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Abstract A periodically forced linear oscillator with im-
pact attachment has been studied. An asymptotical analyt-
ical method has been developed to obtain the fixed points
and to analyze the transient 1:1 resonance (two impacts per
cycle) of the modulated response. The influence of parame-
ters on dynamics has been analyzed around the Slow Invari-
ant Manifold (SIM). Five different response regimes have
been observed from theoretical and numerical results. It is
demonstrated that they are closely related to the topologi-
cal structure and relative position of fixed points. The bi-
furcation, route to chaos and the efficiency of Targeted En-
ergy Transfer (TET) with the variation of different param-
eters (i.e. amplitude and frequency of excitation, clearance,
damping, mass ratio and restitution coefficient) have been
investigated and well explained around SIM. Experimental
results validate the existence of different regimes and dif-
ferent routes to chaos by the variation of the return map of
time difference between consecutive impact moments. TET
phenomenon has been analyzed for a strongly modulated re-
sponse and different cases of TET have been observed and
analyzed. It is clearly observed that TET depends not only
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Université de Toulouse, Institut Clément Ader (ICA), CNRS-INSA-
ISAE-Mines Albi-UPS, 3 rue Caroline Aigle, F-31077, Toulouse,
France
E-mail: tli@insa-toulouse.fr
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on whether there exists 1:1 resonance, but also on impulse
strength during the transient resonance capture.
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1 Introduction

Tuned Mass Damper (TMD) is an energy reduction device
with a mass connected to main system by a linear spring
conceived by Frahm [1]. This device has been extensively
studied and proved that it is simple and efficient but limited
in the vicinity of a single frequency [2]. In contrast, non-
linear vibration absorber is proved effective to broaden the
suppression bandwidth [3]. In the past approximately fifteen
years, the phenomenon of Targeted Energy Transfer (TET)
existing in a series of nonlinear vibration absorber called
Nonlinear Energy Sink (NES) is considerably studied [4,
5]. Many kinds of NES with different couple nonlineari-
ties are developed and investigated: cubic NES [6–9], rota-
tional NES [10,11], piece-wise NES [12], NES by nonlinear
membrane [13,14] and Vibro-Impact (VI) NES [15,16], in
which special orbits for the occurrence of TET is observed
by studying the underlying Hamiltonian system and the en-
ergy of the main system can be irreversibly transferred into
attached VI NES and dissipated effectively during transient
resonance captures. Actually, the main damping mechanism
of VI NES is that the energy of main system is transferred
and dissipated at the same moments of impact.

VI NES is also referred as impact damper and its dy-
namics have been extensively studied since nearly seventy
years ago [17,18] since the initial study about an accelera-
tion damper (early name of the impact damper) by Lieber
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[19]. The principle is to transfer the energy of the main sys-
tem to a small attached mass and to dissipate the energy by
their mutual impact interactions. Although there exist dif-
ferent types of impact models [20], it has been proven that
there is a similarity of several important vibro-impact sys-
tems under certain specific limits or constraints [21].

The research of impact damper has been around two
main themes. The first one is about the dynamics: response
regimes and stability by analytical study in [22] and with
experimental validation in [23,24], bifurcation and chaos
by numerical study with the combination use of time se-
ries, phase trajectories, bifurcation diagrams [25], Poincare
maps [26] and Lyapunov exponential [27]. Similar study has
been carried out for the impact oscillator by Pekerta [28].
Based on the above mentioned work, the first point of view
on the relationship between parameters and dynamics is es-
tablished.

Another topic of research is concentrated on the effi-
ciency of energy dissipation for free or forced vibration [29,
30]. The influence of system parameters (e.g. mass ratio,
clearance and coefficient of restitution) is considerably in-
vestigated. The finite experimental results are concentrated
on response regimes by measuring the acceleration of main
system [29] or displacement of impact damper directly [31].
To evaluate the efficiency of TET, the second point of view
about the relationship between parameters and the energy
(e.g. amplitude) of main system is constructed.

Inspired by the extensive study in the domain of TET, an
asymptotic analytical method originally used for cubic NES
[32] is improved to explain the transient TET process for
linear oscillator coupled with VI NES under free excitation
[33], i.e. inconstant amplitude and frequency spectrum. The
study of VI NES was extended under periodic excitation [34,
35] and for quenching chatter instability [36].

Slow Invariant Manifold (SIM) describing all possible
fixed points and possible variation routes is obtained through
this analytical method in the first order of the time scale,
and the fixed points are obtained by combining the equa-
tions in the first and second order. The condition of 1:1 res-
onance between main system and VI NES (i.e. two impacts
per cycle) required for the application of this method is re-
laxed to cover the more general case (i.e. non 1:1 resonance)
[37]. Actually, this asymptotic approach describes the im-
pact system from another point of view. However, the recent
research about the impact damper as NES with this new ap-
proach is limited to study the topological structure of SIM
and possible response regimes. Other aspects of its dynam-
ics (e.g. bifurcation, chaos and optimization) should be stud-
ied further and the past work about impact damper should be
understood with new horizons. Therefore, study of the dy-
namics from this new point of view will be the first objective
of this paper.

Fig. 1 Schema of a vibro-impact NES (impact damper)

Another goal will be concentrated on the efficiency of
TET. It is observed that resonance is the essence for all NES
from the perspective of TET and the type of resonance de-
cides its efficiency [5]. The 1:1 resonance regime is claimed
and proved to be the most efficient. Considering two impacts
per cycle for VI NES, it may be the ideal candidate to illus-
trate the 1:1 resonance and variation of efficiency of TET
with more clear and direct evidence.

The system composed of a linear oscillator and a VI
NES (i.e. impact damper) will be studied in this paper. In
the section two, modelling and the analytical treatments are
developed. In the section three, the influence of parameters
on dynamics and energy reduction is analyzed by analytical
and numerical results. In the next section, the experimental
results are presented. Finally, the conclusion is addressed.

2 Modelling and analytic treatment

System of harmonically forced Linear Oscillator (LO) at-
tached with VI NES is presented in Fig. 1 and described by
the following equation:

ẍ+ ελ1ẋ+ x = εGsinΩτ + ε
2
λ1GΩ cosΩτ

ε ÿ = 0

∀|x− y|< b

(1)

The corresponding physical parameters are expressed as
follows:

ε =
m2

m1
, ω0

2 =
k1

m1
, τ = ω0t,

λ1 =
c1

m2ω0
, Ω =

ω

ω0
, G =

F
ε
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where x, m1, c1 and k1 are the displacement, mass, damp-
ing and stiffness of the LO respectively. y and m2 are dis-
placement and mass of VI NES. The dots denote differenti-
ation with respect to dimensionless time τ . b represents the
clearance. xe (t) = F sin(Ω t) is the displacement imposed
on the base by the shaker.

When |x−y|= b, an impact occurs. The state of the sys-
tem after impact is obtained using the simplified shock the-
ory and the condition of total momentum conservation:

x+ = x−, y+ = y−

ẋ++ ε ẏ+ = ẋ−+ ε ẏ−, ẋ+− ẏ+ =−r
(
ẋ−− ẏ−

)
,

for |x− y|= b

(2)

where r is the restitution coefficient and the superscripts
+ and − denote time immediately after and before impact.
New variables representing the displacement of the center
of mass and the internal displacement of the VI NES are
introduced as follows:

v = x+ εy, w = x− y (3)

Substituting Eq. (3) into Eqs. (1) and (2), the equation
between impacts in barycentric coordinate are given as:

v̈+ ελ1
v̇+ εẇ
1+ ε

+
v+ εw
1+ ε

= εGsinΩτ + ε
2
λ1GΩ cosΩτ

ẅ+ ελ1
v̇+ εẇ
1+ ε

+
v+ εw
1+ ε

= εGsinΩτ + ε
2
λ1GΩ cosΩτ

∀|w|< b
(4)

and the impact condition (2) is rewritten as:

v+ = v−, w+ = w−,

v̇+ = v̇−, ẇ+ =−rẇ−, for |w|= b
(5)

Multiple scales are introduced in the following form:

v(τ;ε) = v0(τ0,τ1, . . .)+ εv1(τ0,τ1, . . .)+ . . .

w(τ;ε) = w0(τ0,τ1, . . .)+ εw1(τ0,τ1, . . .)+ . . .

τk = ε
k
τ, k = 0,1, . . .

(6)

A detuning parameter (σ ) representing the nearness of
the forcing frequency Ω to the reduced natural frequency of
the LO is introduced:

Ω = 1+ εσ (7)

Substituting Eqs. (6) and (7) into Eqs. (4) and (5), then
equating coefficients of like power of ε gives:

(z)

Π(z)
M(z)

Fig. 2 Representation of the non-smooth functions Π(z) and M(z)

Order ε0:

D2
0v0 + v0 = 0

D2
0w0 + v0 = 0, ∀|w0|< b

(8)

v+0 = v−0 , w+
0 = w−0 ,

D0v+0 = D0v−0 , D0w+
0 =−rD0w−0 , for |w0|= b

(9)

Order ε1:

D2
0v1 + v1 =−2D0D1v0−λ1D0v0−w0 + v0

+Gsin(τ0 +στ1)
(10)

Here, the SIM will be obtained through the first order
and the fixed points will be obtained by combining the first
order and the second order, as have been done in [34].

For v0, Eq. 8 and Eq. 9 simply represent an undamped
harmonic oscillator case and its solution can be expressed as
follow:

v0 =C(τ1)sin(τ0 +θ(τ1)) (11)

For w0, Eq. 8 and Eq. 9 represent a harmonically forced
impact oscillator with symmetric barrier. Under the assump-
tion of 1 : 1 resonance (i.e. motion with two symmetric im-
pact per cycle), its solution can be searched in the following
form:

w0 =C(τ1)sin(τ0 +θ(τ1))+
2
π

B(τ1)Π (τ0 +η(τ1)) (12)

Where Π(z) is a non-smooth saw tooth function [38,39].
This folded function and its derivative is depicted in Fig. 2
and are expressed as follows:
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Fig. 3 SIM of VI NES: one stable branch in blue line and two unstable
branches in red line

Π(z) = arcsin(sinz), M(z) =
dΠ

dz
= sgn(cosz) (13)

According to Eq. (12) and (13), impact occurs at T0 =

π/2−η+ jπ with j = 0,1,2, . . . The impact condition |w0|=
b is rewritten with Eq. (12) as:

C cos(η−θ) = b−B (14)

Rewriting now the inelastic impact condition (9) yields:

C (1+ r)sin(η−θ) =
2
π

B(1− r) (15)

Combining Eqs. (14) and (15), a relation between B and
C is obtained as follows:

C2 =

(
1+

4(1− r)2

π2 (1+ r)2

)
B2−2bB+b2 (16)

An example of a SIM with b= 1 and r = 0.6 is presented
in Fig. 3. The stability of SIM is analyzed by the approach
used in [22] , in which the stable branch is defined by the
condition that the modulus of all the eigenvalues of a cer-
tain matrix relating conditions after each of two consecutive
impacts is less than unity. And it also can be evaluated by
direct numerical integration of Eq. (8).

In order to obtain the fixed points or study the evolution
of motion of system on the SIM for Strongly Modulated Re-
sponse (SMR), Eq. (10) at the next order of approximation is
analyzed. To identify terms that produce secular terms, the
function of w0 is expanded in Fourier series in the following
form:

w0 =C(τ1)sin(τ0 +θ(τ1))+E (τ1)sin(τ0 +ζ (T1))

+RFC
(17)

where RFC represents the rest frequency components
compared to the first two terms. E (τ1) is decided by the mo-
tion of VI NES. The Eq. (17) is a more general and relaxed
analytical description with respect to the motion of VI NES
compared to the case of just 1:1 resonance (i.e. two sym-
metric impacts per cycle). If the case of 1:1 resonance ex-
ists, the fixed points can be analytically obtained. However,
only partial duration of the whole process is in resonance for
response regime of transient loading or SMR. In these two
cases, the above relaxed equation is useful and efficient to
explain the underlying mechanism.

Substituting Eq. (11), (12) and (17) into Eq. (10) and
eliminating terms that produce secular terms gives:

D1C =−1
2

λ1C− 1
2

E sin(Θ)+
1
2

Gsin(η)

D1η =
1
2

Gcos(η)/C− 1
2

E cos(Θ)/C+σ

(18)

where

Θ = ζ −θ

η = στ1−θ
(19)

Θ represents the phase difference related to that between
LO and VI NES. η represents the phase difference related to
that between LO and outside excitation.

3 Analytical and numerical results

3.1 Response regimes

The experimental identified parameters of the system in Ta-
ble 1 (see Sec. 4) will be used. The regime is labeled by
the quantity z = p/n, where p is the number of impacts and
n is the number of excitation periods T during the consid-
ered time [25]. Five different response regimes exist with the
variation of clearance under outside excitation frequency of
8.5Hz and they are categorized by the value of z as showed
in Fig. 4. The first, second and third column represents the
displacement of LO, relative displacement and projection
of motion (i.e. yellow lines) into SIM respectively. z can
be observed from the second column combined with the
first column, i.e. the total occurrence times of extreme rela-
tive displacement value (i.e. b or −b) during one period of
LO. Fig. 4(a) is chosen as representation for all case with
z > 2, in which z = 3 and z = 4 co-exist. In this case, the
time difference between impacts is not equally distributed
as showed in the middle figure and the stable projected mo-
tion is located at the right unstable branch of SIM and it is
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t

t

Bt t

(a)

(b)

(c)

(d)

(e)

w

B

Fig. 4 Displacement of LO in the first column, relative displacement in the second column and motion of system projected into SIM in the third
column for different response regimes: (a) z > 2; (b) z = 2 and asymmetric; (c) z = 2 and symmetric; (d) z = 2 and z < 2 for SMR; (e) z < 2

far from the stable blue branch as showed in the right fig-
ure. Moreover, the number of impacts increases with the
decrease of clearance, but the impulse strength decreases.
Fig. 4(b) represents two asymmetric impacts per cycle with
z = 2. The time difference between two impacts are not the
same, the projected motion is closer to the stable blue branch.
Fig. 4(c) represents two symmetric impacts per cycle with

z = 2. It is seen in the right figure that the steady projected
motion can be represented by a point in the stable branch
of SIM except the transient process. SMR is presented in
Fig. 4(d), the alternative appearance of z = 2 and z < 2 can
be seen in the middle and right figures. For the part z = 2,
the case with two impacts per cycle occurs and its variance
is governed by the blue stable branch. For the part z < 2,
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the case with sparse impacts occurs, its variation law is not
known. This irregularity is also demonstrated by the vari-
ation of amplitude of LO in the left figure, which reveals
the chaotic characteristic of SMR. Fig. 4(e) demonstrates
loose impact case with z < 2, in which transient 1:1 reso-
nance with continuous two impacts per cycle does not exist.
In this area, the response is chaos. From the variation of im-
pact number and amplitude of LO in Fig. 4, it is seen that the
average value of z with long time duration decreases and the
average value of amplitude of displacement (x) decreases at
the first place and then increases.

3.2 Areas of SIM

From the third column of Fig. 4, it is seen that the relative
position of motion projected into SIM varies with clearance.
According to the value of C2, 4 areas can exist. This law
of variation by numerical study can also be analytically ob-
tained and the result is showed in Fig. 5(a). With the increase
of clearance, one of the fixed point represented by red cir-
cle will move along the SIM from area Z1 with z > 2 to
z = 2 through a series of grazing bifurcation. In area Z2, the
regime with two asymmetric impacts per cycle persists until
the critical point between stable blue branch and the right
unstable red branch, in which the double period bifurcation
occurs. Then the regime with two symmetric impacts per
cycle occurs. If the above process is continued, there exist
two routes entering into chaos. The first case is showed in
Fig. 5(b), the two unstable points will approach each other
and then disappear. The response regime is SMR demon-
strated in Fig. 4(d) and the duration time of transient 1:1
resonance part will decrease with the increase of clearance,
which is numerically observed by an outside excitation fre-
quency 8.5Hz. Another case is demonstrated in Fig. 5(c)
with an outside excitation frequency 8Hz. Two fixed points
exist in the stable branch and then disappear by collision
with each other. During the evolution of this case, there ex-
ist two possible solutions, i.e. two symmetric impacts per
cycle and SMR. The regime chaos in area 4 will appear af-
ter the collision of fixed points at the end of the above two
cases with further increase of clearance. The above analy-
sis process for the variation of regimes can be applied to
other parameters, although the specific variation route will
depend on the specific parameters. In return, the different
bifurcations and routes to chaos can be explained with the
above analysis approach.

3.3 Transition phenomena and optimization criteria

From the above analysis, there exist two possible transi-
tion routes to chaos with two different transition regions,
which are respectively defined as hysteresis region and beat

(a)

(b) (c)

Z1

Z2

Z3

Z4

B B

B

C
2

C
2

C
2

Fig. 5 Areas of SIM: (a) 4 typical areas; (b) first case in Z3; (c) second
case in Z3

motion. The former corresponds to the Fig. 5(c) in which
the response regime is ambiguous (1:1 resonance or SMR).
The latter corresponds to the Fig. 5(b) characterized by the
SMR of main system [28]. Two boundaries can be analyti-
cally obtained by two bifurcation conditions (i.e. the bifur-
cation showed in Fig. 6(a) and the bifurcation demonstrated
in Fig. 6(b)). The first one is defined by the contact point be-
tween the left unstable red branch and the stable blue branch
and the other condition is obtained by the collision of the
two fixed points. For a frequency bandwidth, the above two
transition regions are obtained and showed in Fig. 6(c). A1
represents the hysteresis region, which is numerically vali-
dated by co-existence of SMR and 1:1 resonance, which has
been experimentally observed in [24]. A2 represents the beat
motion region. The point P1 represents the singular point in
which the continuous transition without SMR (i.e. no inter-
mittency) exists. From the variation of amplitude of LO in
Fig. 4, it is reasonable to assume that the optimal energy dis-
sipation exists at the point where 1:1 resonance disappears,
which is represented by the red cross in Fig. 6(c). Different
response regimes in different areas (i.e. Z1, Z2, Z3 and Z4)
are also validated by numerical results and they are repre-
sented by the squares, circle and star.

3.4 Frequency and SIM

With the variation of relative value between the amplitude of
outside force and clearance (i.e. G/b), the relative position
of Frequency Response Function (FRF) of the main system
will vary and it will result in the change of the projected
motion location in the SIM. This phenomenon has been ex-
perimentally observed in [34]. For a fixed G, this relative lo-
cation will change from area Z1 to Z4 (i.e. from black thick
dotted curve to blue thin curve) with the increase of b as
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c
2

(b)

(1)

Z1

Z3: 1:1 

Z3: SMR
Z4: chaos

B B B B

c
2

c
2

c
2

(2)

(a)

(c)

P1
A1

A2

Fig. 6 Transition phenomenon: (a) saddle-node bifurcation boundary;
(b) Hopf bifurcation boundary; (c) transition regions

showed in Fig. 7. For any relative location, just some inter-
val of frequency can situate in area Z3 (e.g. red fine dotted
curve and green thick curve), in which the most efficient en-
ergy reduction by TET is possible, no matter in the form of
resonance capture by the 1:1 resonance regimes or just one
part of the process in resonance capture by SMR. This is the
reason why one optimal designed parameter is not the still
optimal for another frequency. The fact is that the 1:1 reso-
nance regime for all range of frequency is not possible. An-
other phenomenon is about possible types of the bifurcation
and route to chaos during sweep experiments (e.g. observed
in [27]). All possible cases can be explained clearly. For the
case of fine blue line in Fig. 7(b), there will not exist any
route to chaos. However, there will be two possible routes
for the case represented by the thick black dotted line, i.e. the
first route can go up along the line as follows: two symmet-
ric impacts, then two asymmetric impacts, then increase the
number of impacts until total chaos. The second route can
go down along the line in the following way: two symmetric
impacts, then SMR, then decrease of the duration time for
the 1:1 resonance part of SMR until total chaos. The typical
cases with fine red dotted line and thick green line can be a
little different but can be explained in the same way. For the
past research about parameter optimization for a frequency
range around resonant frequency, different cases have be ob-
served and explained. However, the study is incomplete and
the goal is not clear. From Fig. 7, the optimization criterial
is clear and is just to make the objected bandwidth of fre-
quency locate in the area Z3 as more as possible. Normally,
the objected bandwidth of frequency is around natural fre-
quency of LO, therefore the case with fine red fine dotted
line is the better.

(a)

Z4

C
2

Z3

Z2

Z1

(b)

B s
0

Fig. 7 SIM and dynamics of FRF: (a) SIM; (b) relative position of FRF

3.5 Influence of mass ratio and damping

The SMR projected in SIM is showed in Fig. 8(a). More
information about variation mechanism of the displacement
of LO and intern displacement can be seen in Fig. 4(d). In
the stable branch with thick blue curve, the good prediction
(correlation between theoretical blue curve and numerical
green curve) is seen and enlarged in Fig. 8(c), which can-
not be obtained by the traditional analytic approach com-
prehensively summarized in [17]. For the analytical method
firstly developed in [33], its objective is to analyze the tran-
sient resonance capture (two impacts per cycle) during free
vibration and it is applied to periodically forced vibration.
Its application requires small magnitude of mass ratio and
damping. For the transition part between non 1:1 resonance
and 1:1 resonance showed in Fig. 8(b) and the stable part
showed in Fig. 8(c), the vertical value difference between
every vertical yellow line is decided by the energy dissi-
pation of impact related to mass ratio and restitution coef-
ficient (the influence of restitution will be explained later)
and that between every horizontal yellow line is decided by
the energy dissipation related to the damping of LO. Large
energy reduction resulted from large mass ratio and damp-
ing will result in the failure of this approach, i.e. the predic-
tion of SIM to projected motions, although it may increase
the efficiency of energy reduction. From Fig. 4(d), it is seen
that the response is strongly modulated and the local max-
ima changes every time, which is defined as chaotic SMR
in [35]. To explain its variation trend, the non 1:1 resonance
motion of VI NES should be considered and its average ac-
tion force on the LO should be developed in Fourier series.
Its small amplitude in Eq. (17) reveals the cause for the in-
crease of the amplitude of main system. This way of treat-
ment is also fairly convenient to understand experimental
results which will be explained in the experimental part. In
addition, a method applying limiting phase trajectories by
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(a)

(b)

(c)

C
2

C
2

x10-4

Fig. 8 SIM and SMR: (a) motion projected in green lines; (b) enlarged
view of transition part; (c) enlarged view of 1:1 resonance part

studying the underlying Hamiltonian system is used to ex-
plain the formation of SMR in a duffing system under bi-
harmonic excitation [40]. Actually, it is expected that the
optimal point obtained by this method could be closely re-
lated to the limit point entering into SMR from two impacts
per cycle for the system with VI NES. Here, the interaction
force of the impact moment is stressed here to explain the
formation process.

3.6 Influence of restitution coefficient

From Eq. (16) and Fig. 3, there exists a minimal value for the
occurrence of 1:1 resonance. When the restitution of coeffi-
cient is varied with the amplitude of LO (black dotted line)
and other parameters fixed, the relative position of SIM will
vary as showed in Fig. 9(a). When r = 1 showed in red fine
curve, it will locate in area Z1, in which the impact number
is large but with low impact impulse strength. As a result,
the energy dissipation is not high. With the decrease of r,
the transition will follow along the black arrow in Fig. 9(b).
When r = 0.2 showed in black thick dotted curve, the impact
number will be low and impact pulse may be large. Globally,
it will result in low efficiency. Therefore, an intermediate
value will be optimal and lead to a maximal value of E in
Eq. (17).

4 Experimental results

The experimental setup is presented in Fig. 10(a). It con-
sists of a LO, with an embedded VI NES. The whole system
is embedded on 10kN electrodynamic shaker. The displace-
ment of the LO as well as the imposed displacement of the
shaker are measured using contact-less laser displacement

C
2

r=1

r=0.2

(b)

r=0.7

r=0.4

r=1

r=0.7

r=0.4

r=0.2

C
2

B

(a)

Z1

Z2

Z3

Z4

Fig. 9 Influence of restitution coefficient: (a) SIMs with different r; (b)
relative position for different r

(a)

VI NES

Shaker

Accelerometer

Laser sensors

ball

(b)

Fig. 10 Experimental setup:(a) global configuration; (b) detailed view
of VI NES

sensors. The acceleration of the LO is measured by a ac-
celerometer. A detailed view of the VI NES is presented in
Fig. 10 (b). It simply consists of a closed cavity of length
d +2b, where d is the diameter of the ball and b can be ad-
justed by a cylinder in the cavity. The cylinder and the other
side cover are made of hardened steel. The parameters of
the system have been identified by performing modal analy-
sis and are summarized in Table 1. The excitation frequency
is fixed to 8Hz.

4.1 Route to chaos

The route to chaos can be judged in different ways such as
those showed by the variation of response in the different
columns of Fig. 4, but they require the displacement and ve-
locity of VI NES to be known in advance, which is not al-
lowed and limited by measure device. Another way is to use
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Table 1 Parameters of the experiment

Physical Parameters

m1 4.168kg c1 3.02Ns/m
k1 11.47∗103 N/m m2 32g
b 11.5mm r 0.6

Reduced Parameters

ε 0.76% λ 1.80

a return map of time duration between every two consecutive
impacts [41]. For a limited time of data acquisition with the
excitation period given, the time of impact ti can be mea-
sured as showed by red stars in right subfigure of Fig. 11.
The acceleration of LO (blue curve) will change abruptly
and then the time difference between these moments δ ti can
be calculated. Two neighboring time difference δ ti can form
one point (δ ti,δ t(i+1)), and every two points can constitute a
vector with the first point (δ ti,δ t(i+1)) and the second point
(δ t(i+1),δ t(i+2)).

With the variation of b, different response regimes have
been observed. All left subfigures in Fig. 11(a-f) represent
the time difference return map, the yellow dotted triangle
can be expressed by L1: δ tx + δ ty = T (1/8s) , L2: δ tx =
T (1/8s) and L3 δ ty = T (1/8s). The black dotted line can be
expressed by L4: δ tx = δy. All right subfigures in Fig. 11(a-
f) represent a typical sample of the acceleration of LO, in
which the red stars denote the time of impact and the value
of acceleration. Fig. 11(g) demonstrates the relative posi-
tion of every regime in SIM. For b = 0.3mm, the results are
showed in Fig. 11(a), there exist more than 3 impacts dur-
ing one period, and the distribution of impact time is also
irregular, which is judged as chaos. For b = 2.5mm showed
in Fig. 11(b), there exist three impacts every period and the
impact time distribution is not equal but stable which is il-
lustrated by the fact that all vector form in a triangle, mean-
while all points are inside L1. For b = 4mm in Fig. 11(c),
the vector is located at the L1, which means that it just ex-
ist two impacts every period. However, the absolute value of
acceleration is not equal. For b = 7.5mm in Fig. 11(d), there
also exist two impacts per cycle, but this time the absolute
value of acceleration is almost equal. For b = 11.5mm in
Fig. 11(e), the case of two impact per cycle and no impact
appears alternatively and the duration time of 1:1 resonance
is short and irregular. For b = 20mm in Fig. 11(f), all points
is in the right and up side of L1, it means that two impacts
per cycle does not exist during the whole process, i.e. tran-
sient resonance captures does not exist.

In summary, the relative position in the SIM moves with
the increase of clearance as observed by the study in the
last section. The value of acceleration (i.e. impulse strength)
is small although with many impacts during one period for
small clearance. Then it augments with the two impacts per

cycle, and the efficiency of TET is the largest. A further
increase of clearance, instantaneous large value (i.e. strong
impulse strength) can exist, but it cannot persist during the
whole process. From analytical analysis, the number and
strength of impact impulse can decide the value of E in
Eq. (17) directly and it will then decide the efficiency of
TET, which is validated by experimental results here.

4.2 TET during SMR

A SMR with b = 15mm is demonstrated in Fig. 12, which
is characterized by the intermittency of 1:1 resonance (i.e.
two impacts per cycle) and the chaotic strongly modulated
amplitude of LO. In Fig. 12(a), the acceleration of LO with
the duration 5s is demonstrated by the blue curve and mean-
while the points of the impact moments represented by red
stars illustrate the time and acceleration value of impact mo-
ments.The intermittent and chaotic characteristic is demon-
strated by the irregular occurrence and duration time of 1:1
resonance as showed by the distribution of impact points in
Fig. 12(a) and also by transient escape in the return map
of time difference showed in Fig. 12(b). In Fig. 12(c), the
black curve and red curve represent the displacement (mm)
of shaker and LO respectively, which is superimposed with
the acceleration of LO. Here, the influence of the amplitude
and frequency of impact to the energy reduction is showed
by the variation of the amplitude of LO. The transient res-
onance capture is seen by two impacts per cycle, in which
TET is possible. In the first equation of Eq. (18), the am-
plitude variation of main system at the slow time scale is
decided only by the amplitude (i.e. E) which is obtained by
Fourier transfer and has the same frequency as that of LO,
provided that the damping of LO and outside excitation are
fixed. For the decreasing period of the amplitude of LO, two
impacts per cycle and large value of impact impulse strength
are required to guarantee the condition of 1:1 resonance and
large impact damping as showed in Fig. 12(e). Otherwise,
it will increase for not enough dense impacts illustrated in
Fig. 12(f) or not big enough impact impulse even with two
impacts per cycle as showed in Fig. 12(d). Therefore, al-
though 1:1 resonance (two impacts per cycle) is necessary
for TET, their efficiency is different for different 1:1 res-
onance regimes as is showed by the difference of accelera-
tion value for the same 1:1 resonance regime from the above
experimental results and is also analytically represented by
different points at the stable blue branch in Fig. 3. Or it is
reasonable to suppose that the most efficient case is the one
with not only 1:1 resonance but also the largest impact im-
pulse strength in impact moments as is may be presented by
the optimal curve proposed in Fig. 6, which is out the scope
of this paper and need be studied further.

If we look closely, there exist small peaks of the accel-
eration during the period defined by no impacts period as
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(b)

(c) (d)

(e) (f)

(a)

(g)

(b)

(c)

(d)

(f)

(a)

(e)

c2

B

L1
L2

L3
L4

Fig. 11 Route of variation of regimes: (a) b=0.3 mm, chaos and z > 3; (b) b=2.5 mm and z = 3; (c) b=4 mm, asymmetric resonance and z = 2; (d)
b=7.5 mm, symmetric resonance z = 2; (e) b=11.5 mm, SMR and partially z = 2 ; (f) b=20 mm, chaos and z < 2; (g) relation positon of different
regimes in SIM
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Fig. 12 TET during SMR: (a) acceleration of LO; (b) return map of time difference; (c) superposition of acceleration (blue curve) and displacement
of LO (red curve) and displacement of shake (black curve); (d-f) enlarged view of (c)

has been used in the analysis, which is showed for the time
around t = 2.7s in Fig. 11(a). This phenomenon is caused
by the small inclination of the LO which results in the lo-
cation of the ball in one side rather than in the middle [42].
Another problem is that the time difference is not equal for
two consecutive impacts per cycle as has been predicted by
analytical results, which is possibly caused by the friction

between LO and VI NES, the inclination of LO and the dif-
ference of the restitution coefficient at each side [24]. Al-
though the above two phenomena have not been considered
in the analytical study, they do not influence the above ob-
tained conclusion.
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5 Conclusion

An asymptotic analytical approach is developed for vibrat-
ing system with VI NES. All response regimes are analyzed
and organized around the SIM analytically obtained , which
represents all possible 1:1 resonance points and establishes
the relationship between motion of main system and VI NES.
The influence of system parameters and initial conditions on
the dynamics and efficiency of energy reduction is demon-
strated with analytical and numerical results. Experimental
results prove the existence of different regimes and differ-
ent routes to chaos. TET during SMR is also experimentally
demonstrated.

The general equation (i.e. Eq. (18)) can not only be used
to solve fixed points but also explain the amplitude variation
of the 1:1 resonance regimes for free and forced vibration. In
addition, it can explain the complicated variation of ampli-
tude from experimental results. Considering that the impact
system (e.g. impact oscillator and impact damper) is similar
from the point view of main systems with the help of in-
teracting force presented in the form of Fourier series, the
analytical method can be popularized.

That all regimes are organized around SIM provides an-
other point of view compared to the combination of param-
eters and regimes for the study of dynamics or that of pa-
rameters and amplitude for the study of energy reduction ef-
ficiency used by researchers like Peterka [25]. Specifically,
the influence of different parameters on the appearance of
different response regimes can be investigated by the same
criteria with the SIM as an intermediate. The optimal design
parameter is decided by whether the 1:1 resonance occurs.

Another interesting phenomenon is about the SMR from
experimental results. It demonstrates different efficiency of
TET for different regimes with short duration. It can be imag-
ined that it is related to the transient process if the outside
excitation is interrupted abruptly and set to zero. Therefore,
it can provide some proof for the optimization for free vibra-
tion system with transient TET. The complicated experimen-
tal SMR characterized by strongly modulation and chaotic
impacts proves the convenient application of the extended
analytical method.
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