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Abstract

This paper investigates the passive control of chatter instability in turning processes using
a vibro-impact nonlinear energy sink (NES). The workpiece is assumed to be rigid and
the tool is flexible. A dynamical model including a nonlinear cutting law is presented
and the stability lobes diagram are obtained. The behavior of the system with the
vibro-impact NES is investigated using an asymptotic analysis. A control mechanism by
successive beating is revealed, similarly to the strongly modulated response in the case of
NES with cubic stiffness. It is shown that such a response regime may be beneficial for
chatter mitigation. An original experimental procedure is proposed to verify the sizing
of the vibro-impact NES. An experimental setup is developed with a vibro-impact NES
embedded on the lathe tool and the results are analyzed and validated.
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1. Introduction

The surface quality of parts produced by machining operations is strongly affected
by chatter. Chatter increases the surface roughness, tool wear and reduces the spindle
lifespan. A possible model for this phenomenon is to consider the primary chatter. In
this non resonant case, the coupling between two orthogonal cutting modes imply a pair
of non-linear ordinary differential equations [1, 2]. Another modelization — improved
and more used — is to consider the regenerative chatter. In this case, the instability is
induced by the time-delay between two consecutive passages of the cutting teeth. Due to
small disturbances, the lathe tool exhibit damped oscillations and the surface roughness is
undulated. For consecutive workpiece revolutions, the chip thickness will be modulated.
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Fishwick [3] and is mainly responsible for chatter instability. Since these works, many
researchers have improved the knowledge by the well known stability lobe representation
and its application to special cases [4, 5, 6, 7, 8, 9, 10]. A detailed nonlinear analysis of
chatter instability on turning processes has been carried out in [11] using the method of
multiple scales.

Various techniques for chatter mitigation have been investigated. These different
strategies may be divided in two categories, namely active and passive control. Con-
cerning active vibration control strategies, a variable spindle speed was used in milling
process to disturb the time delay [12]. The use of actively controlled piezzo-electric tools
has been studied for turning processes [13], also the use of a piezoelectric tool holder was
investigated theoretically and experimentally in [14]. Passive vibration strategies have
also been investigated. Tuned mass damper has been widely studied for machining oper-
ations. Specific tuning procedure was developed for the case of chatter [15]. A nonlinear
tuned mass damper with coulomb friction was analyzed for the case of turning in [16]
and milling in [17], while multiple tuned mass damper were applied in [18].

In the past decade, it has been demonstrated that the addition of a small mass,
strongly non-linear oscillator, called a nonlinear energy sink (NES), may lead to targeted
energy transfer. In this context, a NES is used to mitigate any unwanted disturbance
introduced in a primary system by efficiently transferring and eliminating energy from the
main system to the NES. In [19], it was demonstrated that the main phenomena allowing
targeted energy transfer is based on the 1 : 1 resonance capture. When the primary
system is subjected to harmonic forcing, the passive control acts through relaxation cycle,
referred as strongly modulated response (SMR) [20]. This behavior has been confirmed
experimentally in [21]. All these studies dealt with NES with cubic stiffness, however,
this type of NES may not be suitable for practical applications, mainly due to its size.
To overcome this problem, different types of NES have been proposed. Lamarque and
co-workers analyzed a NES with piecewise linear stiffness [22, 23]. Vibro-impact NES
for seismic mitigation have been studied numerically in [24] and experimentally in [25].
More recently, an analytical procedure based on the invariant manifold approach has
been developed for a vibro-impact NES under impulse loading [26].

The aforementioned research on NES concern the passive control of linear system. The
passive control of instability with NES is a growing interest. Reference [27] investigated
the mitigation of limit cycle oscillations in a Van der Pol oscillator using a NES with cubic
stiffness. It was shown analytically that the system exhibits three control mechanisms,
namely: suppression, stabilization and passive control through SMR. The case of a rigid
airfoil in an air flow has been treated theoretically and experimentally in [28, 29]. A
similar case has been analyzed by Vaurigaud [30], where a long bridge in which flutter
may occur is considered. The use of a NES has also been investigated in [31] to passively
control instabilities that may occur during drilling operations for oil and gas. The passive
control of chatter instability, using a NES with cubic stiffness, has been explored in [32].
The same three mechanism, as those found for the Van der Pol oscillator [27], have been
evidenced. A refined model taking into account the loss of contact of the tool during
high amplitude oscillations has been studied in [33].

The goal of the present paper is to investigate theoretically and experimentally the po-
tential benefit of a vibro-impact NES to passively control chatter instability in a turning
process. The system is composed of a flexible lathe tool on which a NES is embed-
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ded. The structure of the paper is as follows. The second section describes a model of
a turning process. The linearized system is analyzed in section 3. Section 4 provides
a theoretical analysis of the coupled system and a description of the response regimes.
Section 5 describes of the experimental setup. The tuning of the vibro-impact NES and
time history of the experimental measurements are also presented. Section 6 contains
concluding remarks and discussion.

2. Modelization of turning process

The uncoupled system consists of a flexible lathe tool which is assumed to vibrate only
in its first bending mode, perpendicular to the cutting direction. It has been shown that
the bending mode in the direction parallel to the cutting direction play an insignificant
role [34]. The workpiece is assumed to be rigid. A schematic representation of this system
is given in Fig. 1 and the corresponding equation of motion is written as follows

m1
d2q

dt2
+ c1

dq

dt
+ k1q = Fc (1)

where q represent the tool tip displacement, m1, k1 and c1 represent the modal mass,
stiffness and damping of the first bending mode, respectively. The cutting force takes
into account the regenerative effect and is expressed in polynomial form as follows [35]

Fc (∆h(t)) = p
(

ρ1h(t) + ρ2h(t)
2 + ρ3h(t)

3
)

(2)

where p is the depth of cut, h(t) represents the instantaneous chip thickness and ρi
(i = 1..3) are the specific cutting coefficients obtained from experimental measurements.
Typical values of these coefficients for steel cutting are given in [36]. The instantaneous
chip thickness may be expressed as follows

h(t) = h0 +∆h(t) (3)

here, h0 is the nominal chip thickness without vibration and h(t) represents the chip
thickness variation which depends on the instantaneous position of the tool tip, and the
position of the tool tip from the previous workpiece rotation, as illustrated in Fig. 1. It
is expressed as
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:h(t) = q(t− τ)− q(t) (4)

where q(t − τ) is the delayed position of the tool. τ is the time delay between two
successive tool passages, which corresponds to the period of one workpiece rotation τ =
2π/Ω (Ω is the workpiece angular speed). When the cutting process is stable, q(t) = q0.
Substituting Eq. (3) into (1) gives

k1q0 = p
(

ρ1h0 + ρ2h
2
0 + ρ3h

3
0

)

(5)

During unsteady regimes, the displacement is the sum of the steady component q0 and
an unsteady component u(t)

q(t) = q0 + u(t) (6)

Substituting Eqs. (5,6) into (1) give

m1
d2u

dt2
+ c1

du

dt
+ k1u = p

(

α1∆h̃+ α2∆h̃
2 + α3∆h̃

3
)

(7)

where ∆h̃ = u(t− τ)− u(t), α1 = 2ρ2h0 + 3ρ3h
2
0 + ρ1, α2 = 3ρ3h0 + ρ2 et α3 = ρ3. The

following changes of variables are introduced

T = ω1t, ω2
1 =

k1
m1

, 2µ1 =
c1

m1ω1
,

ψ =
pα1

m1ω2
1

, η1 =
pα2

ψm1ω2
1

, η2 =
pα3

ψm1ω2
1

(8)

After substitution of (8) into (7) we obtain

ü+ 2µ1u̇+ u = ψ
(

∆h̃+ η1∆h̃
2 + η2∆h̃

3
)

(9)

where the dot represents the differentiation with respect to the non-dimensional time T .

3. Analysis of the linearized system

After removing the nonlinear terms in the cutting law by setting η1 = η2 = 0 in Eq.
(9), the linearized equation of motion of the cutting tool is given by

ü+ 2µ1u̇+ u+ ψ (u(T − τ)− u(T )) = 0 (10)

The solution of (10) can be written by

u = u0e
(γ+iω)t (11)

where γ is the grow or decay rate, ω is the pulsation of the oscillations and u0 depends
on the initial conditions. After substituting Eq. (11) into (10), we obtain

ψ
(

1− e(γ+iω)τ
)

+ (γ + iω)
2
+ 2µ1 (γ + iω) + 1 = 0 (12)

After splitting Eq. (12) into real and imaginary parts, the following equations were
obtained:
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ψ (1− cos(ωτ)e−γτ ) + γ2 − ω2 + 2µ1γ + 1 = 0
ψ sin(ωτ)e−γτ + 2ω (γ + µ1) = 0

(13)

When γ > 0, the amplitude of the oscillations growth exponentially and the system is
unstable. On the contrary, when γ < 0, the amplitude of the oscillations decay with
time and the turning process is stable. In order to evaluate the stability boundary, we
set γ = 0 in Eq. (13)

ψ cos(ωτ) = ψ − ω2 + 1
ψ sin(ωτ) = −2µ1ω

(14)

Using trigonometric identity in (14), the pulsation of the bifurcated solution (also called
chatter frequency) is obtained as

ω = 1 + ψ − 2µ2
1 ±

√

−4µ2
1 + (ψ − 2µ2

1)
2

(15)

It is possible to prove that the bifurcation (γ, ψ, ω) = (0, ψc, ωc) is a Hopf bifurcation
[11]. For practical machining applications, the stability boundary is often plot in the
space of parameters (Ω, ψ) and is called the stability lobe diagram. An example of such
a diagram is depicted in Fig. 2. The turning process is stable for cutting conditions
under the lobes and is unstable otherwise.

4. Passive control of chatter instability using a vibro-impact NES

In this section, the dynamics of the lathe tool coupled with the vibro-impact NES is
investigated. A schematic representation of the coupled system is given in Fig. 3. The
corresponding dimensionless equations of motion between impact, after eliminating the
static deflection are written as follow

ü+ 2µ1u̇+ u = ψ
(

∆h̃+ η1∆h̃
2 + η2∆h̃

3
)

ǫ2ÿ = 0, ∀|ru− y| < ∆
(16)

where y represents the absolute displacement of the free mass of the vibro-impact NES,
ǫ2 = m2/m1 ≪ 1 represent the mass ratio between the modal mass of the tool and the
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mass of the vibro-impact NES, ∆ represents the gap between the free mass and the rigid
walls and r is an influence coefficient depending of the position of the vibro-impact NES
on the tool. The impacts are modelled using the Newton coefficient of restitution on
velocities and the condition of conservation of momentum as follow

u+ = u−, y+ = y−
ru̇+ − ẏ+ = −R (ru̇− − ẏ−)
u̇+ + ǫ2ẏ+ = u̇− + ǫ2ẏ−
for |ru− y| = ∆

(17)

here, the subscripts + and − represent the time immediately after and before impact
and R is the coefficient of restitution (R ∈ [0, 1]).

4.1. Asymptotic analysis

The following algebraic developments have been carried out using the computer alge-
bra software Maple. Equations (16) and (17) are analyzed using the method of multiple
scales. New coordinates are introduced as follow

v = u+ ǫ2y, w = ru− y (18)

where v and w represents the displacement of the center of mass and the internal
displacement of the vibro-impact NES, respectively. After substituting Eqs. (18) into
Eqs. (16,17), it follows

v̈ + 2µ1
v̇ + ǫ2ẇ

1 + rǫ2
+
v + ǫ2w

1 + rǫ2
= ψ

[

vτ + ǫ2wτ

1 + rǫ2
−
v + ǫ2w

1 + rǫ2

+η1

(

vτ + ǫ2wτ

1 + rǫ2
−
v + ǫ2w

1 + rǫ2

)2

+ η2

(

vτ + ǫ2wτ

1 + rǫ2
−
v + ǫ2w

1 + rǫ2

)3
]

rv̈ − ẅ

1 + rǫ2
= 0, ∀|w| < ∆

(19)

v+ = v−, w+ = w−
ẇ+ = −Rẇ−, v̇+ = v̇−
for |w| = ∆

(20)
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���� vτ = v(t − τ) and wτ = w(t − τ). Since secular terms first appear at O(ǫ3), a
detuning parameter representing the vicinity of ψ to ψc is introduced as follow [11]

ψ = ψc + ǫ2σ (21)

The solutions of Eqs (19,20) are expanded in power series as

v(T ; ǫ) = ǫv1(T0, T1, T2) + ǫ2v2(T0, T1, T2) + ǫ3v3(T0, T1, T2) + . . .
w(T ; ǫ) = ǫw1(T0, T1, T2) + ǫ2w2(T0, T1, T2) + ǫ3w3(T0, T1, T2) + . . .

(22)

where Tn = ǫnT (n = 0, 1, . . .). The time delay is considered to be of O(1), which is
rather natural if the behavior close to the order 0 lobe is analyzed. In this case, the
delayed position of the tool and the vibro-impact NES are written as

v(T − τ ; ǫ) = ǫv1(T0 − τ, T1, T2) + ǫ2 (v2(T0 − τ, T1, T2)− τD1v1(T0 − τ, T1, T2))

+ǫ3
(

v3(T0 − τ, T1, T2) +
τ2

2
D2

1v1(T0 − τ, T1, T2)− τD2v1(T0 − τ, T1, T2)

−τD1v2(T0 − τ, T1, T2)

)

+ . . .

w(T − τ ; ǫ) = ǫw1(T0 − τ, T1, T2) + ǫ2 (w2(T0 − τ, T1, T2)− τD1w1(T0 − τ, T1, T2))

+ǫ3
(

w3(T0 − τ, T1, T2) +
τ2

2
D2

1w1(T0 − τ, T1, T2)− τD2w1(T0 − τ, T1, T2)

−τD1w2(T0 − τ, T1, T2)

)

+ . . .

(23)
Substituting Eqs. (22,23) into Eqs. (19,20) and equating coefficients of like power of ǫ, it
comes

ǫ1 : D2
0v1 + 2µ1D0v1 + v1 − ψc (v1τ − v1) = 0

D2
0w1 − rD

2
0v1 = 0, ∀|w1| < ∆

v1+ = v1−, w1+ = w1−

D0v1+ = D0v1−, D0w1+ = −RD0w1−, for |w1| = ∆

(24)

ǫ2 :
D2

0v2 + 2µ1D0v2 + v2 − ψc (v2τ − v2) = −2µ1D1v1 − 2D0D1v1

−ψcτD1v1τ + ψcη1 (v1τ − v1)
2
, ∀|w2| < ∆

v2+ = v2−, w2+ = w2−

D0v1+ +D0v2+ = D0v1− +D0v2−,
D0w1+ +D0w2+ = −R (D0w1− +D0w2+) , for |w2| = ∆

(25)
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G3 :

D2
0v3 + 2µ1D0v3 + v3 − ψc (v3τ − v3) = 2µ1 (rD0v1 −D1v2 −D2v1 −D0w1)

+2ψcη1 (v1 − v1τ ) (D1v1τ − v2τ + v2)− ψcη2 (v1 − v1τ )
3
+ ψcr (v1 − v1τ )

+ψc

(

w1τ − w1 +
τ2

2
D2

1v1τ − τD1v2τ −D2v1τ

)

+ v1r − w1 − 2D0D1v2 − 2D0D2v1

−D2
1v1 + σ (v1τ − v1) , ∀|w3| < ∆

v3+ = v3−, w3+ = w3−

D0v1+ +D0v2+ +D0v3+ = D0v3− +D0v2− +D0v3−,
D0w1+ +D0w2+ +D0w3+ = −R (D0w1− +D0w2+ +D0w3+) , for |w3| = ∆

(26)
The other equations at order ǫ2 and ǫ3 are not given because they are not used in the
following analysis.

4.1.1. Order ǫ1

The solution of the first equation of (24) may be written as follow [11]

v1 = AeiωcT0 +

∞
∑

m=1

Ame
(γm+iωm)T0 + cc (27)

Where ωc is the critical chatter frequency corresponding to σ = 0, obtained using 15.
Close to the stability boundary, all the remaining roots γm± iωm have negative real part
and decay with time. Thus, the long time behavior is expressed by

v1 = AeiωcT0 + cc (28)

where cc denotes the complex conjugate of the preceding terms. Substituting (28) into
the second equation of (24), gives

D2
0w1 + rω2

c

(

AeiωcT0 + Āe−iωcT0

)

, ∀|w1| < ∆
w1+ = w1−, D0w1+ = −RD0w1−, for |w1| = ∆

(29)

This equation corresponds to a harmonically forced vibro-impact oscillator. Between
impact (i.e. when |w1| < ∆), the solution of (29) is given by

w1 = r
(

AeiωcT0 + Āe−iωcT0

)

+BT0 + C (30)

Like 1 : 1 resonance capture between the lathe tool and the vibro-impact NES is assumed,
we consider solutions with two symmetric impacts per cycle. The periodicity conditions
on a half period are written as follow

w1

(

π

ωc

)

= −w1(0), D0w1+

(

π

ωc

)

= −D0w1+(0) (31)

The solution between impact given by Eq. (30) together with the periodicity conditions
in Eq. (31) are used to recover the integration constants B and C. At time T0 = 0, it is
assumed that the free mass of the vibro-impact NES is in contact with the left side of
the cavity

8



w1(0) = ∆ (32)

Substituting Eq. (30) into the first periodicity condition in (31) yields

B = −
2Cωc

π
(33)

After substituting Eq. (30) into the second periodicity condition in Eq. (31) and in (32),
the following relations are obtained

rωci
(

A− Ā
)

(1 +R) +B (1−R) = 0
r
(

A+ Ā
)

+ C −∆ = 0
(34)

Substituting relation (33) into (34) and introducing polar form A = aeiα it follows

sinα =
Cδ

raπ
, cosα = −

C −∆

2ra
(35)

where δ = (R− 1)/(R+ 1). Using trigonometric identity in (35) yields

a2 =
C2δ2

r2π2
+
(C −∆)

2

4r2
(36)

Equation (36) represents the slow invariant manifold (SIM) of the problem at time scale
T1 when the vibro-impact NES oscillate with two symmetric impacts per period of os-
cillation of the lathe tool [26]. The SIM admit an extremum computed by vanishing the
derivative of the right hand side of (36) with respect to C

Cmin =
π2∆

4δ2 + π2
, a2min =

∆2δ2

r2 (4δ2 + π2)
(37)

Equation (37) is of particular interest since it represents the minimum amplitude of the
lathe tool which allow the vibro-impact NES to vibrate in regimes with two symmetric
impacts per cycle. The analysis of the stability of the SIM is not trivial due to the dis-
continuities in the velocities and requires analyzing the Poincaré section of the perturbed
system [37, 38]. The perturbed solutions of Eq. (29) are written as follow

w̃1 = ÃeiωcT0 + ¯̃Ae−iωcT0 + B̃1T0 + C1, 0 < T0 < t1

w̃1 = ÃeiωcT0 + ¯̃Ae−iωcT0 + B̃2T0 + C2, t1 ≤ T0 < te
(38)

where t1 = π/ωc + ∆t1, te = 2π/ωc + ∆t1 + ∆t2 and Ã takes into account a phase
perturbation as

Ã = aeiα+∆α (39)

The initial conditions of the perturbed system are given by

w̃1(0) = ∆, D0w̃1(0) = D0w1(0) + ∆ẇ (40)

and the periodicity conditions of the perturbed system are expressed as

9



~w1(t1) = −w̃1(0), D0w̃1(t1+) = −D0w̃1(0+),
w̃1(te) = w̃1(0), D0w̃1(te+) = D0w̃1(0+)

(41)

Substituting the solutions of the perturbed system given in Eq. (38) into (40,41) and
solving for Bi and Ci (i = 1, 2), it comes

B1 = 2raωc sin (α+∆α) +D0w1(0) + ∆ẇ
C1 = −2ra cos (α+∆α) + ∆
B2 = 2raωc(1 +R) sin (α+∆α+ ωct1)−RB1

C2 = −2t1raωc(1 +R) sin (α+∆α+ ωct1) + t1(1 +R)B1 + C1

(42)

The computed Poincaré section for solutions with two symmetric impacts per cycle is
obtained

∆ẇ′ = D0w̃1+(te)−D0w1(0+) ≡ f1 (∆ẇ,∆α)
∆α′ = ∆α+∆t1 +∆t2 ≡ f2 (∆ẇ,∆α)

(43)

The stability of the SIM is determined by the location of the eigenvalues of the Jacobian
matrix with respect to the unit circle. The Jacobian matrix of the linearized system is
written as follow

J =







∂f1
∂∆ẇ

∂f1
∂∆α

∂f2
∂∆ẇ

∂f2
∂∆α






(44)

It is observed that ∆ẇ′ = ∆ẇ′(δẇ,∆α,∆t1,∆t2) and that the temporal variables ∆ti,
i = 1, 2 are also dependent of the perturbations ∆ti = ∆ti(∆ẇ,∆α). Thus, the deriva-
tives in (44) are expressed in the following manner

∂fi
∂uj

=
∂fi
∂uj

+
∂fi
∂∆t1

∂∆t1
∂uj

+
∂fi
∂∆t2

∂∆t2
∂uj

(45)

The derivatives ∂∆ti/∂uj , i, j = 1, 2 are computed with the help of the implicit func-
tion theorem; to this end, new functions expressing the periodicity conditions of the
perturbated system are introduced as

h (∆ẇ,∆α,∆t1) = w̃1

(

π

ωc

+∆t1

)

+∆ = 0

g (∆ẇ,∆α,∆t1,∆t2) = w̃1

(

π

ωc

+∆t1 +∆t2

)

−∆ = 0
(46)

Using (46), supposing that (∂h/∂(∆t1))(0,0,0) 6= 0 and (∂g/∂(∆t2))(0,0,0,0) 6= 0 the deriva-
tives are expressed by [37, 39]

∂∆t1
∂uj

= −
∂h

∂uj
/

(

∂h

∂∆t1

)

∂∆t2
∂uj

= −

(

∂g

∂uj
+

∂g

∂∆t1

∂∆t1
∂uj

)

/

(

∂g

∂∆t2

) (47)

An example of SIM is depicted in Fig. 4 for R = 0.65, r = 0.5 and ∆ = 0.15. The SIM
is composed of two branches, the left branch is completely unstable and the right one is
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partially stable. When the amplitude of the oscillation increases, a symmetry breaking
bifurcation occurs and the regimes of motion with two symmetric impacts per cycle is
destroyed.

4.1.2. Order ǫ2, ǫ3

Equation (25) at O(ǫ2) is first analyzed. Substituting the solution of v1 (28) into (25)
gives

D2
0v2 + 2µ1D0v2 + v2 + ψc (v2 − v2τ ) =

[

−2µ1 − 2iωc − ψcτe
−iωcτ

]

D1Ae
iωcT0

+A2e2iωcT0

(

1− e−iωcτ
)2
+ 2AĀ

(

1− e−iωcτ
)

(48)

The condition of elimination of secular terms in (48) reads

(

−2µ1 − 2iωc − ψcτe
−iωcτ

)

D1A = 0
→ A(T1, T2) = A(T2)

(49)

which means that the slow modulation amplitude A does not depends on time scale T2.
Taking into account (49), the particular solution of v2 is given by

v2 = ψcη1
(

A2Ξ2e2iωcT0Γ−1 + 2AĀΞ
)

+ cc (50)

where Ξ and Γ are constants defined as follow

Γ =
[

−4ω2
c + 4iµ1ωc + 1 + ψc

)

e2iωcτ − ψc

Ξ = 1− eiωcτ
(51)

Equation (26) at O(ǫ3) is now analyzed. In order to identify terms that produce secular
terms, the expression of w1 given in Eq. (30) is developed in Fourier series as

w1 =

(

1

2
(∆− C) +

iδ

π
C

)

eiωcT0 +

∞
∑

k=1

4C

π2(2k − 1)2
e(2k−1)iωcT0 + cc (52)

11
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D2
0v3 + 2µ1D0v3 + v3 − ψc (v3τ − v3) =

{

D2A
[

−ψcτe
−iωcτ − 2µ1 − 2iωc

]

+µ1ωc

[

i(C −∆) +
2δ

π
C + 2irA−

8i

π2
C

]

− 2ψ2
cη

2
1ĀA

2Ξ2

(

eiωcτ + 1
) (

eiωcτ − 1
)2

Γe2iωcτ

+3ψcη2A
2Ā

(

eiωcτ − 1
)3

e2iωcτ
+
1 + ψc

2

[

−∆+ 2rA−
8C

π2
−
2iCδ

π
+ C

]

(

1− e−iωcτ
)

−2σA
(

1− eiωcτ
)}

eiωcT0 + cc+NST (53)

where NST denotes terms that do not produce secular terms. Secular terms are elimi-
nated from (53) if

D2A
[

−ψcτe
−iωcτ − 2µ1 − 2iωc

]

+µ1ωc

[

i(C −∆) +
2δ

π
C + 2irA−

8i

π2
C

]

− 2ψ2
cη

2
1ĀA

2Ξ2

(

eiωcτ + 1
) (

eiωcτ − 1
)2

Γe2iωcτ

+3ψcη2A
2Ā

(

eiωcτ − 1
)3

e2iωcτ
+
1 + ψc

2

[

−∆+ 2rA−
8C

π2
−
2iCδ

π
+ C

]

(

1− e−iωcτ
)

−2σA
(

1− eiωcτ
)

= 0 (54)

Writing A in polar form A = aeiα and splitting into real and imaginary parts, the
equation governing the evolution of the amplitude of the lathe tool with respect to time
scales T2 is obtained as

D2a = c1a+ c2a
3 + C (c3 cosα+ c4 sinα) + c5 cosα+ c6 sinα (55)

where the coefficients ci are complicated (which do not need to be explicitly stated at
this stage of the analysis in order to follow the procedures involved in the expansion).
Since the behavior of the system on the stable branch of the SIM is analyzed, the trigono-
metric relations given in Eq. (35) are substituted into (55) and the obtained equation is
multiplied by a(T2), yielding

D2N = c′1N + c′2N
2 + c′3C + c′4C

2 + c′5 (56)

where N = a2. Fixed points are computed by vanishing the derivative in (56) and are
given by

N =
−c′1 ±

√

c′21 − 4c′2 (c
′

3C + c′4C
2 + c′5)

2c′2
(57)

Equation (57) constitutes an algebraic relation between the amplitude of the oscillations
of the lathe tool and the vibro-impact NES. Therefore it can be viewed as the SIM of the
problem at time scale T3 when T2 →∞ and the fixed points of the system are obtained
graphically at the intersection of the SIM given in Eq. (36) and the curves (57), see [27].

12



0 1 2 3
5

0

1

2

3

4

5

6
x 10

6

x10

1

0

1
x 1 0

5

t

v

0 500 1000 1500 2000
5

0

5
x 10

5

t

y

0 500 1000 1500 2000

C

a

+

(a) (b)

F'()*+ Y- Z2[- , - , .IJ 23 3'1+ 5/2>+5 T1 in blue (red) for stable (unstable) branch and T3 in green
for σ = 1. Pink + represents an unstable fixed points. Yellow lines represents the projection of the
numerical integration on the SIM. (b): Result of numerical integration

4.2. Description of different response regimes

Different response regimes may be explained by studying the location of the fixed
points on the SIM. The physical parameters of the primary system and the vibro-impact
NES are given by

ǫ2 = 0.01, µ1 = 0.03, R = 0.65, r = 0.8, ∆ = 2.10−5 (58)

The specific cutting coefficients ρi for the machining of steel are given in [36]

ρ1 = 6109.6 106Nm−2, ρ2 = −54141.6 10
9Nm−3,

ρ3 = 203769 1012Nm−4, h0 = 110−4m
(59)

The numerical integration is carried out on the zero order lobe for ψc = 0.4 (see Fig. 2).
The step by step integration has been performed using the matlab dde23 algorithm
together with the function event for the detection of the successive impacts.

4.2.1. Analog relaxation cycles

The SIM for σ = 1 depicted in Fig. 5(a). It is observed that an unstable fixed points
is located on the unstable branch on the SIM while another unstable fixed point (not
displayed here) is located on the unstable part of the right branch of the SIM (above the
symmetry breaking bifurcation point). In this case, if the amplitude of the oscillations
of the lathe tool became higher than the critical value amin given in Eq. (37), the slow
flow will be able to be attracted by the stable branch of the SIM. In this case, the
vibro-impact NES will be synchronized with the lathe tool and will oscillate with two
symmetric impacts per cycle. During the synchronized regimes, the energy of the system
will be dissipated by successive impacts (R < 1) and the amplitude of the oscillations
of the lathe tool will decrease until reaching the singular point amin. At this point, the
vibro-impact NES will escape the resonance capture and the amplitude of motion of the
primary system will increase again, and so on.

The results of numerical integration depicted in Fig. 5(b) confirm the theoretical
predictions; the amplitude of the oscillations of the lathe tool increase while the vibro-
impact NES perform chaotic oscillations until the flow is attracted to the stable branch
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of the SIM. Then, the amplitude of the primary system quickly decrease until the vibro-
impact NES escape resonance capture. These cycle may be viewed as the analogy of the
SMR regimes occurring in NES with cubic stiffness nonlinearities, but with a significant
difference. In the case of NES with cubic stiffness, these cycles corresponds to jumps
between the two stable branches of the SIM [20], while in this case they corresponds to
successive synchronization and escapes of the synchronized regimes.

4.2.2. Limit of the passive control of chatter

When the value of σ is increased, the unstable fixed point located on the right branch
of the SIM comes down along this branch as seen in Fig. 6(a) for σ = 4.6. If during the
relaxation cycle, when the slow flow jump to the stable branch of the SIM, the landing
point is above the saddle point, the slow flow will be repelled to higher amplitude and the
system is no more controlled. The result of numerical integration, presented in Fig. 6(b),
illustrates the theoretical prediction; after two relaxation cycle, the slow flow jump back
to the stable branch of the SIM in the vicinity of the saddle point and the amplitude
of the oscillation growth. In addition, it can be observed on the numerical integration,
that when the amplitude of the oscillation growth sufficiently, the oscillation becomes
unsymmetric (around t = 400), which is in agreement with the stability analysis of the
SIM.

5. Experimental analysis

In order to validate experimentally the efficiency of a vibro-impact NES to passively
controlling the chatter instability in turning, an experimental setup has been built.

5.1. Experimental setup

The trials have been realized on a Cazeneuve lathe (CT210) and the full experimental
setup is depicted in Fig. 7. The machining operations have been carried out on a 40mm
diameter, XC38 steel bar hold in the mandrel and the tail-stock. The cutting tool is a
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vibro-impact NES.

250mm long boring bar which has been softened in one direction close to the tool holder
to favour the bending mode in the cutting direction. In addition, a mass has been added
on the tool tip in order to reduce the natural frequency of the first bending mode. The
same feed-rate h0 = 0.1mm/tr is used for all the trials which consist in different turning
passes with different spindle speed and depth of cut.

The oscillations of the tool tip have been measured using a laser vibrometer, and the
specific cutting coefficients are those from [36]. The dynamics characteristics of the tool
have been obtained by hammer testing and are summarized in Table 1. It can be noticed
that the natural frequency is still high in comparison to other NES application, which is
an interesting feature.

Table 1: Characteristics of the experimental setup

m1 3.1 kg µ1 3%
f1 99.4Hz m2 32 g
r 0.8

5.2. Validation of the stability lobe without NES

At first, experiments were performed without the vibro-impact NES in order to com-
pare the behavior to the one identified theoretically on the linear analysis. The deter-
mination of the stable or unstable character of the process may not be straightforward
due to the presence of strong forced vibration which can be due to an eccentricity of the
workpiece, or when the spindle speed is close to the natural frequency of the lathe tool.
In such case, the direct time series of the measurement may not be sufficient to identify
chatter vibrations. To this end, simple signal processing method may be applied, such
as re-sampling the signal at the spindle speed frequency [8]; in this case, a stable behav-
ior will be represented by a straight line, because the relative position of the tool and
the workpiece is always the same at each tool-path, whereas an unstable behavior will
present a disorder. Another method consist in analyzing the pseudo-Poincaré section of
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the measured signal. A stable behavior will present an attractor of type point, whereas
an unstable behavior will present an attractor of type circle. An example of the analysis
of an unstable trial is depicted in Fig. 8.

The comparison between the stability lobes obtained theoretically and those obtained
experimentally is presented in Fig. 9. The stable (unstable) cutting conditions are repre-
sented by green circle (cross). The theoretical and experimental results are in agreement
even if a shift on the left of the stability boundary is observed.

5.3. Sizing of the vibro-impact NES

Only the gap of the vibro-impact NES may be precisely adjusted during the fabri-
cation process. The coefficient of restitution R may be varied using different materials
couple for the ball and the cover. Here, a bearing ball and steel cover were used. Typical
values of the amplitude of the oscillation measured during unstable trials without the
vibro-impact NES were around 0.15mm. The activation level of the vibro-impact NES
computed with the help of Eq. (37) has been fixed to 50% of this value, which gives a
gap ∆ = 0.34mm. After fabrication, the measured gap was ∆exp = 0.32mm.
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In order to check whether the activation level fit the theoretical prediction and to
estimate the coefficient of restitution, the vibro-impact NES alone has been embedded
on an electrodynamic shaker. In effect, this configuration corresponds to an harmonically
forced vibro-impacts oscillator as in Eq. (29). So, it is possible to identified experimen-
tally the stable branch of the SIM, which is very interesting for the sizing procedure.
A base displacement at frequency 99.4Hz, which correspond to the chatter frequency,
is imposed to the vibro-impact NES and the successive impacts of the free mass on the
cover are identified using accelerometers. Raw signals of two measurements are presented
in Fig. 10. It is observed that in Fig. 10(a), for a = 7.66.10−5, that the vibro-impact
NES exhibit two symmetric impacts per cycle, that is, the time between two consecutive
impacts is the same, while in Fig. 10(b), for a = 1.81.10−4, there is still two impacts
per cycle, but the time between two consecutive impacts differ, indicating asymmetric
response.

The theoretical and experimental SIM are depicted in Fig. 11. Where the green circle
corresponds to the experimental measurements, the continuous pink line denotes the
experimentally identified activation level and the dashed pink line indicate the amplitude
at which first asymmetric solutions have been observed. The value of coefficient of
restitution of impact has been estimated by fitting the experimental results with the
theoretical expression of the SIM given in Eq. (36); which give R = 0.6. Effectively,
using coefficients of restitution from the literature for a plane-ball, steel-steel contact
which is around 0.95 yields to erroneous results.

The experimentally identified activation level is slightly higher than the theoretical
predictions, which is certainly due to the simplified model of the behavior of the free mass
of the vibro-impact NES which do not capture its complex dynamics. The results are
however in satisfactory agreement, and asymmetric solutions have also been observed,
consistently with theoretical predictions.
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impact NES for s = 1800rpm and p = 0.1mm (ψ = 0.12 and Ω = 0.307).

5.4. Passive control of chatter with a vibro-impact NES

In order to analyze experimentally the efficiency of the vibro-impact NES to mitigate
chatter instability on turning process, trials with the vibro-impact NES embedded on
the lathe tool on the unstable zone have been carried out. Two trials with and without
vibro-impact NES are depicted in Fig. 12 for s = 1800rpm and p = 0.1mm (ψ = 0.12
and Ω = 0.307).

It is observed that the presence of the vibro-impact NES changes drastically the be-
havior of the system. For the trial without vibro-impact NES, a constant high amplitude
was measured whereas for the trial with vibro-impact NES, modulated response with
moderate amplitude is observed. The measured modulated response is very similar to
the analog relaxation cycle described theoretically. The successive impacts of the ball of
the vibro-impact NES were clearly audible, however, the ambient noise due to machining
operation did not allow us to measure the impact of the free-mass of the vibro-impact
NES with the accelerometer. This behavior is however very promising, since a reduction
of almost 50% on the vibration amplitude is observed.
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This paper investigated the possibility of controlling the chatter instability, which
may occur during machining operations, using a NES. Due to practical reasons, a vibro-
impact type NES was preferred to the classic NES with cubic stiffness.

The coupled system has been analyzed using the method of multiple scales. At the
first order of approximation, the expression of the SIM has been obtained. The stability
analysis of its different branches was also performed. At the next order of approximation,
the fixed points of the system are obtained at the intersection of the slow and super-slow
invariant manifolds.

The analysis of the different response regimes allow us to reveal a control mechanism
which may be viewed as the analogy of the SMR response observed in the case of NES with
cubic stiffness. In this case, the vibro-impact NES enter in successive resonance capture
with the lathe-tool and the energy is dissipated during these synchronous motion.

An experimental setup which consist in a lathe tool with an embedded vibro-impact
NES has been presented. First trials without vibro-impact NES were performed to
confirm the stable or unstable nature of the process for different cutting conditions. The
activation level of the vibro-impact NES was chosen in accordance with these trials.
Notice that the natural frequency of the tool (which is close to the chatter frequency) is
99.4Hz which is particularly high for NES application.

Due to the complicated real dynamics of the vibro-impact NES an original experi-
mental procedure has been designed to validate the tuning of the NES. This procedure
enable to identify experimentally the stable branch of the SIM.

Finally, two trials without and with the vibro-impact NES have been compared an
promising results were obtained with a significant reduction of the amplitude of the tool.
A deeper experimental investigation is left for further studies.
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