

% SO3 1.24 ± 0.98 1.55 ± 0.52 1.22 ± 0.57

% Tot 74.22 ± 5.48 64.84 ± 6.31 37.02 ± 4.74

Fig. 8. SEM observation in BSE mode and chemical mapping of calcium (Ca) and

phosphorus (P) EDS in the outer zones (zones 3 to 5 as defined in Fig. 6) of an ordinary

cement paste immersed in solid/liquid phase of biowaste in anaerobic digestion

conditions for 4 weeks.



SEM observations showed a complex mixture of microorganisms

with rods and cocci morphologies in the biofilm on cementitious mate-

rials. Zellner et al. observed the samemorphologies in biofilm in anaer-

obic digester reactors (Zellner et al., 1996).

The presence of a biofilm suggests greater local microbial activity on

the surface of cementitious material than in the medium (i.e. heteroge-

neous catalytic phenomenon). For that reason, the consequences on the

distribution and the concentration of soluble chemical species have to

be considered. Thus, concentrations of metabolites obtained in the

biowaste during anaerobic digestion are certainly lower than those ac-

tually produced locally on the surface of cement pastes.

4.3. Chemical alteration mechanisms on cementitious materials exposed to

the solid/liquid phase of fermenting biowaste in the anaerobic digester

A chemical and mineralogical zonation of cementitious specimens

exposed to the solid/liquid phase of biowaste in digestion was

highlighted. Five zones with different chemical and mineralogical com-

positionswere identified, with zone 1 corresponding to the non-altered

core of the specimen and zone 5 being the outer layer in contact with

the biowaste. After four weeks of immersion, the total thickness of the

altered layers (zones 2 to 5)was 700 μm.Organic acids, CO2 and ammo-

nium are the agents aggressive to concrete that were identified in this

work. The metabolites reacting with the calcium-bearing components

of the cementmatrixwere responsible for calcium leaching and carbon-

ation phenomena in the cementmatrix. It should benoted that the pres-

ence of microorganisms on the surface may have led to specific

conditions of concentrations of aggressive agents and of pH (namely

high acid, CO2 and ammonium concentrations and low pH) locally

(Magniont et al., 2011). Phosphorus enrichment of the cement matrix

was also detected.

4.3.1. Calcium leaching phenomena

Calcium leaching of the cementitiousmatrixwas observed, probably

due to the attack of organic acids (Koenig and Dehn, 2016) and ammo-

nium in the biowaste.

A cement matrix in a medium containing organic acids undergoes

acid-base reactions occurring between the acids and the highly alkaline

cement phases. In the case of ordinary cement paste, these reactions

lead to the formation of calcium salts or complexes and water

(Bertron and Duchesne, 2013; De Windt et al., 2015). The volatile fatty

acids in anaerobic digestion (acetic, propionic and butyric acids) have

very soluble calcium salts (Bertron et al., 2007; Bertron and Duchesne,

2013). The attack by these specific acids induces calcium leaching

from thematrix and formation of a Si-Al-skeleton gel with high porosity

and lowmechanical properties (Bertron et al., 2007), themain hydrates

of the cement matrix (Ca(OH)2, C-S-H and C4AHx) being dissolved.

Ammonium salts are highly aggressive for the cementitious matrix

because of an exchange reaction between NH4
+ in the medium and

Ca2+ in the cement paste (Escadeillas, 2013).

In this work, the chemical andmineralogical compositions of zone 2

(transition zone where portlandite was dissolved and non-expansive

ettringite precipitated) and of zone 5 (an amorphous zone mainly com-

posed of Si and containing Al and P) were typical of a leaching process

resulting from the exposure of cementitious materials to VFA (Bertron

et al., 2007) and ammonium (Escadeillas, 2013).

4.3.2. Phosphorus enrichment in the cement matrix

The chemical analyses by EDS and EPMA revealed enrichment in

phosphorus in zone 4. This enrichment in the Ca-P component was

due the presence of phosphorus in the substrate used in our experi-

ment. It would not necessarily occur in the various environments that

may be encountered in other anaerobic digestion media. Hydroxyapa-

tite may have precipitated following the reaction between calcium re-

leased by the cement matrix and phosphorus diffused from the

medium. This precipitation could not be confirmed by XRD, which

may be explained by the formation of an amorphous calcium phosphate

precursor (Christoffersen et al., 1989). Amorphous calciumphosphate is

oneof themost frequent forms of calciumphosphateminerals in biolog-

ical organisms (Eanes, 1998) and is the precursor of hydroxyapatite,

which is a major part of bone structure (Rey et al., 2009).

It should be noted that Meyer and Eanes (1978) reported that this

amorphous form was stable in pH between 7 and 9 (Meyer and Eanes,

1978). This pH condition might be encountered in zones 4 and 5, zone

4 being the place with the highest concentration of P (Figs. 7 and 8) as

the pH decreases from the core of the matrix (pH 12–13) to the outer

layer in contactwith thebiofilm (pH7or lower). Therewasno ettringite

left in zone 3, whichmeans that the pHwas lower than 10.6 (Duchesne

and Bertron, 2013), and calcite precipitated in zones 3 and 4, indicating

preferential pH conditions between 8.5 and 9.5 (Tai et al., 2006;

Ruiz-Agudo et al., 2011). Finally, it is not knownwhether this precipita-

tion has a protective effect on the cementmatrix through the creation of

a diffusion barrier.

4.3.3. Carbonation of the cement matrix

CO2 is one of the main metabolites of methanogens as it constitutes

35% of the final biogas produced in an anaerobic digestion process. In

aqueous environments, the presence of dissolved carbon dioxide may

Fig. 9.Mineralogical analyses by XRD of ordinary cement paste immersed in the solid/liquid phase of biowaste in anaerobic digestion conditions for 4 weeks.



lead to both carbonation and dissolution of the cementmatrix. The total

CO2 in the medium includes free and bound CO2. The free CO2 contains

aggressive and stabilizing CO2 (Escadeillas and Hornain, 2008). The sta-

bilizing CO2 is the quantity required tomaintain the bicarbonates in so-

lution with the following reaction Eq. (4).

H2Oþ CO2 þ CaCO3→Ca HCO3ð Þ2 ð4Þ

The aggressive carbon dioxide is the excess free CO2 beyond the sta-

bilizing CO2. The degradation with aggressive CO2 leads to subsequent

dissolution and precipitation mechanisms. The water in contact with

the cement material becomes progressively saturated in bicarbonates.

Calcium carbonate, with its very low solubility, can precipitate through

the reaction between bicarbonate in solution and calcium-bearing hy-

drates such as portlandite and C-S-H as shown in Eqs. (5) and (6).

Ca HCO3ð Þ2 þ Ca OHð Þ2→2CaCO3 þ 2H2O ð5Þ

xCaO % ySiO2 % nH2Oþ 2xCa HC3ð Þ2→2xCaCO3 þ ySi OHð Þ4
þ xþ n−2yð ÞH2O ð6Þ

This phenomenon decreases the porosity of the cementitious mate-

rial (Escadeillas andHornain, 2008). The calcium carbonate precipitated

reacts with carbon dioxide and forms calcium bicarbonate, according to

Eq. (7).

CaCO3 þ CO2 þH2O→Ca HCO3ð Þ2 ð7Þ

Calciumbicarbonate ismore soluble than calcium carbonate andwill

consequently be dissolved in water (Yin et al., 2015). So, the leaching of

lime, the formation of bicarbonates, and the precipitation of carbonates

is repeated until the lime runs out (Escadeillas and Hornain, 2008).

In this study, an average concentration of 2.3 mmol L−1 (or

140 mg L−1) of dissolved CO2 (in the form of HCO3
– at the pH of 7.7 in

the fermented medium) was measured in the medium. However, as

suggested by Magniont et al. (2011), more aggressive conditions, in-

cluding higher CO2 concentrations and lower pH, may be encountered

at the interface between the biofilm and the specimen surface than in

the surrounding medium. Leemann et al. highlighted that, in low pH

conditions, as in an acidic environment, calcite would not precipitate

even in presence of carbonates because of the insufficient buffering ca-

pacity of the CaO content in the cement material towards the acidic en-

vironment (Leemann et al., 2010b). Actually, calcite was not identified

on the surface of the specimen in this experiment.

Calcite was detected deeper in the specimen, i.e. in zones 3 and 4.

Other authors have also concluded that carbonation can be induced by

bacteria producing CO2 in an environment enriched with microorgan-

isms (Lajili et al., 2008; Magniont et al., 2011). Calcite precipitation in

the cementitiousmaterial has also been reported as a providing possible

protection against agents that are aggressive to concrete, by filling the

porosity of the material (Leemann et al., 2010b).

5. Conclusion

Biodeterioration of cementitiousmaterial exposed to the solid/liquid

fraction of fermenting biowaste was investigated by immersing ordi-

nary cement pastes in bioreactors in laboratory conditions. The liquid

phase of the digesters was analysed over time tomeasure the evolution

of pH, and the concentrations of volatile fatty acids and ammonium. CO2

concentration was also measured.

A maximum total concentration of 50 mmol L−1 of volatile fatty

acids (acetic, propionic and butyric acids)was produced during the pro-

cess. Despite a short period of biowaste acidification at the beginning of

the experiment, the pH in the bioreactors stabilized in the 7–8 range.

Large amounts of ammonium ion, up to 8 times the upper limit of the

class of highly aggressive environments for concrete (XA3) in European

standard EN 206, were formed during the anaerobic digestion.

The biodeterioration of the cementitious material in the solid/liquid

phase of anaerobic digestion bioreactors was identified as a combina-

tion of calcium leaching and carbonation. The cement paste surface

was covered by a biofilm several tens of μm thick after 4 weeks of expo-

sure to digesting biowaste. The deterioration mechanisms highlighted

through this study suggest that specific chemical conditions may have

developed under the biofilm and that these conditions may have been

more aggressive for the cementitious material than what was obtained

from the analysis of the bulk environment.

It should be noted that the European (EN 206) standards for the de-

sign of concrete subjected to aggressive environments consider neither

the presence of volatile fatty acids and their concentrations nor the

presence ofmicroorganisms (in the environment or in the formof a bio-

film on thematerial) as potential aggressive agents,which appears to be

a shortcoming of these standards.

Further research will focus on understanding the specific impact of

attached microorganisms in deterioration. Microorganisms capable of

colonizing the surface of cement pastes will also be identified using

DNA-based microbial population analyses.
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