
HAL Id: hal-01820068
https://hal.insa-toulouse.fr/hal-01820068

Submitted on 23 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chatter in interrupted turning with geometrical defects:
an industrial case study

Sébastien Seguy, Lionel Arnaud, Tamás Insperger

To cite this version:
Sébastien Seguy, Lionel Arnaud, Tamás Insperger. Chatter in interrupted turning with geometrical
defects: an industrial case study. International Journal of Advanced Manufacturing Technology, 2014,
75 (1-4), pp.45-56. �10.1007/s00170-014-6120-0�. �hal-01820068�

https://hal.insa-toulouse.fr/hal-01820068
https://hal.archives-ouvertes.fr


CHATTER IN INTERRUPTED TURNING WITH 

GEOMETRICAL DEFECTS: AN INDUSTRIAL 

CASE STUDY  

 1*Sébastien SEGUY, 2Lionel ARNAUD, 3Tamás INSPERGER  

1Université de Toulouse; INSA; ICA (Institut Clément Ader); 135 avenue de 

Rangueil, F-31077 Toulouse cedex 4, France 

2Université de Toulouse; ENIT (École Nationale d’Ingénieurs de Tarbes); LGP 

(Laboratoire Génie de Production), 47 avenue d’Azereix, BP 1629, F-65016 

Tarbes cedex, France 

3Department of Applied Mechanics, Budapest University of Technology and 

Economics, H-1521 Budapest, Hungary 

*Corresponding author. Tel.: +33 05 61 17 11 80 sebastien.seguy@insa-toulouse.fr (S. SEGUY) 

L. ARNAUD lionel.arnaud@enit.fr T. INSPERGER insperger@mm.bme.hu 

Abstract 

In this paper, machine tool chatter arising in an interrupted turning process is investigated in a 

strong industrial context with a complex flexible part. A detailed analysis of the real cutting 

process is performed with special respect to the geometrical defects of the part in order to highlight 

the source of machine tool vibrations. The analysis is completed by simple models to estimate the 

forced vibrations in interrupted turning, the gyroscopic effect, and the mode coupling using a new 

simplified formulation. Then, a new dynamical model with interrupted cutting and geometrical 

inaccuracies – runout and orientation of eccentricity – is presented. Stability analysis of this model 

is performed by the semi-discretization method, an improved technique for analyzing delay-

differential equations. The use of all these models on a given machining configuration allows 

comparing several vibration mechanisms. Thus, behavior’s specificities are highlighted, especially 

the influence of eccentricity runout on stability. A sensitivity analysis shows the effect of the value 

and the orientation of the geometrical defects for low speed conditions. Then this result are 

extrapolated to high-speed conditions to look for possible new stable cutting conditions and shows 

a period doubling flip instability, never described before in turning operations. The main focus of 

this paper is developing and exploring a stability model for interrupted cutting in turning with 

geometrical defects. The complexity of the industrial context led to methodically compare 

different chatter and vibration mechanisms, this approach can be generalized to other industrial 

contexts. 
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3B1. Introduction 

The productivity of machining operations is often limited by vibrations. 

Especially, the self-excited vibration – or chatter – degrades the surface finish of 

the part, increases the tool wear and reduces the spindle lifespan. However, this 

phenomenon is not new, already in 1907 F.W. Taylor wrote: “Chatter is the most 

obscure and delicate of all the problem facing the machinist, and in the case of 

castings and forgings of miscellaneous shapes probably no rules or formula can 

be devised which will accurately guide the machinist in taking the maximum cuts 

and speeds possible without producing chatter” [1]. The chatter is generally 



induced by the time delay between two consecutive part revolutions. By the effect 

of some small external disturbance, the tool start damped oscillation relative to the 

workpiece, and the surface roughness is undulated. For the next revolution – in 

turning – the chip thickness is modulated. The equations of motion modeling such 

mechanism are typically delay-differential equations (DDE). This regenerative 

mechanism is well known and presented first for turning process [2,3]. Since these 

works, many researchers have improved the knowledge by the well know stability 

lobe representation and its adaptation to special cases [4-8]. 

Several complementary methods to simulate chatter exist in the literature. The 

most powerful, potentially, are numerical methods using time domain simulation 

of the equation of motion. These methods may simulate phenomenon at the scale 

of the cutting tooth, or even at the scale of the tip of the tool, for surface 

roughness prediction [9]. Methods using finite elements to model the tool-part 

contact are promising, but remain limited by the complexity of the mechanical 

models and by the long time simulation for realistic machining operations. 

Currently, they still do not provide the expected comprehensive approach [10] and 

simplified model must be used. Thus, since the early 2000's, various approaches 

based on the analysis of the stability of models using delay-differential equations 

have been presented [11,12]. These approaches are powerful for the detection of 

classical Hopf instability, but they can also detect period doubling (also called 

flip) instability. This last instability is typical for highly interrupted cutting, like 

for milling with small radial engagement [13]. In particular, the semi-

discretization method developed and improved by Insperger and Stépán seems to 

be a reliable and a powerful technique [14-16], and has been successfully applied 

to the analysis of different cutting processes [17-21].  

The stability of turning process was often modeled by systems to 1 Degree-Of-

Freedom (DOF), 2 DOF or 3 DOF mass-spring-dampers. With this modelling, 

analytical predictions have been developed for orthogonal cutting, to plot stability 

diagrams [22,23]. Minis et al. [24] used the Nyquist criterion as an alternative 

approach to obtain the chatter free conditions. However, this approach can be 

applied only to 1 DOF models. Two DOF models were developed for the case 

where the workpiece and the tool are flexible [25]. Chandiramani and Pothala [26] 

presented a 2 DOF model of the cutting tool, which involves the non-linearity 

when the tool leaves the cut due to large chatter amplitudes. Control of chatter in 



case of a 1 DOF model was analyzed in [27]. The turning process is also analyzed 

by the non-linear dynamics of a state-dependent delay model, in order to mitigate 

the chatter by Nonlinear Energy Sink [28]. A numerical continuation technique is 

developed that can be used to follow the periodic orbits of a system with 

implicitly defined state-dependent delays [29]. Dombovari et al. [30] presented a 

model of orthogonal cutting to analyze large amplitude motions. The model was 

formulated as a delay differential equation and included the regenerative effect 

and the non-linearity when contact between the cutting tool and the workpiece is 

lost. 

Models have been developed for stability analysis of some special cases of boring 

process in [31,32]. These classical approaches use a 1 or 2 DOF models and 

derive the classical stability lobe for perfect process, i.e. without geometrical 

defect and without interrupted cutting. Budak and Ozlu [33] extended the model 

to a multi-DOF systems. The effects of the three cutting angles, the insert nose 

radius and the dynamics of the components were included in the cutting system in 

all directions in a 3 DOF model. The case of interrupted turning was presented 

theoretically in the work of Szalai and Stépán [34]. Like for milling operations, 

the highly interrupted turning leads to a period doubling instability for certain 

parameter combinations. In practice, there are several geometrical defects, which 

influence the dynamics and sometimes destroy the simple structure of the stability 

lobes. One of them is the eccentricity where the geometric axis of the turning part 

differs from the rotation axis. However, this defect was only analyzed for milling 

process stability [35], and 1-period (or cyclic fold) bifurcation arises including 

runout [36]. To the best knowledge of the authors [37], relatively little work has 

been published on interrupted turning, and nothing for turning with flexible 

workpiece including geometrical defects.  

This article focuses on the stability analysis of interrupted turning with 

geometrical defects where the workpiece is flexible. Various vibration 

mechanisms are investigated to explain the experimental results: forced vibrations 

related to interrupted cutting forces, regenerative vibrations related to surface 

undulation and delay, mode coupling vibrations between two orthogonal 

eigenmodes and gyroscopic effect for high spindle speed [37]. A new dynamical 

model is developed to describe the effect of the eccentricity of the workpiece, as 

the runout effect was clear during experiments. Theoretical stability predictions 



are obtained using the semi-discretization method. The article is organized as 

follows. The industrial context and cutting test analysis are presented in Section 2. 

The model of interrupted turning with geometrical defects is described in Section 

3. Simulation results are discussed in Section 4. Finally the study is concluded in 

Section 5. 

4B2. Experimental approach 

This section presents the experimental approach developed with all the 

specifications, constrains of mass production and the results obtain in this context. 

First, the industrial context of experimental analysis is presented, then the modal 

analysis is conducted, then the geometrical inaccuracies – runout – are analyzed, 

and finally the stability is investigated with frequency analysis. 

10B2.1. Industrial context  

The Ford Aquitaine Industries factory manufactures automatic transmissions for 

the U.S. market. Automatic transmissions are composed of the following parts: 

input shaft (connected to the motor), the inverter (clutch), various planetary 

gearboxes with clutches and brakes associated with different gear ratios, the oil 

pump (which supplies the pressure for controlling the clutches and brakes), the 

hydraulic control valve and finally the output shaft which transmits motion to the 

wheels. The current study deals with the vibrations during the machining of a ring 

element, which supports a shaft passing through the oil pump. This ring element is 

made of bronze and serves as a guide, but must also allow oil circulation through 

its angular sectors (Fig. 1). The manufacturing process is fully automated. The 

assemblage generates geometrical defects between the support and the ring, 

therefore the diameter of mounting on the lathe and the diameter of the ring are 

not exactly concentric. These defects – the value and the orientation of 

eccentricity – are slightly different for different assemblies due to manufacturing 

tolerances. The support of the pump is not a body of revolution because of the 

gear pump. In order to machine the various surfaces, a special mandrel is used to 

shift the rotation center and to keep equilibrated the system during machining 

(Fig. 2). The adjustable eccentricity of the mandrel may generate flexibly, 

increases the overhang part and generate runout on the machine. 



In this real industrial problem, all the constraints of mass production are imposed, 

i.e. limited time for on-site experiments and unavoidable on-site measurement 

inaccuracies. 

11B2.2. Modal analysis 

Before machining, hammer impact tests are made on the following items: ring 

hollow shaft support, workpiece, tool, spindle. Since the tool is found to be rigid 

compared to the other elements, its stiffness and frequency response is neglected 

in the study. The corresponding frequency response functions (FRF) of the 

workpiece is obtained by a hammer impact tests using an instrumented hammer 

(2302-10, Endevco), a velocimeter (VH300+, Ometron) and a data acquisition 

system (Pulse, Brüel & Kjær). It became clear that the hollow shaft is by far the 

most flexible element, this result is also confirmed by a simplified finite element 

calculations. Fig. 2 shows the setup of the frequency response measurement. For 

the hollow shaft, two very close frequencies are find at approximately 1800 Hz 

along the x axis and 1850 Hz along the y axis, with a stiffness of 15 N/µm and a 

damping ratio of 0.7%. Since the system is not axisymmetric, the difference 

between the FRF in different radial directions (e.g. in the x and y directions) can 

clearly be explained. The modal parameters are collected in Table 1. Finite 

element analysis of a simplified geometry of the pump support assembly with the 

hollow shaft and the ring provided a frequency very close to the one obtained by 

impulse test with accuracy less than 10 Hz. In fact, a simple cantilever beam 

model also provides the same frequency with accuracy around 50 Hz. 

12B2.3. Geometrical defects analysis 

Each assembly contains 3 machined parts. Every day 10 assemblies out of 1200 

are scraped due to their non-conformability, moreover the need for visual 

inspection of all the workpieces also increases the manufacturing costs. The 

complexity of the manufacturing process is also an important aspect. Each of the 3 

workpieces of the assembly is produced through 2 or 3 groups of machining 

operations, each of them involving 3 or 4 machines tools resulting in about 50 

different combinations for each workpiece and thus 50×50×50 possible 

combinations for the assembled products. Thus systematic analyses of the defects 

in each operation step on each assembly are practically impossible. An 



identification of the numerous factors that are the possible sources of the vibration 

has been developed [38]. 

In this study, it is shown that there is no simple correlation between geometrical 

defects, at various stage of the process, and the vibrations observed. The main 

geometrical defects are the concentricity and the perpendicularity (Fig. 3), but the 

combination of these defects does not explain systematically the onset of 

vibrations. 

Moreover, a very detailed study of the manufacturing process over several weeks 

has shown that operators were able to make some subtle adjustments, improving 

slightly the quality of the production. Unfortunately it is not possible to determine 

exact procedures because these adjustments are done below the graduated scales 

on the machines. For example, such subtle adjustments on tool height and 

concentricity of the workpiece holder may reduce the scrap ratio below 1% for a 

while, but unfortunately it was almost impossible to reduce the average scrap ratio 

to less than 1%. 

Comparison to another similar machining processes in the factory, not subjected 

to vibrations, has shown that stiffness of the workpiece-tool-machine system is 

probably also an important factor, but again it does not explain the occurrence of 

the vibrations alone. 

Finally, because this machining process is at very high level of production, it is 

not realistic to consider major modifications of the process to reduce the vibration, 

because the cost associated would be too high. Practically, a preliminary study 

shown that a small adjustment on the cutting angle resulted in a major 

improvement of the scrap ratio even if the real source of the problem has not been 

clearly identified at this stage [38]. The aim of this paper is to try to go further in 

the analysis of the phenomenon. 

13B2.4. Stability problem and frequency analysis 

The spindle speed is 2200 rpm (Vc = 131 m/min), radial engagement during semi-

finishing is 0.12 mm, during finishing is 0.05 mm. At the beginning, the process 

was designed for a single-step finishing with 0.17 mm radial pass, but because of 

vibrations it has never been possible and semi-finishing has been introduced. The 

lead angle of the tool is  = 95°, the axial and the radial cutting angles are 



-8°, respectively, the nose radius is r = 0.8 mm, diamond insert PC50 is 

used with no lubrication (dry machining). 

The optical analysis of the vibrations on the machined surface allows 

approximating the associated frequencies (Fig. 4). By measuring the number of 

vibration marks on one of the four sectors and by extrapolation over the non-

machined sectors, one can count around 50 marks per revolution. Considering that 

the workpiece spindle speed is 2200 rpm this marks corresponds to a frequency of 

1833 Hz. The helix associated to these marks is due to the fact that the number of 

vibration cycles per workpiece revolution is not an integer, thus a phase shift 

appear during machining and create the helix. Some workpieces showed rapid 

variations of this helix angle, this demonstrate that dynamic behavior may vary 

quickly along the machining.  

Acoustic measurement during machining showed the same main frequency, 

around 1850 Hz, illustrated in Fig. 5. During machining the frequency slightly 

increase but only around 0.2%. The same vibration frequency was measured by a 

laser velocimeter at the rotating workpiece, and by a piezoelectric accelerometer 

on the spindle. 

3. Model of interrupted turning with geometrical 

defects 

This section presents the modeling approach developed in order to explain and 

reduce the vibrations during interrupted turning with geometrical defects. First, 

the forced vibrations in interrupted turning are estimated by a simple model, then 

a simple gyroscopic model is presented, after the mode coupling is studied, and 

finally a new dynamic modeling for interrupted turning is presented. 

3.1 Forced vibrations in interrupted turning 

First, forced vibrations in interrupted turning are investigated in order to explain 

the vibration problem. With the cutting parameters and according to the tool 

manufacturer, the tangential and the radial force components are respectively 

about 30 N and about 5 N. During the initial development process, cutting forces 

were estimated at 150 N and 20 N. Due to presence of too frequent vibrations, the 

finishing was divided in two steps (Section 2.4). It may be noted that a force of 10 



N corresponds to a static bending of about 0.7 µm, which is the same order as the 

amplitude of the machining grooves (of the order of 1 µm). 

In interrupted turning, the cutting forces are not constant. In order to show the 

various harmonics of the main cutting force, the Fourier expansion of a typical 

interrupted cutting force is considered as an illustration. Only the first 10 

harmonics (Fig. 6), are kept, and the following expression was found: 

𝐹(𝑡) = 0.62𝐹0 [1 + 0.95 𝑐𝑜𝑠 (
2𝜋𝑡

𝑇
) − 0.35 𝑐𝑜𝑠 (

4𝜋𝑡

𝑇
) − 0.14 𝑐𝑜𝑠 (

6𝜋𝑡

𝑇
) +

0.26 𝑐𝑜𝑠 (
8𝜋𝑡

𝑇
) − 0.06 𝑐𝑜𝑠 (

10𝜋𝑡

𝑇
) − 0.13 𝑐𝑜𝑠 (

12𝜋𝑡

𝑇
) + 0.13 𝑐𝑜𝑠 (

14𝜋𝑡

𝑇
) +

0.02 𝑐𝑜𝑠 (
16𝜋𝑡

𝑇
) − 0.11 𝑐𝑜𝑠 (

18𝜋𝑡

𝑇
) + 0.06 𝑐𝑜𝑠 (

20𝜋𝑡

𝑇
)], (1) 

where F0 is the mean value of the cutting force. 

Compared to experiments, no harmonic of the shock passing frequency (2200 rpm 

with 4 sector of cut) 146.6 Hz is present from 1800 to 1850 Hz (nearest harmonics 

are n°12 (a12) and n°13 (a13) at 1760 Hz and 1906 Hz, respectively). In addition, 

the coefficients are very low for both harmonics closest (respectively -0.08 and 

0.01). Considering the maximum resonance, the forced displacement dmax is 

expressed as follow: 

𝑑𝑚𝑎𝑥 =
𝑎12𝐹

𝑘2𝜉
 , (2) 

with a 10 N radial force, the forced displacement would be 3.8µm. Although 

resonance effect has the capability to generate the observed defects, we will 

investigate other vibration mechanisms. First we will naturally investigate 

gyroscopic effect to try to explain a possible frequency shift that would lead to 

resonance. 

3.2 Gyroscopic effect 

As mentioned is Section 2.2, the system can be modeled by a simple rotating 

flexible beam of length L as shown in Fig. 7. 

The equation of motion for a rotating beam can be classically expressed as follow, 

including the gyroscopic effects: 

[
𝑚 0
0 𝑚

] {
𝑞̈1
𝑞̈2
} + Ω [

0 −𝑎
𝑎 0

] {
𝑞̇1
𝑞̇2
} + [

𝑘 0
0 𝑘

] {
𝑞1
𝑞2
} = {

0
0
}, (3) 

where Ω is spindle speed and qi is the modal displacement in the i directions, i.e. 

transverse to the axis of the cantilever. The mass m is defined by 

𝑚 = ∫
1

2

𝐿

0
𝜌𝑆𝛷(𝑥)

2 𝑑𝑥, (4) 



where 𝜌 is the density, S is the section of the beam and 𝛷(𝑥) is the modal shape. 

The stiffness k reads 

𝑘 = ∫
1

2

𝐿

0
𝐸𝐼𝛷̈(𝑥)

2 𝑑𝑥, (5) 

where E is the modulus of elasticity and I is the moment of inertia. The coefficient 

a is 

𝑎 = ∫ 2𝜌
𝐿

0
𝐼Φ̇(𝑥)Φ(𝑥)𝑑𝑥. (6) 

The function  is classically approximated using the modal shape of first mode of 

the non-rotating beam. 

The classical analytical treatment of the Eq. (3) gives the following two vibrations 

frequencies: 

𝜔1 = √𝜔0
2 +

𝑎2𝛺2

2𝑚2 (1 − √1 +
4𝑚2𝜔0

2

𝑎2𝛺2
) , (7) 

𝜔2 = √𝜔0
2 +

𝑎2𝛺2

2𝑚2 (1 + √1 +
4𝑚2𝜔0

2

𝑎2𝛺2
). (8) 

The corresponding Campbell diagram can be seen in Fig. 8. As it can be seen, the 

separation of the dual mode of bending in two modes, by gyroscopic effect is 

negligible, less than +/- 0.0125% at 10000 rpm. 

As a conclusion the gyroscopic effect cannot explain a sufficient shift in 

frequency to lead to resonance. We will then now study the mode coupling effect, 

well-known as primary chatter, to try to explain the phenomenon observed. 

3.3 Mode coupling effect: primary chatter 

The first explanation of the phenomenon of the mode coupling effect was given 

by Tlusty et al. [3]. Because exact calculation is quite complex we may 

approximate the magnitude of the phenomenon. Let’s suppose that the movement 

of the flexible part is elliptical, as described in Fig. 9. During the C to D path 

energy is dissipated because the movement is against the cutting force. Then 

during the D to C path energy is gained, and more than what dissipated because 

the cutting force is greater. At the same time some energy is always dissipated by 

the damping of the system. Thus vibrations are the result of equilibrium between 

damping loss and cutting force energy provided during oscillations.  

The damping force energy W1 during one cycle is approximated by: 

𝑊1 ≈ 𝑐 × 𝑉 × 𝐿 , (9) 



with c the damping, V the average velocity and L the path length of the 

displacement. 

The length of the ellipse is approximated by 𝜋(∆𝑥 + ∆𝑦) and if we consider that 

the modes are quite orthogonal and with similar amplitudes, the expression of W1 

is approximated by: 

𝑊1 ≈ 2𝑚𝜉𝜔0
𝜋(Δ𝑥+Δ𝑦)

2𝜋

𝜔0

𝜋(Δ𝑥 + Δ𝑦). (10) 

The cutting force energy W2 during one cycle is expressed by: 

𝑊2 = ∮ 𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦𝑒𝑙𝑙𝑖𝑝𝑠𝑒
 , (11) 

with, 

𝑥 = ∆𝑥𝑐𝑜𝑠𝜃 ; 𝑦 = ∆𝑦𝑠𝑖𝑛𝜃 ;  𝑑𝑥 = −∆𝑥𝑠𝑖𝑛𝜃𝑑𝜃 ; 𝑑𝑦 = ∆𝑦𝑐𝑜𝑠𝜃𝑑𝜃. (12) 

If we consider a linear cutting law: 

𝐹𝑥 = −𝐴𝑝𝐾𝑡(𝑦0 + 𝑦) ; 𝐹𝑦 = −𝐴𝑝𝐾𝑟(𝑦0 + 𝑦). (13) 

Substituting (12)-(13) in Eq. (11), W2 is expressed by: 

𝑊2  =  ∫ −𝐴𝑝𝐾𝑡(𝑦0 + ∆𝑦𝑠𝑖𝑛𝜃)(−∆𝑥𝑠𝑖𝑛𝜃)𝑑𝜃 + ∫ −𝐴𝑝𝐾𝑟(𝑦0 +
2𝜋

0

2𝜋

0

∆𝑦𝑠𝑖𝑛𝜃)∆𝑥𝑐𝑜𝑠𝜃𝑑𝜃. (14) 

If we consider that Fy component has a null energy during one cycle and that Fx 

component is linear with x, W2 is approximated by 

𝑊2 ≈ 𝐴𝑝𝐾𝑡∆𝑥∆𝑦 𝜋. (15) 

With Ap the length of the cutting edge engaged (along z axis) and Kt the tangential 

cutting force coefficient (i.e. in x direction). 

The equilibrium condition of energy, is 

𝑊1 = 𝑊2. (16) 

Assuming that ∆𝑥 ≈ ∆𝑦, which is a large simplification of course but ∆𝑥 and ∆𝑦 

must anyway be in the same order of magnitude for the coupling effect to take 

place, so it comes: 

2𝑚𝜉𝜔0
2𝜋∆𝑥
2𝜋

𝜔0

2𝜋Δ𝑥 ≈ 𝐴𝑝𝐾𝑡∆𝑥∆𝑦 𝜋. (17) 

The maximal depth of cut without primary chatter is then: 

𝐴𝑝 ≈
4𝑚𝜉𝜔0

2

𝐾𝑡
, (18) 

with the parameters collected on Table 1 and Table 2, the limit depth of cut is ≈

1.5 mm. This approximation shows that in our context primary chatter could 

probably not appear. More over according to [3], the modes coupling may occur 



only when the orientation of the lower frequency mode is between the cutting 

force and the normal of the machined surface. In our context, with a near 

axisymmetric system, the modes are near x and y axis and the radial cutting force 

is toward the workpiece, it is thus quite impossible to reach this condition thus to 

have primary chatter. 

3.4 Mechanical model 

The mechanical model of the turning process is shown in Fig. 10. A preliminary 

study showed that the gyroscopic effect is negligible (Section 3.2), therefore, the 

part can be described by a 1 DOF system (Table 1, Section 2.2), in the x direction.  

The dynamic model is defined by the following equation: 

𝑚𝑥(𝑡)̈ + 𝑐𝑥(𝑡)̇ + 𝑘𝑥(𝑡) = 𝐹𝑥(𝑡) , (19) 

where m is the modal mass, c is the damping, k is the stiffness, and Fx(t) is the 

cutting force. The cutting force is expressed by a linear cutting law: 

𝐹𝑥(𝑡) = 𝐴𝑝(𝑡)𝐾𝑡𝑔(𝑡)(𝑥(𝑡) − 𝑥(𝑡 − 𝜏)) , (20) 

where Ap(t) is the depth of cut, which is time-dependent due to the runout, Kt is 

the tangential cutting coefficient and  is the regenerative time delay: 

𝜏 =
60

Ω
 , (21) 

where Ω is the spindle speed in rpm. Function g(t) is a T-periodic screen function, 

it is equal to 1 if the tool is cutting, and 0 if the tool is vibrating freely: 

𝑔(𝑡) =

{
 
 

 
 
1 if  mod (𝑡, 𝑇) ≤ 𝑇𝑐1                      

0  if  mod(𝑡, 𝑇) ≤ 𝑇𝑐1 + 𝑇𝑓1            

1  if  mod(𝑡, 𝑇) ≤ 𝑇𝑐1 + 𝑇𝑓1 + 𝑇𝑐2
⋮                                                   

0  if   𝑇 − 𝑇𝑓4 < mod(𝑡, 𝑇) ≤ 𝑇     

 , (22) 

where mod(t,T) denotes the modulo function (e.g. mod(12, 5) = 2), 𝑇𝑐𝑖 and 𝑇𝑓𝑖, 

𝑖 = 1,2…𝑛 are the periods of cutting and free motions associated to the angular 

sectors shown in Fig. 10, and 𝑇 = ∑ (𝑇𝑐𝑖 + 𝑇𝑓𝑖)
4
𝑖=1  is the rotation period of the 

workpiece. The scaled values tci and tfi are summarized in Table 2. Note that T is 

the rotation period, which is equal to the regenerative delay . 

The eccentricity is described by two parameters: d is the absolute value of the 

runout and  is the orientation angle of the runout compared to the onset of the 

machined segments. The actual time-dependent depth of cut can be expressed as: 

𝐴𝑝(𝑡) = 𝐴𝑝,𝑖𝑑 − 𝑑 𝑐𝑜𝑠 (
𝛺2𝜋

60
𝑡 − 𝛼), (23) 



where 𝐴𝑝,𝑖𝑑 is the axial depth of cut in the ideal case without any eccentricity.  

This new mechanical model contains all the parameter for analysis of stability in 

interrupted turning process with geometrical inaccuracies, i.e. runout and 

orientation of eccentricity. 

4. Theoretical stability predictions 

This section presents the theoretical predictions. First, the semi-discretization 

method is presented and the specifications are highlighted. Then the stability 

study is conducted in the case of real industrial case, and finally the results are 

extrapolated to the high-speed domain to high light the appearance of flip lobes, in 

turning, which is new. 

4.1 Semi-discretization method 

The semi-discretization method is presented according to [15], it’s a well-known 

method, validated in many configurations machining [16]. Eqs. (19) and (20) 

imply: 

𝐱̇(𝑡) = 𝐀(𝑡)𝐱(𝑡) + 𝐁(𝑡)𝑢(𝑡 − 𝜏), (24) 

𝑢(𝑡) = 𝐂𝐱(𝑡), (25) 

with  

𝑥(𝑡) = (
𝑥(𝑡)

𝑥̇(𝑡)
) ,   𝐴(𝑡) = (

0 1
𝐴𝑝(𝑡)𝐾𝑡𝑔(𝑡)

𝑚
− 𝜔0

2 −2𝜁𝜔0
) ,   𝐵(𝑡) = (

0
𝐴𝑝(𝑡)𝐾𝑡𝑔(𝑡)

𝑚

),   

𝐂 = (1 0),  

where 𝜔0
2 = 𝑘/𝑚 is the dominant angular natural frequency of the workpiece 

and 𝜁 = 𝑐/(2𝑚𝜔0) is the damping ratio. Eqs. (24) and (25) form a delay-

differential equation with periodic coefficients. Note that the period of the system 

is equal to the regenerative delay, i.e., 𝐀(𝑡) = 𝐀(𝑡 + 𝜏) and 𝐁(𝑡) = 𝐁(𝑡 + 𝜏). The 

stability is analyzed by the first-order semi-discretization method [15,16]. The 

approximate semi-discrete system for Eq. (24) reads  

𝐲̇(𝑡) = 𝐀𝑗𝐲(𝑡) + 𝐁𝑗 (𝛽1(𝑡)𝑣(𝑡𝑗−𝑟+1) + 𝛽0(𝑡)𝑣(𝑡𝑗−𝑟)) ,       𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1], (26) 

𝑣(𝑡) = 𝐂𝐲(𝑡), (27) 

where 𝑡𝑗 = 𝑗Δ𝑡, Δ𝑡 = 𝜏/𝑛  is the discretization step, n is an integer approximation 

parameter and 



𝐀𝑗 =
𝟏

Δ𝑡
∫ 𝐀(𝑡)d𝑡,     
𝑡𝑗+1

𝑡𝑗

𝐁𝑗 =
𝟏

Δ𝑡
∫ 𝐁(𝑡)d𝑡,
𝑡𝑗+1

𝑡𝑗

  

𝛽1(𝑡) =
𝑡 − 𝜏 − (𝑗 − 𝑛)Δ𝑡

Δ𝑡
,    𝛽0(𝑡) =

𝑡 − 𝜏 − (𝑗 − 𝑛 + 1)Δ𝑡

Δ𝑡
. 

The system (26)-(27) can be solved as an ODE over the discretization interval 

[𝑡𝑗 , 𝑡𝑗+1] resulting in the discrete map 

𝑦(𝑡𝑗+1) = 𝑃𝑗𝑦(𝑡𝑗) + 𝑅𝑗,0𝑣(𝑡𝑗−𝑟) + 𝑅𝑗,1𝑣(𝑡𝑗−𝑟+1), (28) 

where 

𝐏𝑗 = e
𝐀𝒋Δ𝑡,  

𝐑𝑗,0 = −∫
𝑠 − 𝜏 + (𝑛 − 1)Δ𝑡

Δ𝑡
e𝐀𝒋(Δ𝑡−𝑠)𝐁𝑗d𝑠

Δ𝑡

0

,  

𝐑𝑗,1 = ∫
𝑠 − 𝜏 + 𝑛Δ𝑡

Δ𝑡
e𝐀𝒋(Δ𝑡−𝑠)𝐁𝑗d𝑠  

Δ𝑡

0

.  

If 𝐀𝑗 is a regular matrix then the above integration gives 

𝐑𝑗,0 = (𝐀𝑗
−1 +

1

Δ𝑡
(𝐀𝑗

−2 − (𝜏 − (𝑟 − 1)Δ𝑡)𝐀𝑗
−1)(𝐈 − e𝐀𝒋Δ𝑡))𝐁𝑗 ,  

𝐑𝑗,1 = (𝐀𝑗
−1 +

1

Δ𝑡
(−𝐀𝑗

−2 − (𝜏 − 𝑟Δ𝑡)𝐀𝑗
−1)(𝐈 − e𝐀𝒋Δ𝑡))𝐁𝑗 .  

Using state-augmentation, the discrete time system can be written as an 

𝐳(𝑡𝑗+1) = 𝐆𝑗𝐳(𝑡𝑗), (29) 

with 𝐳(𝑡𝑗) = 𝑐𝑜𝑙 (𝐲(𝑡𝑗)    𝑣(𝑡𝑗−1)    𝑣(𝑡𝑗−2)    …     𝑣(𝑡𝑗−𝑛)) and 

𝐆𝑗 =

(

 
 

𝐏𝑗
𝐂
0
⋮
0

 

𝟎
0
1

  ⋯ 𝟎  
  ⋯ 0  
⋯

𝐑𝑗,1
0
0

⋮ ⋱ ⋮
0 ⋯ 1

 

𝐑𝑗,0
0
0
⋮
0 )

 
 

, (30) 

Multiple repeated applications of Eq.(30) with initial state 𝐳(𝑡0) gives the Floquet 

transition matrix for the semi-discrete system (26)-(27) in the form 𝚽 =

𝐆𝑗𝐆𝑗−1…𝐆0. Actually, 𝚽 provides a finite dimensional approximation of the 

infinite-dimensional monodromy operator of the original system (19)-(20).  

The stability of the approximate system (26)-(27) can be assessed by the 

eigenvalue analysis of matrix 𝚽. If all the eigenvalues are inside the unit circle of 

the complex plane, then the system (24)-(25) is asymptotically stable. Since semi-

discretization preserves asymptotic stability of the original system (19)-(20), the 

method can be used to construct approximate stability charts. 



4.2 Stability analysis in industrial context 

Stability charts are determined for interrupted turning without geometrical defects 

with the dynamic and cutting coefficient from Table 1 and Table 2. The 

approximation parameter for the semi-discretization method is r = 300. This 

parameter was selected in order to have good approximation for lower spindle 

speeds. The stability lobes – made with a 200×150 grid resolution of the 

parameter plane – are shown in Figure 11. The unstable, chatter domains are 

denoted by grey shading. 

In this industrial context, the spindle speed of the lathe is limited to 2300 rpm, 

which is associated with the 50th Hopf lobe. It is not typical in the literature to 

encounter regenerative spindle speeds around the 50th Hopf lobe [37]. At these 

spindle speeds, there are about 20 rpm difference between a maximum and a 

minimum stable depth of cut, which corresponds to less than 1% of the spindle 

speed. The vertical position of the optimal area is shifted proportionally to the 

modal frequency, which may vary from about 0.5% of a workpiece to another. 

The impacts of geometrical defects (eccentricity and orientation) are now studied 

through 3D graph representations, on the area of the 50th Hopf lobe. Three 

characteristic spindle speeds are investigated (Fig. 11):  

* 2230 rpm corresponding to the minimal depth of cut (point A),  

* 2250 rpm corresponding to a medium depth of cut (point B), 

* 2259 rpm corresponding to the maximal depth of cut (point C).  

For each case, the critical depths of cut were determined for several eccentricity 

and orientation using the semi-discretization method. 

The results for a spindle speed of 2230 and 2250 rpm are presented in Fig. 12 in 

3D plot form. The diagram was constructed by computing the maximal depth of 

cut, without chatter, over a 50×46 sized grid of eccentricity and orientation 

parameters. Without geometric defect, the critical depth of cut is maximal. The 

effect of the orientation defect is negligible, because the critical depth of cut is 

always the same for various orientations between 0° and 90°. On the other hand, 

the value of the eccentricity has an important impact on the process stability. 

Three areas are present on the contour plot (Fig. 12). For small defects, up to 3 

mm, the process stability is not affected. For a defect between 3 and 6 mm, the 

critical depth of cut decreases quite linearly. If the defect is higher than 6 mm, 

then it’s impossible to machine the part without chatter. 



Finally, Fig. 13 presents also a similar contour plot for a spindle speed of 2259 

rpm. The limiting value of the eccentricity is increased to 8 mm, just because of 

the spindle speed chosen. 

On the area of the 50th lobe, based on the above numerical studies, it can be 

concluded that the most critical parameter is the value of the eccentricity, and the 

dependence on the defect orientation is negligible. 

The results show that regenerative effect cannot explain the observed 

phenomenon, which showed the occurrence of chatter even for a few micrometers 

of eccentricity. However, since the effect of the geometrical defects has been quite 

rarely studied in interrupted cutting, the authors investigated the spindle speed 

range at around the first and the second stability lobes, even if experimental data 

were out of reach, because it is worth investigating the flip lobes, never described 

before in turning, 

4.3 Extrapolation of the stability properties to the high-speed domain 

In this section, the effect of geometrical defects is investigated on the area of the 

first Hopf lobe, corresponding to High Speed Machining cutting conditions. In 

this case the separation of the dual mode of bending in two modes, by gyroscopic 

effect is negligible, less than +/- 0.36% at 300000 rpm. The stability lobes are 

plotted for various eccentricity and two defects orientation for extremely large 

spindle speeds Fig. 14. 

Similarly to low spindle speed machining, the influence of the defect orientation 

on stability is negligible. As shown in Fig. 14, the stability lobes are the same for 

orientations of 0° and 30°. Complementary simulations have generalized this 

result for any orientation between 0° and 90°. 

The important impact of the eccentricity is presented on Fig. 14, for 0, 2, 5, 10 

and 15 mm values. 

– First, the eccentricity reduces the lower limit of stability lobes. For example, for 

a speed of 150 krpm, with no eccentricity, the critical depth of cut is 2.5 mm, but 

with a defect of 5 mm, the critical depth of cut decreases practically to zero. Note 

that the tool is still cutting even if the nominal depth of cut is zero, since the actual 

depth of cut is not zero due to the relatively large eccentricity, which is 

commensurate to the depth of cut. Similarly to low speed machining, the defect of 

eccentricity has great impact on the process stability. 



– Secondly, the eccentricity generates a special kind of instability next to the first 

Hopf lobe, similar to the well know flip lobe on interrupted milling [11]. This new 

instability is not generated by the interruption of the cutting, because without 

eccentricity the new unstable area is not show on the stability lobe (Fig. 14). It is 

rather related to the eccentricity of the workpiece. At small eccentricity values, an 

unstable island are born very similarly as it was shown in [34]. Then, for larger 

eccentricities, the island opens up and forms a stability lobe similarly to the period 

doubling stability lobes of low radial immersion milling or interrupted turning. 

75. Concluding remarks 

In this work, the stability of interrupted turning process with geometrical defects 

is investigated in a practical perspective of mass production. 

A detailed analysis of the real cutting process is performed with special respect to 

the geometrical defects of the part in order to highlight the source of machine tool 

vibrations. Simplified models were developed for modelling the forced vibrations 

in interrupted turning, the gyroscopic effect and the mode coupling effect – 

primary chatter. These simplified formulations can be easily transposed in 

industrial applications because practically any of these vibration mechanisms may 

be the source of problems but complete investigations are usually out of reach in 

an industrial context. 

A new stability modeling for interrupted turning is proposed. The model is based 

on the semi-discretization method, improved by the important aspect of 

interrupted cutting and geometrical inaccuracies (value and orientation of 

eccentricity). A sensitivity analysis of this model showed that the stability of the 

machining process is mainly sensitive to the value of the eccentricity, while the 

orientation of the defect from the interrupted cutting zones has no influence. 

The extrapolation in High Speed Machining, i.e. around the first stability lobe, 

show that a new zone of instability appears similarly to the flip lobes of low radial 

immersion milling or interrupted turning. This instability is only generated by the 

eccentricity and it’s not related to the interruption of the cutting process. These 

flip lobes have never been reported before in turning. 

This global approach with improved models (forced vibrations, gyroscopic effect, 

and primary chatter) and a new regenerative interrupted model including 

geometrical defects can be used to build a systematic approach for analyzing 



vibrations in other industrial contexts with geometrical defects. The authors 

emphasize the fact that in industrial contexts several vibration mechanisms are in 

competition and must be systematically compared, and that geometrical defects 

must be taken into consideration. 
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Fig. 12. Map of stability, influence of the geometrical defects (eccentricity and orientation) on the 

maximal chatter free depth of cut. Left: 2230 rpm (Pt. A). Right: 2250 rpm (Pt. B) 
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Fig. 14. Stability lobes with geometrical defects (eccentricity and orientation) at High Speed 
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Table 1 Modal parameters identified 

m  k 0 

0.1135 kg 0.7 % 15×106 N/m 11498.4 rad/s 

Table 2 Cutting parameters 

tci tfi Kt 

0.156 0.094 270 MPa 

 


