Etienne Gourc 
email: etienne.gourc@gmail.com
  
Sébastien Seguy 
email: sebastien.seguy@insa-toulouse.fr
  
Guilhem Michon 
email: guilhem.michon@isae.fr
  
Alain Berlioz 
email: alain.berlioz@univ-tlse3.fr
  
Brian P Mann 
email: brian.mann@duke.edu
  
Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink

Keywords: Chatter, instability, nonlinear energy sink, turning

 

Introduction

The surface quality of parts produced by machining operations is strongly affected by chatter. Chatter increases the surface roughness, tool wear and reduces the spindle lifespan. A possible model for this phenomenon is to consider the primary chatter. In this non resonant case, the coupling between two orthogonal cutting modes imply a pair of non-linear ordinary differential equations [START_REF] Wiercigroch | Chaotic vibration of a simple model of the machine tool-cutting process system[END_REF][START_REF] Warmiński | Approximate analytical solutions for primary chatter in the non-linear metal cutting model[END_REF]. Another modelization -improved and more used -is to consider the regenerative chatter. In this case, the instability is induced by the time-delay between two consecutive passages of the cutting teeth. Due to small disturbances, the lathe tool exhibit damped oscillations and the surface roughness is undulated. For consecutive workpiece revolutions, the chip thickness will be modulated.

!"#$ % "#&&!' (! )!0!$!)#(1! !2!"(% # 3!!$ 4)( !56&#$!' 37 83# #$' Fishwick [START_REF] Tobias | Theory of regenerative machine tool chatter[END_REF] and is mainly responsible for chatter instability. Since these works, many researchers have improved the knowledge by the well known stability lobe representation and its application to special cases [START_REF] Altintas | Analytical prediction of stability lobes in milling[END_REF][START_REF] Gourc | Chatter milling modeling of active magnetic bearing spindle in highspeed domain[END_REF][START_REF] Khasawneh | Investigation of period-doubling islands in milling with simultaneously engaged helical flutes[END_REF][START_REF] Patel | Uncharted islands of chatter instability in milling[END_REF][START_REF] Mann | Stability of up-milling and down-milling, part 2: experimental verification[END_REF][START_REF] Mousseigne | Predicting the dynamic behaviour of torus milling tools when climb milling using the stability lobes theory[END_REF]10]. A detailed nonlinear analysis of chatter instability on turning processes has been carried out in [START_REF] Nayfeh | Analysis of the cutting tool on a lathe[END_REF] using the method of multiple scales.

Various techniques for chatter mitigation have been investigated. These different strategies may be divided in two categories, namely active and passive control. Concerning active vibration control strategies, a variable spindle speed was used in milling process to disturb the time delay [START_REF] Seguy | Suppression of period doubling chatter in high-speed milling by spindle speed variation[END_REF]. The use of actively controlled piezzo-electric tools has been studied for turning processes [START_REF] Matsubara | Vibration suppression of boring bar by piezoelectric actuators and lr circuit[END_REF], also the use of a piezoelectric tool holder was investigated theoretically and experimentally in [START_REF] Brecher | Chatter suppression with an active workpiece holder[END_REF]. Passive vibration strategies have also been investigated. Tuned mass damper has been widely studied for machining operations. Specific tuning procedure was developed for the case of chatter [START_REF] Sims | Vibration absorbers for chatter suppression: a new analytical tuning methodology[END_REF]. A nonlinear tuned mass damper with coulomb friction was analyzed for the case of turning in [START_REF] Wang | Design and implementation of nonlinear tmd for chatter suppression: An application in turning processes[END_REF] and milling in [START_REF] Wang | Feasibility study of nonlinear tuned mass damper for machining chatter suppression[END_REF], while multiple tuned mass damper were applied in [START_REF] Yang | Optimization of multiple tuned mass dampers to suppress machine tool chatter[END_REF].

In the past decade, it has been demonstrated that the addition of a small mass, strongly non-linear oscillator, called a nonlinear energy sink (NES), may lead to targeted energy transfer. In this context, a NES is used to mitigate any unwanted disturbance introduced in a primary system by efficiently transferring and eliminating energy from the main system to the NES. In [START_REF] Vakakis | Energy pumping in nonlinear mechanical oscillators: part iiresonance capture[END_REF], it was demonstrated that the main phenomena allowing targeted energy transfer is based on the 1 : 1 resonance capture. When the primary system is subjected to harmonic forcing, the passive control acts through relaxation cycle, referred as strongly modulated response (SMR) [START_REF] Starosvetsky | Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry[END_REF]. This behavior has been confirmed experimentally in [START_REF] Gourc | Experimental investigation and design optimization of targeted energy transfer under periodic forcing[END_REF]. All these studies dealt with NES with cubic stiffness, however, this type of NES may not be suitable for practical applications, mainly due to its size. To overcome this problem, different types of NES have been proposed. Lamarque and co-workers analyzed a NES with piecewise linear stiffness [START_REF] Lamarque | Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink[END_REF][START_REF] Savadkoohi | Vibratory energy exchange between a linear and a nonsmooth system in the presence of the gravity[END_REF]. Vibro-impact NES for seismic mitigation have been studied numerically in [START_REF] Nucera | Targeted energy transfers in vibro-impact oscillators for seismic mitigation[END_REF] and experimentally in [START_REF] Nucera | Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: Experimental results[END_REF]. More recently, an analytical procedure based on the invariant manifold approach has been developed for a vibro-impact NES under impulse loading [START_REF] Gendelman | Analytic treatment of a system with a vibro-impact nonlinear energy sink[END_REF].

The aforementioned research on NES concern the passive control of linear system. The passive control of instability with NES is a growing interest. Reference [START_REF] Gendelman | Bifurcations of self-excitation regimes in a van der pol oscillator with a nonlinear energy sink[END_REF] investigated the mitigation of limit cycle oscillations in a Van der Pol oscillator using a NES with cubic stiffness. It was shown analytically that the system exhibits three control mechanisms, namely: suppression, stabilization and passive control through SMR. The case of a rigid airfoil in an air flow has been treated theoretically and experimentally in [START_REF] Lee | Suppression aeroelastic instability using broadband passive targeted energy transfers, part 1: Theory[END_REF][START_REF] Lee | Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments[END_REF]. A similar case has been analyzed by Vaurigaud [START_REF] Vaurigaud | Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer[END_REF], where a long bridge in which flutter may occur is considered. The use of a NES has also been investigated in [START_REF] Viguié | Using passive nonlinear targeted energy transfer to stabilize drill-string systems[END_REF] to passively control instabilities that may occur during drilling operations for oil and gas. The passive control of chatter instability, using a NES with cubic stiffness, has been explored in [START_REF] Gourc | Delayed dynamical system strongly coupled to a nonlinear energy sink: application to machining chatter[END_REF]. The same three mechanism, as those found for the Van der Pol oscillator [START_REF] Gendelman | Bifurcations of self-excitation regimes in a van der pol oscillator with a nonlinear energy sink[END_REF], have been evidenced. A refined model taking into account the loss of contact of the tool during high amplitude oscillations has been studied in [START_REF] Nankali | Suppression of machine tool chatter using non-b9TCPB CTCB@d S9T{ 9TE |BUGCCe9T@S UV Ft`hs}`hl YiDDW[END_REF].

The goal of the present paper is to investigate theoretically and experimentally the potential benefit of a vibro-impact NES to passively control chatter instability in a turning process. The system is composed of a flexible lathe tool on which a NES is embed-
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workpiece rotation p9@ABC DE FGHCIPQ9G BCRBCSCTQPQ9UT UV QHC QABT9T@ RBUGCSSW ded. The structure of the paper is as follows. The second section describes a model of a turning process. The linearized system is analyzed in section 3. Section 4 provides a theoretical analysis of the coupled system and a description of the response regimes. Section 5 describes of the experimental setup. The tuning of the vibro-impact NES and time history of the experimental measurements are also presented. Section 6 contains concluding remarks and discussion.

Modelization of turning process

The uncoupled system consists of a flexible lathe tool which is assumed to vibrate only in its first bending mode, perpendicular to the cutting direction. It has been shown that the bending mode in the direction parallel to the cutting direction play an insignificant role [START_REF] Nankali | Targeted energy transfer for suppressing regenerative instabilities in a 2-dof machine tool model[END_REF]. The workpiece is assumed to be rigid. A schematic representation of this system is given in Fig. 1 and the corresponding equation of motion is written as follows

m 1 d 2 q dt 2 + c 1 dq dt + k 1 q = F c (1) 
where q represent the tool tip displacement, m 1 , k 1 and c 1 represent the modal mass, stiffness and damping of the first bending mode, respectively. The cutting force takes into account the regenerative effect and is expressed in polynomial form as follows [START_REF] Shi | Theory of finite amplitude machine tool instability[END_REF] 

F c (∆h(t)) = p ρ 1 h(t) + ρ 2 h(t) 2 + ρ 3 h(t) 3 (2) 
where p is the depth of cut, h(t) represents the instantaneous chip thickness and ρ i (i = 1..3) are the specific cutting coefficients obtained from experimental measurements. Typical values of these coefficients for steel cutting are given in [START_REF] Dombovari | On the global dynamics of chatter in the orthogonal cuttingmodel[END_REF]. The instantaneous chip thickness may be expressed as follows

h(t) = h 0 + ∆h(t) (3) 
here, h 0 is the nominal chip thickness without vibration and h(t) represents the chip thickness variation which depends on the instantaneous position of the tool tip, and the position of the tool tip from the previous workpiece rotation, as illustrated in Fig. 1. It is expressed as

Xh(t) = q(t -τ ) -q(t) (4) 
where q(t -τ ) is the delayed position of the tool. τ is the time delay between two successive tool passages, which corresponds to the period of one workpiece rotation τ = 2π/Ω (Ω is the workpiece angular speed). When the cutting process is stable, q(t) = q 0 . Substituting Eq. ( 3) into (1) gives

k 1 q 0 = p ρ 1 h 0 + ρ 2 h 2 0 + ρ 3 h 3 0 (5) 
During unsteady regimes, the displacement is the sum of the steady component q 0 and an unsteady component u(t)

q(t) = q 0 + u(t) (6) 
Substituting Eqs. [START_REF] Gourc | Chatter milling modeling of active magnetic bearing spindle in highspeed domain[END_REF][START_REF] Khasawneh | Investigation of period-doubling islands in milling with simultaneously engaged helical flutes[END_REF] into (1) give

m 1 d 2 u dt 2 + c 1 du dt + k 1 u = p α 1 ∆ h + α 2 ∆ h2 + α 3 ∆ h3 (7) 
where

∆ h = u(t -τ ) -u(t), α 1 = 2ρ 2 h 0 + 3ρ 3 h 2 0 + ρ 1 , α 2 = 3ρ 3 h 0 + ρ 2 et α 3 = ρ 3 .
The following changes of variables are introduced

T = ω 1 t, ω 2 1 = k 1 m 1 , 2µ 1 = c 1 m 1 ω 1 , ψ = pα 1 m 1 ω 2 1 , η 1 = pα 2 ψm 1 ω 2 1 , η 2 = pα 3 ψm 1 ω 2 1 (8) 
After substitution of ( 8) into [START_REF] Patel | Uncharted islands of chatter instability in milling[END_REF] we obtain

ü + 2µ 1 u + u = ψ ∆ h + η 1 ∆ h2 + η 2 ∆ h3 (9) 
where the dot represents the differentiation with respect to the non-dimensional time T .

Analysis of the linearized system

After removing the nonlinear terms in the cutting law by setting η 1 = η 2 = 0 in Eq. ( 9), the linearized equation of motion of the cutting tool is given by

ü + 2µ 1 u + u + ψ (u(T -τ ) -u(T )) = 0 (10)
The solution of (10) can be written by

u = u 0 e (γ+iω)t ( 11 
)
where γ is the grow or decay rate, ω is the pulsation of the oscillations and u 0 depends on the initial conditions. After substituting Eq. ( 11) into (10), we obtain

ψ 1 -e (γ+iω)τ + (γ + iω) 2 + 2µ 1 (γ + iω) + 1 = 0 (12) 
After splitting Eq. ( 12) into real and imaginary parts, the following equations were obtained: p9@ABC YE `aPIRbC UV SQPc9b9Qd bUcCS e9P@BPIW ψ (1 -cos(ωτ )e -γτ ) + γ 2 -ω 2 + 2µ 1 γ + 1 = 0 ψ sin(ωτ )e -γτ + 2ω (γ + µ 1 ) = 0 [START_REF] Matsubara | Vibration suppression of boring bar by piezoelectric actuators and lr circuit[END_REF] When γ > 0, the amplitude of the oscillations growth exponentially and the system is unstable. On the contrary, when γ < 0, the amplitude of the oscillations decay with time and the turning process is stable. In order to evaluate the stability boundary, we set γ = 0 in Eq. ( 13)

0 0.5 1 
ψ cos(ωτ ) = ψ -ω 2 + 1 ψ sin(ωτ ) = -2µ 1 ω (14) 
Using trigonometric identity in [START_REF] Brecher | Chatter suppression with an active workpiece holder[END_REF], the pulsation of the bifurcated solution (also called chatter frequency) is obtained as

ω = 1 + ψ -2µ 2 1 ± -4µ 2 1 + (ψ -2µ 2 1 ) 2 (15) 
It is possible to prove that the bifurcation (γ, ψ, ω) = (0, ψ c , ω c ) is a Hopf bifurcation [START_REF] Nayfeh | Analysis of the cutting tool on a lathe[END_REF]. For practical machining applications, the stability boundary is often plot in the space of parameters (Ω, ψ) and is called the stability lobe diagram. An example of such a diagram is depicted in Fig. 2. The turning process is stable for cutting conditions under the lobes and is unstable otherwise.

Passive control of chatter instability using a vibro-impact NES

In this section, the dynamics of the lathe tool coupled with the vibro-impact NES is investigated. A schematic representation of the coupled system is given in Fig. 3. The corresponding dimensionless equations of motion between impact, after eliminating the static deflection are written as follow

ü + 2µ 1 u + u = ψ ∆ h + η 1 ∆ h2 + η 2 ∆ h3 ǫ 2 ÿ = 0, ∀|ru -y| < ∆ ( 16 
)
where y represents the absolute displacement of the free mass of the vibro-impact NES, ǫ 2 = m 2 /m 1 ≪ 1 represent the mass ratio between the modal mass of the tool and the
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workpiece rotation m 2 p9@ABC fE FGHCIPQ9G BCRBCSCTQPQ9UT UV QHC RPSS9gC GUTQBUb UV GHPQQCB 9TSQPc9b9Qd AS9T@ P g9cBUh9IRPGQ i`FW mass of the vibro-impact NES, ∆ represents the gap between the free mass and the rigid walls and r is an influence coefficient depending of the position of the vibro-impact NES on the tool. The impacts are modelled using the Newton coefficient of restitution on velocities and the condition of conservation of momentum as follow

u + = u -, y + = y - r u+ -ẏ+ = -R (r u--ẏ-) u+ + ǫ 2 ẏ+ = u-+ ǫ 2 ẏ- for |ru -y| = ∆ (17) 
here, the subscripts + and -represent the time immediately after and before impact and R is the coefficient of restitution (R ∈ [0, 1]).

Asymptotic analysis

The following algebraic developments have been carried out using the computer algebra software Maple. Equations ( 16) and ( 17) are analyzed using the method of multiple scales. New coordinates are introduced as follow

v = u + ǫ 2 y, w = ru -y (18) 
where v and w represents the displacement of the center of mass and the internal displacement of the vibro-impact NES, respectively. After substituting Eqs. [START_REF] Yang | Optimization of multiple tuned mass dampers to suppress machine tool chatter[END_REF] into Eqs. [START_REF] Wang | Design and implementation of nonlinear tmd for chatter suppression: An application in turning processes[END_REF][START_REF] Wang | Feasibility study of nonlinear tuned mass damper for machining chatter suppression[END_REF], it follows

v + 2µ 1 v + ǫ 2 ẇ 1 + rǫ 2 + v + ǫ 2 w 1 + rǫ 2 = ψ v τ + ǫ 2 w τ 1 + rǫ 2 - v + ǫ 2 w 1 + rǫ 2 +η 1 v τ + ǫ 2 w τ 1 + rǫ 2 - v + ǫ 2 w 1 + rǫ 2 2 + η 2 v τ + ǫ 2 w τ 1 + rǫ 2 - v + ǫ 2 w 1 + rǫ 2 3 rv - ẅ 1 + rǫ 2 = 0, ∀|w| < ∆ (19) v + = v -, w + = w - ẇ+ = -R ẇ-, v+ = v- for |w| = ∆ (20) !)! v τ = v(t -τ
) and w τ = w(t -τ ). Since secular terms first appear at O(ǫ 3 ), a detuning parameter representing the vicinity of ψ to ψ c is introduced as follow [START_REF] Nayfeh | Analysis of the cutting tool on a lathe[END_REF] 

ψ = ψ c + ǫ 2 σ ( 21 
)
The solutions of Eqs [START_REF] Vakakis | Energy pumping in nonlinear mechanical oscillators: part iiresonance capture[END_REF][START_REF] Starosvetsky | Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry[END_REF] are expanded in power series as

v(T ; ǫ) = ǫv 1 (T 0 , T 1 , T 2 ) + ǫ 2 v 2 (T 0 , T 1 , T 2 ) + ǫ 3 v 3 (T 0 , T 1 , T 2 ) + . . . w(T ; ǫ) = ǫw 1 (T 0 , T 1 , T 2 ) + ǫ 2 w 2 (T 0 , T 1 , T 2 ) + ǫ 3 w 3 (T 0 , T 1 , T 2 ) + . . . ( 22 
)
where T n = ǫ n T (n = 0, 1, . . .). The time delay is considered to be of O( 1), which is rather natural if the behavior close to the order 0 lobe is analyzed. In this case, the delayed position of the tool and the vibro-impact NES are written as

v(T -τ ; ǫ) = ǫv 1 (T 0 -τ, T 1 , T 2 ) + ǫ 2 (v 2 (T 0 -τ, T 1 , T 2 ) -τ D 1 v 1 (T 0 -τ, T 1 , T 2 )) +ǫ 3 v 3 (T 0 -τ, T 1 , T 2 ) + τ 2 2 D 2 1 v 1 (T 0 -τ, T 1 , T 2 ) -τ D 2 v 1 (T 0 -τ, T 1 , T 2 ) -τ D 1 v 2 (T 0 -τ, T 1 , T 2 ) + . . . w(T -τ ; ǫ) = ǫw 1 (T 0 -τ, T 1 , T 2 ) + ǫ 2 (w 2 (T 0 -τ, T 1 , T 2 ) -τ D 1 w 1 (T 0 -τ, T 1 , T 2 )) +ǫ 3 w 3 (T 0 -τ, T 1 , T 2 ) + τ 2 2 D 2 1 w 1 (T 0 -τ, T 1 , T 2 ) -τ D 2 w 1 (T 0 -τ, T 1 , T 2 ) -τ D 1 w 2 (T 0 -τ, T 1 , T 2 ) + . . . (23) 
Substituting Eqs. [START_REF] Lamarque | Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink[END_REF][START_REF] Savadkoohi | Vibratory energy exchange between a linear and a nonsmooth system in the presence of the gravity[END_REF] into Eqs. [START_REF] Vakakis | Energy pumping in nonlinear mechanical oscillators: part iiresonance capture[END_REF][START_REF] Starosvetsky | Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry[END_REF] and equating coefficients of like power of ǫ, it comes

ǫ 1 : D 2 0 v 1 + 2µ 1 D 0 v 1 + v 1 -ψ c (v 1τ -v 1 ) = 0 D 2 0 w 1 -rD 2 0 v 1 = 0, ∀|w 1 | < ∆ v 1+ = v 1-, w 1+ = w 1- D 0 v 1+ = D 0 v 1-, D 0 w 1+ = -RD 0 w 1-, for |w 1 | = ∆ (24) ǫ 2 : D 2 0 v 2 + 2µ 1 D 0 v 2 + v 2 -ψ c (v 2τ -v 2 ) = -2µ 1 D 1 v 1 -2D 0 D 1 v 1 -ψ c τ D 1 v 1τ + ψ c η 1 (v 1τ -v 1 ) 2 , ∀|w 2 | < ∆ v 2+ = v 2-, w 2+ = w 2- D 0 v 1+ + D 0 v 2+ = D 0 v 1-+ D 0 v 2-, D 0 w 1+ + D 0 w 2+ = -R (D 0 w 1-+ D 0 w 2+ ) , for |w 2 | = ∆ (25) q 3 : D 2 0 v 3 + 2µ 1 D 0 v 3 + v 3 -ψ c (v 3τ -v 3 ) = 2µ 1 (rD 0 v 1 -D 1 v 2 -D 2 v 1 -D 0 w 1 ) +2ψ c η 1 (v 1 -v 1τ ) (D 1 v 1τ -v 2τ + v 2 ) -ψ c η 2 (v 1 -v 1τ ) 3 + ψ c r (v 1 -v 1τ ) +ψ c w 1τ -w 1 + τ 2 2 D 2 1 v 1τ -τ D 1 v 2τ -D 2 v 1τ + v 1 r -w 1 -2D 0 D 1 v 2 -2D 0 D 2 v 1 -D 2 1 v 1 + σ (v 1τ -v 1 ) , ∀|w 3 | < ∆ v 3+ = v 3-, w 3+ = w 3- D 0 v 1+ + D 0 v 2+ + D 0 v 3+ = D 0 v 3-+ D 0 v 2-+ D 0 v 3-, D 0 w 1+ + D 0 w 2+ + D 0 w 3+ = -R (D 0 w 1-+ D 0 w 2+ + D 0 w 3+ ) , for |w 3 | = ∆ (26)
The other equations at order ǫ 2 and ǫ 3 are not given because they are not used in the following analysis.

Order ǫ 1

The solution of the first equation of ( 24) may be written as follow [START_REF] Nayfeh | Analysis of the cutting tool on a lathe[END_REF] 

v 1 = Ae iωcT0 + ∞ m=1 A m e (γm+iωm)T0 + cc (27) 
Where ω c is the critical chatter frequency corresponding to σ = 0, obtained using 15.

Close to the stability boundary, all the remaining roots γ m ± iω m have negative real part and decay with time. Thus, the long time behavior is expressed by

v 1 = Ae iωcT0 + cc ( 28 
)
where cc denotes the complex conjugate of the preceding terms. Substituting (28) into the second equation of ( 24), gives

D 2 0 w 1 + rω 2 c Ae iωcT0 + Āe -iωcT0 , ∀|w 1 | < ∆ w 1+ = w 1-, D 0 w 1+ = -RD 0 w 1-, for |w 1 | = ∆ (29) 
This equation corresponds to a harmonically forced vibro-impact oscillator. Between impact (i.e. when |w 1 | < ∆), the solution of ( 29) is given by

w 1 = r Ae iωcT0 + Āe -iωcT0 + BT 0 + C (30) 
Like 1 : 1 resonance capture between the lathe tool and the vibro-impact NES is assumed, we consider solutions with two symmetric impacts per cycle. The periodicity conditions on a half period are written as follow

w 1 π ω c = -w 1 (0), D 0 w 1+ π ω c = -D 0 w 1+ (0) (31) 
The solution between impact given by Eq. ( 30) together with the periodicity conditions in Eq. ( 31) are used to recover the integration constants B and C. At time T 0 = 0, it is assumed that the free mass of the vibro-impact NES is in contact with the left side of the cavity

w 1 (0) = ∆ (32) 
Substituting Eq. ( 30) into the first periodicity condition in [START_REF] Viguié | Using passive nonlinear targeted energy transfer to stabilize drill-string systems[END_REF] yields

B = - 2Cω c π (33) 
After substituting Eq. ( 30) into the second periodicity condition in Eq. ( 31) and in [START_REF] Gourc | Delayed dynamical system strongly coupled to a nonlinear energy sink: application to machining chatter[END_REF], the following relations are obtained

rω c i A -Ā (1 + R) + B (1 -R) = 0 r A + Ā + C -∆ = 0 ( 34 
)
Substituting relation ( 33) into [START_REF] Nankali | Targeted energy transfer for suppressing regenerative instabilities in a 2-dof machine tool model[END_REF] and introducing polar form A = ae iα it follows

sin α = Cδ raπ , cos α = - C -∆ 2ra ( 35 
)
where δ = (R -1)/(R + 1). Using trigonometric identity in (35) yields

a 2 = C 2 δ 2 r 2 π 2 + (C -∆) 2 4r 2 (36) 
Equation ( 36) represents the slow invariant manifold (SIM) of the problem at time scale T 1 when the vibro-impact NES oscillate with two symmetric impacts per period of oscillation of the lathe tool [START_REF] Gendelman | Analytic treatment of a system with a vibro-impact nonlinear energy sink[END_REF]. The SIM admit an extremum computed by vanishing the derivative of the right hand side of [START_REF] Dombovari | On the global dynamics of chatter in the orthogonal cuttingmodel[END_REF] with respect to C

C min = π 2 ∆ 4δ 2 + π 2 , a 2 min = ∆ 2 δ 2 r 2 (4δ 2 + π 2 ) ( 37 
)
Equation ( 37) is of particular interest since it represents the minimum amplitude of the lathe tool which allow the vibro-impact NES to vibrate in regimes with two symmetric impacts per cycle. The analysis of the stability of the SIM is not trivial due to the discontinuities in the velocities and requires analyzing the Poincaré section of the perturbed system [START_REF] Yue | Symmetry and bifurcations of a two-degree-of-freedom vibro-impact system[END_REF][START_REF] Lenci | Periodic solutions and bifurcations in an impact inverted pendulum under impulsive excitation[END_REF]. The perturbed solutions of Eq. ( 29) are written as follow

w1 = Ãe iωcT0 + Āe -iωcT0 + B1 T 0 + C 1 , 0 < T 0 < t 1 w1 = Ãe iωcT0 + Āe -iωcT0 + B2 T 0 + C 2 , t 1 ≤ T 0 < t e (38) 
where t 1 = π/ω c + ∆t 1 , t e = 2π/ω c + ∆t 1 + ∆t 2 and à takes into account a phase perturbation as

à = ae iα+∆α (39) 
The initial conditions of the perturbed system are given by

w1 (0) = ∆, D 0 w1 (0) = D 0 w 1 (0) + ∆ ẇ (40)
and the periodicity conditions of the perturbed system are expressed as w1 (t 1 ) = -w1 (0), D 0 w1 (t 1+ ) = -D 0 w1 (0 + ), w1 (t e ) = w1 (0), D 0 w1 (t e+ ) = D 0 w1 (0 + ) (41)

Substituting the solutions of the perturbed system given in Eq. ( 38) into (40,41) and solving for B i and C i (i = 1, 2), it comes

B 1 = 2raω c sin (α + ∆α) + D 0 w 1 (0) + ∆ ẇ C 1 = -2ra cos (α + ∆α) + ∆ B 2 = 2raω c (1 + R) sin (α + ∆α + ω c t 1 ) -RB 1 C 2 = -2t 1 raω c (1 + R) sin (α + ∆α + ω c t 1 ) + t 1 (1 + R)B 1 + C 1 (42)
The computed Poincaré section for solutions with two symmetric impacts per cycle is obtained

∆ ẇ′ = D 0 w1+ (t e ) -D 0 w 1 (0 + ) ≡ f 1 (∆ ẇ, ∆α) ∆α ′ = ∆α + ∆t 1 + ∆t 2 ≡ f 2 (∆ ẇ, ∆α) (43) 
The stability of the SIM is determined by the location of the eigenvalues of the Jacobian matrix with respect to the unit circle. The Jacobian matrix of the linearized system is written as follow

J =    ∂f 1 ∂∆ ẇ ∂f 1 ∂∆α ∂f 2 ∂∆ ẇ ∂f 2 ∂∆α    (44) 
It is observed that ∆ ẇ′ = ∆ ẇ′ (δ ẇ, ∆α, ∆t 1 , ∆t 2 ) and that the temporal variables ∆t i , i = 1, 2 are also dependent of the perturbations ∆t i = ∆t i (∆ ẇ, ∆α). Thus, the derivatives in (44) are expressed in the following manner

∂f i ∂u j = ∂f i ∂u j + ∂f i ∂∆t 1 ∂∆t 1 ∂u j + ∂f i ∂∆t 2 ∂∆t 2 ∂u j (45) 
The derivatives ∂∆t i /∂u j , i, j = 1, 2 are computed with the help of the implicit function theorem; to this end, new functions expressing the periodicity conditions of the perturbated system are introduced as

h (∆ ẇ, ∆α, ∆t 1 ) = w1 π ω c + ∆t 1 + ∆ = 0 g (∆ ẇ, ∆α, ∆t 1 , ∆t 2 ) = w1 π ω c + ∆t 1 + ∆t 2 -∆ = 0 (46) 
Using (46), supposing that (∂h/∂(∆t 1 )) (0,0,0) = 0 and (∂g/∂(∆t 2 )) (0,0,0,0) = 0 the derivatives are expressed by [START_REF] Yue | Symmetry and bifurcations of a two-degree-of-freedom vibro-impact system[END_REF][START_REF] Luo | Periodic motions and global bifurcations of a two-degree-of-freedom system with plastic vibro-impact[END_REF] 

∂∆t 1 ∂u j = - ∂h ∂u j / ∂h ∂∆t 1 ∂∆t 2 ∂u j = - ∂g ∂u j + ∂g ∂∆t 1 ∂∆t 1 ∂u j / ∂g ∂∆t 2 (47) 
An example of SIM is depicted in Fig. 4 for R = 0.65, r = 0.5 and ∆ = 0.15. The SIM is composed of two branches, the left branch is completely unstable and the right one is 10 Blue (red) lines denote stable (unstable) solutions. SN and SB stand for saddle node and symmetry breaking, respectively.

partially stable. When the amplitude of the oscillation increases, a symmetry breaking bifurcation occurs and the regimes of motion with two symmetric impacts per cycle is destroyed.

4.1.2. Order ǫ 2 , ǫ 3 Equation (25) at O(ǫ 2
) is first analyzed. Substituting the solution of v 1 (28) into ( 25) gives

D 2 0 v 2 + 2µ 1 D 0 v 2 + v 2 + ψ c (v 2 -v 2τ ) = -2µ 1 -2iω c -ψ c τ e -iωcτ D 1 Ae iωcT0 +A 2 e 2iωcT0 1 -e -iωcτ 2 + 2A Ā 1 -e -iωcτ (48) 
The condition of elimination of secular terms in (48) reads

-2µ 1 -2iω c -ψ c τ e -iωcτ D 1 A = 0 → A(T 1 , T 2 ) = A(T 2 ) ( 49 
)
which means that the slow modulation amplitude A does not depends on time scale T 2 .

Taking into account (49), the particular solution of v 2 is given by

v 2 = ψ c η 1 A 2 Ξ 2 e 2iωcT0 Γ -1 + 2A ĀΞ + cc (50) 
where Ξ and Γ are constants defined as follow

Γ = -4ω 2 c + 4iµ 1 ω c + 1 + ψ c e 2iωcτ -ψ c Ξ = 1 -e iωcτ (51) 
Equation ( 26) at O(ǫ 3 ) is now analyzed. In order to identify terms that produce secular terms, the expression of w 1 given in Eq. ( 30) is developed in Fourier series as

w 1 = 1 2 (∆ -C) + iδ π C e iωcT0 + ∞ k=1 4C π 2 (2k -1) 2 e (2k-1)iωcT0 + cc (52)
u3((u($0 vwx y% #$' y $(8 y 01!

D 2 0 v 3 + 2µ 1 D 0 v 3 + v 3 -ψ c (v 3τ -v 3 ) = D 2 A -ψ c τ e -iωcτ -2µ 1 -2iω c +µ 1 ω c i(C -∆) + 2δ π C + 2irA - 8i π 2 C -2ψ 2 c η 2 1 ĀA 2 Ξ 2 e iωcτ + 1 e iωcτ -1 2 Γe 2iωcτ +3ψ c η 2 A 2 Ā e iωcτ -1 3 e 2iωcτ + 1 + ψ c 2 -∆ + 2rA - 8C π 2 - 2iCδ π + C 1 -e -iωcτ -2σA 1 -e iωcτ e iωcT0 + cc + N ST (53)
where N ST denotes terms that do not produce secular terms. Secular terms are eliminated from (53) if

D 2 A -ψ c τ e -iωcτ -2µ 1 -2iω c +µ 1 ω c i(C -∆) + 2δ π C + 2irA - 8i π 2 C -2ψ 2 c η 2 1 ĀA 2 Ξ 2 e iωcτ + 1 e iωcτ -1 2 Γe 2iωcτ +3ψ c η 2 A 2 Ā e iωcτ -1 3 e 2iωcτ + 1 + ψ c 2 -∆ + 2rA - 8C π 2 - 2iCδ π + C 1 -e -iωcτ
-2σA 1 -e iωcτ = 0 (54)

Writing A in polar form A = ae iα and splitting into real and imaginary parts, the equation governing the evolution of the amplitude of the lathe tool with respect to time scales T 2 is obtained as

D 2 a = c 1 a + c 2 a 3 + C (c 3 cos α + c 4 sin α) + c 5 cos α + c 6 sin α (55) 
where the coefficients c i are complicated (which do not need to be explicitly stated at this stage of the analysis in order to follow the procedures involved in the expansion). Since the behavior of the system on the stable branch of the SIM is analyzed, the trigonometric relations given in Eq. ( 35) are substituted into (55) and the obtained equation is multiplied by a(T 2 ), yielding

D 2 N = c ′ 1 N + c ′ 2 N 2 + c ′ 3 C + c ′ 4 C 2 + c ′ 5 ( 56 
)
where N = a 2 . Fixed points are computed by vanishing the derivative in (56) and are given by

N = -c ′ 1 ± c ′2 1 -4c ′ 2 (c ′ 3 C + c ′ 4 C 2 + c ′ 5 ) 2c ′ 2 (57)
Equation ( 57) constitutes an algebraic relation between the amplitude of the oscillations of the lathe tool and the vibro-impact NES. Therefore it can be viewed as the SIM of the problem at time scale T 3 when T 2 → ∞ and the fixed points of the system are obtained graphically at the intersection of the SIM given in Eq. ( 36) and the curves (57), see [START_REF] Gendelman | Bifurcations of self-excitation regimes in a van der pol oscillator with a nonlinear energy sink[END_REF]. p9@ABC E PE D E D Fst PQ Q9IC SGPbCS T 1 in blue (red) for stable (unstable) branch and T 3 in green for σ = 1. Pink + represents an unstable fixed points. Yellow lines represents the projection of the numerical integration on the SIM. (b): Result of numerical integration

Description of different response regimes

Different response regimes may be explained by studying the location of the fixed points on the SIM. The physical parameters of the primary system and the vibro-impact NES are given by ǫ 2 = 0.01, µ 1 = 0.03, R = 0.65, r = 0.8, ∆ = 2.10 -5

(58)

The specific cutting coefficients ρ i for the machining of steel are given in [START_REF] Dombovari | On the global dynamics of chatter in the orthogonal cuttingmodel[END_REF] ρ 1 = 6109.6 10 6 N m -2 , ρ 2 = -54141.6 10 9 N m -3 , ρ 3 = 203769 10 12 N m -4 , h 0 = 1 10 -4 m (59)

The numerical integration is carried out on the zero order lobe for ψ c = 0.4 (see Fig. 2). The step by step integration has been performed using the matlab dde23 algorithm together with the function event for the detection of the successive impacts.

Analog relaxation cycles

The SIM for σ = 1 depicted in Fig. 5(a). It is observed that an unstable fixed points is located on the unstable branch on the SIM while another unstable fixed point (not displayed here) is located on the unstable part of the right branch of the SIM (above the symmetry breaking bifurcation point). In this case, if the amplitude of the oscillations of the lathe tool became higher than the critical value a min given in Eq. ( 37), the slow flow will be able to be attracted by the stable branch of the SIM. In this case, the vibro-impact NES will be synchronized with the lathe tool and will oscillate with two symmetric impacts per cycle. During the synchronized regimes, the energy of the system will be dissipated by successive impacts (R < 1) and the amplitude of the oscillations of the lathe tool will decrease until reaching the singular point a min . At this point, the vibro-impact NES will escape the resonance capture and the amplitude of motion of the primary system will increase again, and so on.

The results of numerical integration depicted in Fig. 5(b) confirm the theoretical predictions; the amplitude of the oscillations of the lathe tool increase while the vibroimpact NES perform chaotic oscillations until the flow is attracted to the stable branch 13 p9@ABC E PE D E D Fst PQ Q9IC SGPbCS T 1 in blue (red) for stable (unstable) branch and T 3 in green for σ = 4.6. Pink + represents an unstable fixed points. Yellow lines represents the projection of the numerical integration on the SIM. (b): Result of numerical integration of the SIM. Then, the amplitude of the primary system quickly decrease until the vibroimpact NES escape resonance capture. These cycle may be viewed as the analogy of the SMR regimes occurring in NES with cubic stiffness nonlinearities, but with a significant difference. In the case of NES with cubic stiffness, these cycles corresponds to jumps between the two stable branches of the SIM [START_REF] Starosvetsky | Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry[END_REF], while in this case they corresponds to successive synchronization and escapes of the synchronized regimes.

Limit of the passive control of chatter

When the value of σ is increased, the unstable fixed point located on the right branch of the SIM comes down along this branch as seen in Fig. 6(a) for σ = 4.6. If during the relaxation cycle, when the slow flow jump to the stable branch of the SIM, the landing point is above the saddle point, the slow flow will be repelled to higher amplitude and the system is no more controlled. The result of numerical integration, presented in Fig. 6(b), illustrates the theoretical prediction; after two relaxation cycle, the slow flow jump back to the stable branch of the SIM in the vicinity of the saddle point and the amplitude of the oscillation growth. In addition, it can be observed on the numerical integration, that when the amplitude of the oscillation growth sufficiently, the oscillation becomes unsymmetric (around t = 400), which is in agreement with the stability analysis of the SIM.

Experimental analysis

In order to validate experimentally the efficiency of a vibro-impact NES to passively controlling the chatter instability in turning, an experimental setup has been built.

Experimental setup

The trials have been realized on a Cazeneuve lathe (CT210) and the full experimental setup is depicted in Fig. 7. The machining operations have been carried out on a 40mm diameter, XC38 steel bar hold in the mandrel and the tail-stock. The cutting tool is a p9@ABC E `aRCB9ICTQPb SCQARW P bUcPb g9C c eCQP9bCe g9C UV QHC cUB9T@ cPB 9QH QHC CIcCeeCe vibro-impact NES.

250mm long boring bar which has been softened in one direction close to the tool holder to favour the bending mode in the cutting direction. In addition, a mass has been added on the tool tip in order to reduce the natural frequency of the first bending mode. The same feed-rate h 0 = 0.1mm/tr is used for all the trials which consist in different turning passes with different spindle speed and depth of cut.

The oscillations of the tool tip have been measured using a laser vibrometer, and the specific cutting coefficients are those from [START_REF] Dombovari | On the global dynamics of chatter in the orthogonal cuttingmodel[END_REF]. The dynamics characteristics of the tool have been obtained by hammer testing and are summarized in Table 1. It can be noticed that the natural frequency is still high in comparison to other NES application, which is an interesting feature. At first, experiments were performed without the vibro-impact NES in order to compare the behavior to the one identified theoretically on the linear analysis. The determination of the stable or unstable character of the process may not be straightforward due to the presence of strong forced vibration which can be due to an eccentricity of the workpiece, or when the spindle speed is close to the natural frequency of the lathe tool. In such case, the direct time series of the measurement may not be sufficient to identify chatter vibrations. To this end, simple signal processing method may be applied, such as re-sampling the signal at the spindle speed frequency [START_REF] Mann | Stability of up-milling and down-milling, part 2: experimental verification[END_REF]; in this case, a stable behavior will be represented by a straight line, because the relative position of the tool and the workpiece is always the same at each tool-path, whereas an unstable behavior will present a disorder. Another method consist in analyzing the pseudo-Poincaré section of the measured signal. A stable behavior will present an attractor of type point, whereas an unstable behavior will present an attractor of type circle. An example of the analysis of an unstable trial is depicted in Fig. 8. The comparison between the stability lobes obtained theoretically and those obtained experimentally is presented in Fig. 9. The stable (unstable) cutting conditions are represented by green circle (cross). The theoretical and experimental results are in agreement even if a shift on the left of the stability boundary is observed.

Sizing of the vibro-impact NES

Only the gap of the vibro-impact NES may be precisely adjusted during the fabrication process. The coefficient of restitution R may be varied using different materials couple for the ball and the cover. Here, a bearing ball and steel cover were used. Typical values of the amplitude of the oscillation measured during unstable trials without the vibro-impact NES were around 0.15mm. The activation level of the vibro-impact NES computed with the help of Eq. [START_REF] Yue | Symmetry and bifurcations of a two-degree-of-freedom vibro-impact system[END_REF] has been fixed to 50% of this value, which gives a gap ∆ = 0.34mm. After fabrication, the measured gap was ∆ exp = 0.32mm. In order to check whether the activation level fit the theoretical prediction and to estimate the coefficient of restitution, the vibro-impact NES alone has been embedded on an electrodynamic shaker. In effect, this configuration corresponds to an harmonically forced vibro-impacts oscillator as in Eq. ( 29). So, it is possible to identified experimentally the stable branch of the SIM, which is very interesting for the sizing procedure. A base displacement at frequency 99.4Hz, which correspond to the chatter frequency, is imposed to the vibro-impact NES and the successive impacts of the free mass on the cover are identified using accelerometers. Raw signals of two measurements are presented in Fig. 10. It is observed that in Fig. 10(a), for a = 7.66.10 -5 , that the vibro-impact NES exhibit two symmetric impacts per cycle, that is, the time between two consecutive impacts is the same, while in Fig. 10(b), for a = 1.81.10 -4 , there is still two impacts per cycle, but the time between two consecutive impacts differ, indicating asymmetric response.

The theoretical and experimental SIM are depicted in Fig. 11. Where the green circle corresponds to the experimental measurements, the continuous pink line denotes the experimentally identified activation level and the dashed pink line indicate the amplitude at which first asymmetric solutions have been observed. The value of coefficient of restitution of impact has been estimated by fitting the experimental results with the theoretical expression of the SIM given in Eq. [START_REF] Dombovari | On the global dynamics of chatter in the orthogonal cuttingmodel[END_REF]; which give R = 0.6. Effectively, using coefficients of restitution from the literature for a plane-ball, steel-steel contact which is around 0.95 yields to erroneous results.

The experimentally identified activation level is slightly higher than the theoretical predictions, which is certainly due to the simplified model of the behavior of the free mass of the vibro-impact NES which do not capture its complex dynamics. The results are however in satisfactory agreement, and asymmetric solutions have also been observed, consistently with theoretical predictions. . . p9@ABC DYE lUIRPB9SUT UV QHC cCHPg9UB eAB9T@ ATSQPcbC IPGH9T9T@ URCBPQ9UT 9QHUAQ PTe 9QH g9cBUh impact NES for s = 1800rpm and p = 0.1mm (ψ = 0.12 and Ω = 0.307).

Passive control of chatter with a vibro-impact NES

In order to analyze experimentally the efficiency of the vibro-impact NES to mitigate chatter instability on turning process, trials with the vibro-impact NES embedded on the lathe tool on the unstable zone have been carried out. Two trials with and without vibro-impact NES are depicted in Fig. 12 for s = 1800rpm and p = 0.1mm (ψ = 0.12 and Ω = 0.307).

It is observed that the presence of the vibro-impact NES changes drastically the behavior of the system. For the trial without vibro-impact NES, a constant high amplitude was measured whereas for the trial with vibro-impact NES, modulated response with moderate amplitude is observed. The measured modulated response is very similar to the analog relaxation cycle described theoretically. The successive impacts of the ball of the vibro-impact NES were clearly audible, however, the ambient noise due to machining operation did not allow us to measure the impact of the free-mass of the vibro-impact NES with the accelerometer. This behavior is however very promising, since a reduction of almost 50% on the vibration amplitude is observed.

mn opqrstuvpq

This paper investigated the possibility of controlling the chatter instability, which may occur during machining operations, using a NES. Due to practical reasons, a vibroimpact type NES was preferred to the classic NES with cubic stiffness.

The coupled system has been analyzed using the method of multiple scales. At the first order of approximation, the expression of the SIM has been obtained. The stability analysis of its different branches was also performed. At the next order of approximation, the fixed points of the system are obtained at the intersection of the slow and super-slow invariant manifolds.

The analysis of the different response regimes allow us to reveal a control mechanism which may be viewed as the analogy of the SMR response observed in the case of NES with cubic stiffness. In this case, the vibro-impact NES enter in successive resonance capture with the lathe-tool and the energy is dissipated during these synchronous motion.

An experimental setup which consist in a lathe tool with an embedded vibro-impact NES has been presented. First trials without vibro-impact NES were performed to confirm the stable or unstable nature of the process for different cutting conditions. The activation level of the vibro-impact NES was chosen in accordance with these trials. Notice that the natural frequency of the tool (which is close to the chatter frequency) is 99.4 Hz which is particularly high for NES application.

Due to the complicated real dynamics of the vibro-impact NES an original experimental procedure has been designed to validate the tuning of the NES. This procedure enable to identify experimentally the stable branch of the SIM.

Finally, two trials without and with the vibro-impact NES have been compared an promising results were obtained with a significant reduction of the amplitude of the tool. A deeper experimental investigation is left for further studies.
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Table 1 :

 1 Characteristics of the experimental setup

	m 1	3.1 kg	µ 1 3 %
	f 1 99.4 Hz m 2 32 g
	r	0.8	
	5.2. Validation of the stability lobe without NES