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Université de Toulouse

Institut Clément Ader, UPS

F-31062, Toulouse, FRANCE

e-mail: alain.berlioz@univ-tlse3.fr

ABSTRACT

In this paper, the dynamic response of a harmonically forced Linear Oscillator (LO) strongly coupled to a
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Nonlinear Energy Sink (NES) is investigated both theoretically and experimentally. The system studied comprises

a LO with an embedded, purely cubic NES. The behavior of the system is analyzed in the vicinity of 1 : 1 resonance.

The complexification-averaging technique is used to obtain modulation equations and the associated fixed points.

These modulation equations are analyzed using asymptotic expansion to study the regimes related to relaxation

oscillation of the slow flow called Strongly Modulated Response (SMR). The zones where SMR occurs are computed

using a mapping procedure. The Slow Invariant Manifolds (SIM) is used to derive a proper optimization procedure.

It is shown that there is an optimal zone in the forcing amplitude–nonlinear stiffness parameter plane, where SMR

occurs without having a high amplitude detached resonance tongue. Two experimental setups are presented. One

is not optimized and has a relatively high mass ratio (≈ 13%) and the other one is optimized and exhibits strong

mass asymmetry (mass ratio≈ 1%). Different frequency response curves and associated zones of SMR are obtained

for various forcing amplitudes. The reported experimental results confirm the design procedure, and the possible

application of NES for vibration mitigation under periodic forcing.

1 Introduction

Over the past decade, it has been demonstrated that the addition of small mass, with a strong nonlinear attachment to a

linear system may give rise, under transient loading, to localization and irreversible transfer of energy, also called pumping.

It has been shown that the pumping phenomenon can be explained by studying the nonlinear normal modes of the undamped

system [1,2]. More recent studies have introduced a suitable asymptotic procedure based on the invariant manifold approach

to include damping force [3]. Addition of a Nonlinear Energy Sink (NES) drastically changes the dynamic response of

the whole system, and may be beneficial to vibration mitigation. Energy pumping under transient loading has been widely

studied theoretically [4–7] and experimentally [7–9]. More recently, differents configurations of NES and their effect on the

damping behavior of a structure have been studied in [10]. In addition to transient loading, systems with NES under periodic

forcing have also been studied. Steady state response (response with almost constant amplitude) was studied in [11,12] for a

grounded NES. The use of a NES in the field of acoustics has been studied experimentally in [13,14]. The use of a piecewise

linear NES has been studied in [15]. The Complexification–Averaging (CX-A) technique [16] has been used to derive

modulation equation and compute the fixed points. These regimes have also been analytically and experimentally studied

for an embedded NES in [17]. The possibility of using NES in the presence of gravity has been investigated in [18]. It has

been demonstrated that in addition to weak quasiperiodic response, which is related to a Hopf bifurcation of the slow flow,

systems with NES can exhibit more complex mechanisms for vibration mitigation. These regimes are related to relaxation

oscillations and are not related to slow flow fixed points. When the system exhibits the latter type of response (often called

Strongly Modulated Response (SMR)), the amplitude of modulation is comparable to the amplitude of the response itself.

SMR regimes have been studied in detail in [19, 20]. A NES design methodology has been proposed in [21] and the result

was compared to numerical simulations.

This paper aims to provide experimental developments of energy pumping under periodic forcing and also a NES design

procedure. The next section is devoted to the theoretical treatment of the equation of motion. In the third section, two
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different experiments and design procedures are presented. The experimental measurements are compared to theoretical

prediction. The last section presents the concluding remarks.

2 Theoretical developments

The theoretical developments presented herein are based on [19, 21]. The system studied in this paper is composed of a

harmonically excited Linear Oscillator (LO) strongly coupled to a Nonlinear Energy Sink (NES) (see Fig. 1) and is described

by the following equation of motion:

m1
d2x1

dt2 + c1
dx1

dt
+ c2

(
dx1

dt
− dx2

dt

)
+ k1x1+

k2 (x1− x2)
3 = k1xe + c1

dxe

dt
(1)

m2
d2x2

dt2 + c2

(
dx2

dt
− dx1

dt

)
+ k2 (x2− x1)

3 = 0 (2)

[Fig. 1 about here.]

Where x1, m1, c1, k1 and x2, m2, c2, k2 are the displacement, mass, damping and stiffness of the LO and the NES

respectively. All the physical parameters, including the damping of the LO, are taken into account. The imposed harmonic

displacement xe is expressed as follow:

xe = GcosΩ̃t (3)

2.1 Fixed points

After rescaling, system (1,2) is reduced to a more convenient form:

ẍ1 + ελ1ẋ1 + ελ2 (ẋ1− ẋ2)+ x1 + εK (x1− x2)
3 =

εF cosΩτ− ε
2
λ1FωsinΩτ (4)
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εẍ2 + ελ2 (ẋ2− ẋ1)+ εK (x2− x1)
3 = 0 (5)

Where the dots denote differentiation with respect to τ and the following parameters are defined:

{τ, ω1, ω2, ε, λ1, λ1, Ω, K, F}={
ω1t,

√
k1

m1
,

√
k2

m2
,

m2

m1
,

c1

m2ω1
,

c2

m2ω1
,

Ω̃

ω1
,

ω2
2

ω2
1
,

G
ε

}

It should be noticed that the rescaled equations are identical for imposed force or displacement up to O(ε). New variables

are introduced as follow:

v = x1 + εx2, w = x1− x2 (6)

As the system is studied in the vicinity of the 1 : 1 resonance where both oscillators oscillate at the excitation frequency

Ω, it is convenient to introduce the following complex variables [16]:

φ1eiΩτ = v̇+ iΩv, φ2eiΩτ = ẇ+ iΩw (7)

Introducing Eq. (6,7) into (4,5), and keeping only terms containing eiΩτ yields to the following slow modulated system:

ϕ̇1 +
iΩ
2

ϕ1 +
ελ1

2(1+ ε)
(ϕ1 + εϕ2)−

i(ϕ1 + εϕ2)

2Ω(1+ ε)

−εF
2
− iε2λ1FΩ

2
= 0 (8)

ϕ̇2 +
iΩ
2

ϕ2 +
ελ1

2(1+ ε)
(ϕ1 + εϕ2)−

i(ϕ1 + εϕ2)

2Ω(1+ ε)

+
λ2 (1+ ε)

2
ϕ2−

3iK (1+ ε)

8Ω3 ϕ
2
2 |ϕ2|−

εF
2
− iε2λ1FΩ

2
= 0 (9)
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A detuning parameter σ representing the nearness of excitation frequency to the reduced natural frequency of the LO is

introduced as follow:

Ω = 1+ εσ (10)

Fixed points of Eq. (8,9) correspond to the periodic solutions of system (4,5). They are computed by equating the

derivatives to zero, yielding a system of complex algebraic equations. After algebraic operations, this system is expressed in

a more convenient form:

ϕ̇1 = ϕ̇2 = 0 ⇒ ϕ1(τ) = ϕ10, ϕ2(τ) = ϕ20

ϕ10 =

iεϕ20

(1+ ε)(1+ εσ)
−

ε2λ1ϕ20

1+ ε
+ εF + iε2λ1F (1+ εσ)

i(1+ εσ)+
ελ1

1+ ε
−

i

(1+ ε)(1+ εσ)

(11)

α3Z3
20 +α2Z2

20 +α1Z20 +α0 = 0, Z20 = |ϕ20|2 (12)

Coefficients αi (i = 1..3) are given in Appendix A. To study the stability of these fixed points, small perturbations are

introduced:

ϕ1 = ϕ10 +ρ1, ϕ2 = ϕ20 +ρ2 (13)

Keeping only linear terms with respect to ρi (i = 1..2), taking the complex conjugate and putting the resulting system

into matrix form, the stability of the fixed points is then deduced by analyzing the root of the characteristic equation. If

a real root crosses the left-half complex plane, it corresponds to a Saddle-Node (SN) bifurcation and if a pair of complex
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conjugates crosses the left-half complex plane, it corresponds to a Hopf bifurcation of the slow flow.

2.2 Asymptotic analysis

As the case of small mass ratio (ε << 1) is studied here, Eq. (8,9) are analyzed using a perturbation method. Multiple

time scales are introduced as follows:

ϕi = ϕi (τ0,τ1, . . .) ,
d
dτ

=
∂

∂τ0
+ ε

∂

∂τ1
+ . . . ,

τ
k = ε

k
τ, k = 0,1, . . . (14)

Substituting Eq. (10) and (14) into Eq. (8,9) and equating coefficients of like power of ε yields:

ε
0 :

∂

∂τ0
ϕ1 = 0

∂

∂τ0
ϕ2 +

λ2

2
ϕ2 +

i
2
(ϕ2−ϕ1)−

3iK
8

ϕ
2
2 |ϕ2|= 0 (15)

ε
1 :

∂

∂τ1
ϕ1 +

i
2
(ϕ1−ϕ2)+ iσϕ1 +

λ1

2
ϕ1−

F
2
= 0

∂

∂τ1
ϕ2 +

i
2
(ϕ1−ϕ2)+

iσ
2
(ϕ1 +ϕ2)+

λ1

2
ϕ1 +

λ2

2
ϕ2

− 3iK (1−3σ)

8
ϕ

2
2 |ϕ2|−

F
2
= 0 (16)

The first equation of (15) gives:

∂ϕ1

∂τ0
= 0⇒ ϕ1 = ϕ1 (τ1, . . .) (17)

Substituting Eq. (17) into the second equation of (15), fixed points Φ(τ1) depend only on time scale τ1 and obey the

following algebraic equation:
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λ2

2
Φ+

i
2

Φ− i
2

ϕ1−
3iK
8

Φ
2 |Φ|= 0 (18)

Φ = lim
τ0→∞

φ2

Equation (18) is solved by taking Φ(τ1) = N2eiδ2 :

|φ1|2 = λ
2
2Z2 +Z2−

3K
2

Z2
2 +

9K2

16
Z3

2

Z2 (τ1) = N2 (τ1)
2 (19)

The number of solutions to Eq. (19) depends only on the parameter λ2. The roots of the derivative of the right hand side

of Eq. (19) are computed to find the critical value of λ2:

Z2,i =

4
(

2±
√

1−3λ2
2

)
9K

i = 1,2 (20)

Therefore, if λ2 < 1/
√

3, two roots and a pair of saddle-node bifurcation exist and does not exist otherwise. In fact,

Eq. (19) represents the Slow Invariant Manifold (SIM) of the problem. In the case λ2 > 1/
√

3, the SIM is monotonous. On

the othe hand, if λ2 < 1/
√

3, the SIM admits extrema and is divided into two stable branches and one unstable branch. An

illustration of the SIM is given in Fig. 2 where K = 100 and λ2 = 0.2. Such a SIM structure may give rise to relaxation

oscillations. In effect, the slow flow may rise on the first stable branch until reaching the fold point Z21. The slow flow will

jump onto the upper stable branch of the SIM to the landing point Z2u. The amplitude of the slow flow will decrease slowly

until reaching the second fold point Z22 to jump back to the lower stable branch on point Z2d . To investigate this possibility,

the behavior of Eq. (16) on the SIM is analyzed.

[Fig. 2 about here.]

Introducing Eq. (18) into the first equation of (16) yields:
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∂

∂τ1

[
2i
(
−λ2

2
Φ− i

2
Φ+

3iK
8

Φ
2 |Φ|

)]
+2i

(
i
2
+σi+

λ1

2

)(
−λ2

2
Φ− i

2
Φ+

3iK
8

Φ
2 |Φ|

)
− i

2
Φ− F

2
= 0 (21)

By expressing Φ(τ1) in polar coordinates, the equations governing the evolution of N2 and δ2 with respect to time scale

τ1 are obtained:

∂N2

∂τ1
=

f1 (N2,δ2)

g(N2)

∂δ2

∂τ1
=

f2 (N2,δ2)

g(N2)
(22)

where

f1 (N2,δ2) =−9λ1K2N5
2 +24λ1KN3

2 −12FKN2
2 cosδ2

−16
(
λ2 +λ1 +λ

2
2λ1
)

N2 +16F cosδ2 +16λ2F sinδ2 (23)

f2 (N2,δ2) =
(
−54K2

σ−27K2)N4
2 +(96Kσ+12K

−24λ2λ1K)N2
2 +36KFN2 sinδ2−16λ

2
2−32σ−32σλ

2
2

+
16λ2F cosδ2−16F sinδ2

N2
(24)

g(N2) = 54K2N4
2 −96KN2

2 +32+32λ
2
2 (25)

It has been demonstrated [20] that Eq. (22) admits two types of fixed point. The first type is referred to as ordinary

fixed points and is found for f1 = f2 = 0 and g 6= 0. These fixed points corresponds to those computed in Eq. (12) if the

term at O(ε2) is neglected. The others are referred to as folded singularities and are found for f1 = f2 = g = 0. The system

f1 = f2 = 0 is rewritten in matrix form:
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a11 a12

a21 a22


sinδ2

cosδ2

=

b1

b2

 (26)

with

a11 =16λ2F, a12 =−12FKN2
2 +16F,

a21 =
36FKN2

2 −16F
N2

, a22 =
16λ2F

N2
,

b1 =9λ1K2N5
2 −24λ1KN3

2 +16N2
(
λ1 +λ2 +λ

2
2λ1
)
,

b2 =
[
27K2N5

2 (1+2σ)−12KN3
2 (1−2λ1λ2 +8σ)

+16N2
(
λ

2
2 +2σλ

2
2 +2σ

)]
/N2 (27)

Ordinary fixed points are found by solving Eq. (26) for sinδ2 and cosδ2, and assuming that the determinant does not

vanish. It can be noticed that det(a) = 8F2g/N2, so that, when eliminating f1 and g, the condition f2 = 0 is automatically

satisfied by Eq. (26), thus obtaining the expression of the folded singularities:

∆i, j = γi± arccos
[
N2,i

(
16λ1−24λ1KN2

2,i +9λ1K2N4
2,i +16λ2

+16λ1λ
2
2
)
/
(

4F
√

9K2N4
2,i−24KN2

2,i +16+16λ2
2

)]
, (28)

γi = arcsin

 4λ2√
9K2N4

2,i−24KN2
2,i +16+16λ2

2



A condition for the excitation amplitude for the existence of folded singularities on the lower and upper fold is obtained
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from Eq. (28):

∣∣∣∣∣∣
N2,i

(
16λ1−24λ1KN2

2,i +9λ1K2N4
2,i +16λ2 +16λ1λ2

2

)
4F
√

9K2N4
2,i−24KN2

2,i +16+16λ2
2

∣∣∣∣∣∣≤ 1 (29)

Yielding:

F ≥ Fic = N2,i
(
16λ1−24λ1KN2

2,i +9λ1K2N4
2,i +16λ2

+16λ1λ
2
2
)
/
(

4
√

9K2N4
2,i−24KN2

2,i +16+16λ2
2

)
(30)

However, the condition on Eq. (30) is necessary but not sufficient to guarantee the stability of SMR regimes. Under

certain conditions, the slow flow may be attracted to another stable response. This mechanism of annihilation of SMR is

explained in detail in [22]. To access this possibility, a procedure of 1D mapping has been developed in [20]. The principle

consists in following the slow flow during one cycle of relaxation, with initial conditions inside the interval [∆11,∆12].

The procedure is illustrated in Fig. 3 and consists of four steps described below:

1. A starting point is chosen on the lower fold (see Eq. (20)) with a phase inside the interval [∆11,∆12]. The landing

points on the upper fold are then computed using Eq. (18) and the invariant property of the SIM (see Fig. 2 for the

corresponding notation):

−1
2

λ2Φ2,1−
1
2

iΦ2,1 +
3
8

iKΦ
2
2,1 |Φ2,1|

=−1
2

λ2Φ2,u−
1
2

iΦ2,u +
3
8

iKΦ
2
2,u |Φ2,u| (31)

2. Equation (22) is numerically integrated with Φ2u as initial conditions, until reaching the upper fold line.

3. The landing point Φ2d on the lower fold is computed in the same way as in the first step.

4. Equation (22) is numerically integrated again, until reaching the lower fold line.

[Fig. 3 about here.]

This procedure is repeated for various starting points inside the interval [∆11,∆12]. Finally, if at the end of step 4, all

the points return inside this interval, the SMR cycle is stable. On the other hand, if the slow flow goes through the basin of

attraction of a stable fixed point, the SMR cycle is unstable.

Etienne Gourc Paper VIB-13-1091 10



3 Experimental tests

In the following section, two different experiments will be presented. The main difference between these experiments is

the value of the mass ratio (ε). For the first one ε = 12.9% and for the second one ε = 1.2%. Moreover, the first experiment

is subject to harmonic forcing, and the second one to an imposed displacement. As mentioned previously, in the case of

base excitation, a term related to the damping of the LO is present (see Eq. (4)); this is not the case for imposed force.

However, this term is of O(ε2) and does not have that much influence on the behavior of the whole system. In both cases,

the displacement is measured using contact–less laser sensors. Raw signals are recorded using a digital oscilloscope and a

band pass filter is applied to correct biases and suppress high frequency noise. The cubic stiffness has been implemented

geometrically with two linear springs that extend axially and are free to rotate. The force-displacement relationship (given

in Eq. (32)), expanded in Taylor series, is shown to be approximately cubic in nature.

f = 2klu+
2u(P− kl l)√

l2 +u2
≈ 2P

l
u+

kl−P
l3 u3 +O

(
u5
)

(32)

Where u is the displacement, kl is the linear spring stiffness, l the initial length of the spring, and P is the pre–stress

force. Experimentally, P must be kept as small as possible. Precision rail guides are used for all guidance. For each test, the

Root Mean Square (RMS) value of the absolute displacement of the LO (x) and the relative displacement between the NES

and the LO (w) are plotted versus the frequency of excitation. RMS values are used in order to highlight the benefits of SMR

cycles.

3.1 First experiments with ε = 12.9%

The first experimental fixture built to investigate the behavior of a single-degree-of-freedom oscillator strongly coupled

to a NES under excitation is depicted in Fig. 4. It consists of a main mass (LO) grounded by means of a linear spring, and

connected to an electrodynamic shaker. The nonlinear oscillator is embedded on this main mass. Both masses are connected

by means of an essential cubic stiffness.

[Fig. 4 about here.]

As shown in Fig. 4, the main system receives the electrodynamic force directly from the modal shaker. This force is

constant whatever the response of the system. It has therefore been considered as the input excitation force, and the mass and

stiffness of the shaker are considered together with the LO. The exciter force is obtained by measuring the current delivered

by the power amplifier. The nonlinear stiffness value used in the theoretical analysis has been obtained with a nonlinear least

square cubic polynomial fitting of the experimental curve.

[Table 1 about here.]

The parameters identified on the experimental setup and used for the calculations are given in Tab. 1.
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The aim of the experimental tests is to obtain the nonlinear Frequency Response Function (FRF) of the system around

the 1 : 1 resonance. To this end, the displacement signals of both the LO and the NES have been recorded for increasing and

decreasing frequency varying from 5Hz to 20Hz.

Figure 5 show the nonlinear response curves for the NES and the LO respectively, for a forcing amplitude of 2.7N. Thin

lines correspond to stable periodic motion, and thick lines refer to unstable region of periodic solutions. ”SN” and ”Hopf”

indicate the location of the Saddle-Node and Hopf bifurcation points obtained analytically using Eq. (13). In addition to the

classical resonance curve, a secondary resonance curve with a stable upper branch is observed.

Those figures also display the measured frequency response of both oscillators, where ”o” and ”∗” denote periodic and

quasiperiodic regimes respectively, and arrows show the jumps and the direction of evolution of the frequency. For an in-

creasing frequency, the motion takes place on the stable upper branch before jumping onto the lower branch at 12.5Hz. Then,

the amplitude of motion increases again when following the main resonance curve. At this time, weak quasiperiodic regime

takes place. A time measurement of such a regime is depicted in Fig. 6. This clearly shows a modulated response which

match well with a Hopf bifurcation. However, unlike the analytical prediction, motion of the oscillators becomes periodic

again before jumping back onto the lower curve. Nevertheless, the frequency at which the jump occurs is approximately the

same in both cases.

[Fig. 5 about here.]

[Fig. 6 about here.]

Comparing experimental and theoretical results, it is interesting to notice that there is a qualitative agreement even if

differences occur with the amplitude, and instability zones, that are mainly due to the uncertainty in the characterization of

the nonlinear stiffness and damping. In this experiment, no SMR has been observed. As it has been shown in [22], in addition

to the previously mentioned mechanism of annihilation of SMR, when the mass ratio increases above a given threshold εcr2

(not computed here), neither stable SMR nor unstable limit cycles are possible, and only stable weak modulated response is

observed. These considerations motivated the design of a new experiment.

3.2 NES optimization

The previously presented experiment has two major drawbacks:

1. The mass ratio was too high to allow SMR response.

2. A high amplitude detached resonance tongue appeared on the left of the main backbone branch.

In this section, a design procedure is proposed to eliminate this detached resonance tongue and to allow SMR response at the

same time, considering a system with a small mass ratio (ε≈ 1%). To study the conditions for the appearance of the detached

resonance tongue, boundaries separating single and triple solutions in Eq. (12), corresponding to Saddle-Node bifurcation,

are analyzed. Saddle-Node bifurcation arises when a real root of the characteristic polynomial leaves the left–half complex

plane. By setting the root to 0, the resulting equation is written in the following form:
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v2Z2
20 + v1Z20 + v0 = 0 (33)

Coefficients vi are not given here due to their length. Eliminating Z20 from Eq. (33) yields:

Z20 =
−v1±

√
v2

1−4v2v0

2v2
(34)

Substituting Eq. (34) into Eq. (12) and solving for F produces the boundary separating single from multiple solutions in

the plane of parameters (F , σ). An illustration is given in Fig. 7.

[Fig. 7 about here.]

Fig. 7 highlights that there is a narrow zone (F1c < F < FSN) where SMR may be possible (F > F1c) and where no

high amplitude detached resonance tongue exists. This zone is optimal for passive control of vibration using a NES. Taking

arbitrary values for ε, λ1 and λ2, the boundaries for optimal NES sizing are plotted in the plane of parameters (F , K) in

Fig. 8. The nonlinear stiffness K must be chosen inside the interval between the solid and the dashed curve.

[Fig. 8 about here.]

In Figure 9 the evolution of the width of the zone of SMR as a function of the forcing amplitude is presented. It

is observed, that this zone is larger when the forcing amplitude is close to the boundary FSN , which is interesting from

a vibration mitigation point of view. In the next section the experimental setup designed using the proposed criterion is

presented.

[Fig. 9 about here.]

3.3 Second experiments with ε = 1.2%

The second experiment is depicted in Fig. 10. Here, the whole setup is embedded on a 10 kN elecrodynamic shaker.

Feedback position control of the electrodynamic shaker ensures a constant excitation amplitude (especially during SMR

regimes).

[Fig. 10 about here.]

The moving masses of the LO and the NES are: m1 = 4.178kg and mNES = 0.042kg respectively. As the mass of the

NES is very small, the inertia of the springs is no longer negligible and has to be considered. In a rough approximation,

considering the spring as a beam and neglecting axial inertia, the kinetic energy of the NES is written as follows:
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TNES =
∫ l0

0
ρS

(
x
l0

ẏ
)2

dx+
1
2

m2ẏ2 (35)

Where ρS = mS/l0 is the mass density of the spring. Thus the moving mass of the NES is m2 = 2mS/3+mNES. The

natural frequency and the viscous damping factor of the main linear system are estimated by performing modal analysis

without the NES. The damping coefficient of the linear guide of the NES has also been estimated by removing the nonlinear

stiffness, adding a linear spring and performing modal analysis. The friction in the spring’s attachment is neglected. The

parameters are summarized in Tab. 2.

[Table 2 about here.]

The nominal excitation amplitude is fixed to define the NES stiffness (G = 0.25mm; F = 0.02). The sizing curves

corresponding to the physical parameters of the system are presented in Fig. 11.

[Fig. 11 about here.]

The red horizontal line corresponds to the dimensionless nominal forcing amplitude, and the two black dots correspond

to the excitation amplitude for which the trials have been performed, for the chosen stiffness (K = 1874). Both the measured

force-displacement relationship and the cubic fitting are presented in Fig. 12 for the designed NES.

[Fig. 12 about here.]

The first results carried out at the nominal forcing amplitude (G = 0.25mm) are presented in Fig. 13. The analytical

frequency response function is presented in blue, and the experimental one in green. The gray dashed line and the red one

represent the theoretical and experimental zone where SMR occurs. The thin black line corresponds to the theoretical FrF of

the LO without NES. Theoretically at the resonance frequency, the RMS amplitude of the LO without NES is xRMS = 0.106

which is significantly reduced by the NES

[Fig. 13 about here.]

Experimentally, energy pumping through SMR is observed for this forcing amplitude and time response is presented in

Fig. 14 corresponding to ”Point A” in Fig. 13. It is clear that this regime is related to relaxation oscillation. For this forcing

amplitude, no detached resonance curve is observed.

[Fig. 14 about here.]

Fig. 15 shows the obtained frequency response functions for G = 0.325mm. Energy pumping still occurs, but high

vibration amplitudes before the natural frequency are also observed. This is in accordance with the analytical predictions in

Fig. 11. The width of SMR zone is also larger when the excitation amplitude increases, as reported theoretically in Fig. 9.
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[Fig. 15 about here.]

The previous results highlight discrepancies between theoretical prediction and experimental measurements in the SMR

zone. Numerical simulations have revealed that this zone is sensitive to the damping of both LO and NES, which may

explain the difference in its width. It is also observed that, in the both cases, SMR zones shift to the right–hand–side.

This is certainly due to a nonlinearity induced in the linear spring anchorage of the LO. However, the behavior observed

experimentally shows that energy pumping, under harmonic excitation, is possible without having high amplitude detached

resonance tongue. Despite the small mass ratio, the NES induces significant changes in the behavior of the main linear

system and the frequency response curve of the LO is flattened. Qualitative behavior of the system is fully explained by the

theoretical study.

4 Conclusion

In this paper, the dynamic response of a 2 dof system comprising a harmonically excited Linear Oscillator strongly

coupled to a Nonlinear Energy Sink was investigated theoretically and experimentally.

The complexification–averaging thechnique was used to derive modulation equations. The modulation equations were

analyzed using asymptotic expansion. The zone of existence of stable strongly modulated response was determined using a

mapping procedure.

The first experiment presented was not optimized. This experiment had a relatively high mass ratio (ε = 12.9%). For

this case, the so-called strongly modulated response was not observed, but the obtained frequency response function match

fairly well with the theoretical prediction (fixed points computed using the complexification averaging technique). A design

procedure was then proposed to optimize the system. The aim of this procedure was to avoid the detached resonance curve

and allow SMR response at the same time. The improved experiment with ε = 1.2% and the associated measurements

were presented. Frequency response functions were plotted for two different excitation amplitudes. At both excitation

amplitudes, energy pumping by means of strongly modulated response was observed. A good correlation between theoretical

and experimental result was observed.

The experiment also showed that it is possible to avoid the detached resonance curve and still have energy pumping,

validating the design methodology.

The use of NES under harmonic excitation is a useful vibration mitigation device due to the lack of preferential linear

frequency. However, a proper design procedure must be conducted to avoid spurious high amplitude response.

Appendix A

Coefficients of Eq. (12):
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α0 =−(1+ ε)2
[
ε

2
λ

2
1 (1+ εσ)2 +1

]
F2 (1+ εσ)4 /Γ

α1 = (1+ ε)2
[
2λ2λ1 (1+ εσ)4 +λ

2
2

(
λ

2
1 (1+ εσ)2+

(1+ εσ)4 +σ(εσ+2)
(

2(1+ εσ)2 + εσ
2 +2σ

))
+

(1+ εσ)2
(

λ
2
1 (1+ εσ)2 +σ

2 (εσ+2)2
)]

/Γ

α2 =−3(1+ ε)2 K
[
λ

2
1 (1+ εσ)2 +σ(εσ+2)×(

(1+ εσ)2 + εσ
2 +2σ

)]
/
(

2Γ(1+ εσ)2
)

α3 =
9K2 (1+ ε)2

64(1+ εσ)6

With

Γ = 4λ
2
1 (1+ εσ)2 +4

[
(1+ εσ)2 + εσ

2 +2σ

]2
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Table 1. Parameters of the first experiment

Physical Parameters

m1 0.761kg m2 0.098kg

k1 5690N/m k2 1.473∗106 N/m3

c1 2.4Ns/m c2 0.1Ns/m

Reduced Parameters

ε 12.9% λ2 0.012

λ1 0.28 K 2.01∗103
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Table 2. Parameters of the second experiment

Physical Parameters

m1 4.178kg m2 0.052kg

k1 1.12∗104 N/m c1 3.97Ns/m

c2 0.36Ns/m

Reduced Parameters

ε 1.2% λ1 1.45

λ2 0.13
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Fig. 1. Schema of the 2 dof system comprising a LO and a NES
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Fig. 2. Exemple of SIM for K = 100, λ2 = 0.2
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Fig. 3. Illustration of the mapping procedure for K = 100, σ = 1, F = 0.15, ε = 0.01, λ1 = 0.1, λ2 = 0.2
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Fig. 4. First experimental set-up (ε = 12.9%)
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Fig. 5. Experimental (Green) and analytical (Blue) frequency response curve of the LO and the NES for the first experiments and F = 2.7N
(”o”: experimental periodic oscillation, ”∗”: experimental modulated oscillation, thin line: analytical stable fixed points, thick line: analytical
unstable fixed point)
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Fig. 6. Experimental measure of weak quasi-periodic response for F = 2.7N, f = 14.5Hz, ε = 12.9%
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Fig. 7. Boundary of the Saddle-Node bifurcation for K = 100, ε = 0.01, λ1 = 0.1, λ2 = 0.2
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Fig. 8. Critical forcing amplitude as a function of the nonlinear stiffness ε = 0.01, λ1 = 0.1, λ2 = 0.2
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Fig. 9. Zone of SMR as a function of the forcing amplitude for K = 1000, ε = 0.01, λ1 = 0.1, λ2 = 0.2
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Fig. 10. General view of the second experimental set-up (ε = 1.2%)
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Fig. 11. Design curve corresponding to physical parameters

Etienne Gourc Paper VIB-13-1091 31



Fig. 12. Force-displacement relationship of the designed NES
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Fig. 13. Experimental (Green) and analytical (Blue) frequency response curve of the LO and the NES for the second experiments and
G = 0.25mm (vertical red line : analytically determined zone of SMR, vertical dashed line: experimentally determined zone of SMR, thin
black line: theoretical FrF without NES)
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Fig. 14. Experimental measurement of SMR with the second experiment with G = 0.25mm, f = 8.5Hz, ε = 1.2% (Point A in Fig. 13)
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Fig. 15. Experimental (Green) and analytical (Blue) frequency response curve of the LO and the NES for the second experiments and
G = 0.325mm (vertical red line : analytically determined zone of SMR, vertical dashed line: experimentally determined zone of SMR)
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