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Introduction

This paper presents a structural analysis of a multi-span masonry railway bridge built in 1904 near Paris. The purpose of the research was to create a calculation tool, based on an anisotropic damage mechanical model with crack reclosing functions, able to assess the 3D mechanical behaviour of old masonry structures, in particular cracked stone bridges affected by support displacements. The model is used in a global methodology intended to assess the strains under service loads and to evaluate the ultimate load of the bridge. The requirement considered was that the tool had to be usable by practitioners on most masonry railway bridges. According to Orbán and Gutermann [START_REF] Orbán | Assessment of masonry arch railway bridges using nondestructive in-situ testing methods[END_REF], about 50% of all railway bridges in Europe consist of masonry arches. These bridges are old (more than a hundred years old) and traffic is increasing. Disorders, cracks and sometimes collapses, occur. That is why research programmes to create engineering tools have been developed in several European countries in the past forty years or so. They were initially based on limit analysis theory, with programs such as ARCHIE in Scotland, VOUTE in France (1980's) and RING in England (1990's), then used a Finite Element Method or Distinct Element Method (see Proske and Van Gelder [START_REF] Proske | Safety of Historical Stone Arch Bridges[END_REF] for a review of the history of masonry bridge calculation). Research on the topic is continuing in several laboratories in Europe with different approaches: elastic formulation, limit analysis, and elasto-plastic or damage analysis at macro, meso or micro scales. A review of the methods applicable to the study of historical masonry constructions is given by Roca et al. [START_REF] Roca | Structural Analysis of Masonry Historical Constructions. Classical and Advanced Approaches[END_REF]. In the special case of masonry railway bridges, Orbán developed a global assessment method using non-destructive investigation and non-destructive in-situ load testing. Helmerich et al. [START_REF] Helmerich | Multi-tool inspection and numerical analysis of an old masonry arch bridge[END_REF], at Wroclaw University, combined non-destructive testing and elasto-plastic analysis of the structure. In their work, the masonry arch barrel is modelled with a meso approach, considering two types of materials: masonry blocks as a linear elastic isotropic material, and mortar joints, as a plastic concrete-like material. The backfill is a granular soil (Drucker Prager model) separated from the arch barrel by contact elements. In the masonry arch, predefined planes of weakness are located in the mortar joints. The results are given as maps of plastic strains and ultimate load. At the University of Toulouse, a research programme carried out with SNCF (the French railway company) in the aim of assessing masonry railway bridges, has been in progress for ten years and includes destructive tests (coring), in-situ tests (measurements with video cameras and LVDT) and the creation of a computation tool based on FEM. This work on old masonry arches focuses on the emergence of cracking, in 3D, by means of the anisotropic damage theory coupled with plasticity, in order to determine the displacements of the structure and the zones where it is damaged. No weak zones are defined in advance, which significantly simplifies the mesh of the structure as it depends only on geometrical considerations. The final aim is to assess the current behaviour under service loads and to forecast the ultimate loads. In the research presented here, the mechanical behaviour of the masonry is described using a continuum damage model applied at the macro scale with material parameters assessed by means of a homogenization method. It considers the elastic and inelastic domains. With this damage model, initially developed by Sellier et al. [START_REF] Sellier | Coupled damage tensors and weakest link theory for the description of crack induced anisotropy in concrete[END_REF][6] [START_REF] Sellier | Orthotropic damage coupled with localized crack reclosure processing[END_REF] for concrete and adapted for masonry [START_REF] Domede | Numerical analysis of masonry arch bridges : benefits and limits of damage mechanics[END_REF], cracks can appear anywhere in the bridge and propagate in any direction, in both tensile and compressive zones, then possibly reclose depending on the stress state. The efficiency of this model in describing masonry mechanical behaviour was presented in 2010 [START_REF] Domede | Numerical analysis of masonry arch bridges : benefits and limits of damage mechanics[END_REF]. Since then, improvements have been made. In the present paper, general aspects of the methodology previously presented at the SAHC12 conference [START_REF] Domede | Mechanical analysis of an old masonry bridge in Paris[END_REF] are recalled. However, the main purpose here is to describe how the initial damage induced by the displacement of the supports or by the building process can be considered in the calculations, thanks to the numerical model and the insitu-investigations. The method consists of explaining the crack pattern observed in situ through a parametric study of the support displacements. The bridge behaviour then depends largely on the progressive restitution of stiffness during reclosing of these cracks when a service load is applied.

Fig. 1. Global analysis method for a masonry bridge

Obviously, the current behaviour of the masonry depends not only on the crack reclosing process but also on the constitutive behaviour laws of uncracked zones. These were assessed by means of laboratory tests on core samples drilled in the different materials of the bridges (different stone types and mortar). Once the individual behaviour laws were known, they were combined by means of a homogenization method to give the mean behaviour per masonry zone. Block-mortar interface pre-damage also had to be considered in the model since, as noted by Stablon et al. [START_REF] Stablon | Influence of building process on stiffness: numerical analysis of a masonry vault including mortar joint shrinkage and crack re-closure effect[END_REF], the history of the building process sometimes explains the weakening of the stone-mortar interface. Finally, because of the major influence of existing cracks in the structure, the global mechanical behaviour of an old masonry bridge is strongly dependent on its history, including the initial building process and subsequent movement of the supports, which governs its current stiffness. To consider this last aspect, in-situ measurements of crack openings and vault displacements under train loads had to be made. The work presented here includes a case study carried out on a long, multi-span stone masonry bridge (description in section 2). The methodology is summarized in Fig. 1. Relevant values and results of calculations were compared in order to fit the support settlements explaining the crack pattern, itself explaining the current masonry stiffness. A realistic calculation of the bridge was thus possible under service load, then up to ultimate loads. The results of this study are given in the third section.

The mechanical behaviour model

First, it is essential to specify that the non-linear model used for the bridge calculations is a macroscopic one, so it employs only homogenized material parameters. In fact, even if each zone of the bridge is made up of several materials (stones and mortar), the homogenized behaviour law has to be determined for each zone before the bridge analysis can be carried out. Once the homogenized behaviour law is known, a damage model is used to consider the cracking and the crack reclosure possibilities. The macroscopic model is presented first, followed by the homogenization technique and associated experimental tests. The calculation process based on the damage model determines the location and orientation of the main cracks that may develop in all directions in 3D, regardless of the mesh. These cracks can open, reclose and intersect. The masonry cracking state is then described by an orthotropic damage tensor. The damage model was first described by Sellier for concrete structures and the crack reclosure possibility was added recently, on the basis of Jefferson's works [START_REF] Jefferson | Craft--a plastic-damage-contact model for concrete. I. Model theory and thermodynamic considerations[END_REF]. Its adaptation to masonry structures was first successfully investigated by Stablon [12]. This section recalls the main principles of the damage model and its particularities concerning the gradual crack reclosure it allows. Then it focuses on the adaptations proposed for the case of old masonry vaults.

General presentation of the model

The model uses an orthotropic Rankine multi-criterion in tension to consider localized crack propagation perpendicularly to the main direction of tension, and an isotropic Drucker Prager criterion to consider shear and compression failures. The need to combine Rankine and Drucker Prager criteria has already been studied by several authors for concrete structure modelling [START_REF] Carol | On the formulation of anisotropic elastic degradation. I. Theory based on a pseudo-logarithmic damage tensor rate[END_REF][14] [START_REF] Carol | An "extended" volumetric/deviatoric formulation of anisotropic damage based on a pseudo-log rate[END_REF][16] [START_REF] Badel | Application of some anisotropic damage model to the prediction of the failure of some complex industrial concrete structure[END_REF]. A comparative study of these models can be found in [START_REF] Pivonka | Comparative studies of 3D-constitutive models for concrete: application to mixed-mode fracture[END_REF]. However anisotropic models have rarely been used for masonry structures. Lishak et al. [START_REF] Lishak | 2-D Orthotropic failure criteria for masonry[END_REF] used the damage mechanics to model two-dimensional masonry walls. Here, in the case of massive masonry bridges in which a crack can propagate longitudinally, transversally or crosswise, a 3D damage formulation is needed. With the 3D damage model used here, the initiation, propagation and widths of cracks are determined according to local strain, without any initial assumptions on crack location or orientation, in contrast to the technique used in discrete element or joint element based models. So, the cracks and damage zones are consequences of the strain localization process induced by the softening phase of the behaviour law. The model is based on the "effective stress-equivalent strain" concept developed by Lemaitre et al. [START_REF] Lemaitre | Mécanique des matériaux solides[END_REF]. In the following presentation of the main equations, the stress and strain symmetric tensors are substituted by their six component pseudo vectors for reasons of convenience, as in FEM. In this model, the effective stress   ~, is calculated according to (1):

    . ~0 S  (1) 
This stress corresponds to the "idealized" undamaged part of the material. In (1),   is the elastic strain and 0 S is the stiffness matrix of the healthy (undamaged) material. 

t c         (2) 
The internal variables that characterize the damage state of the masonry are the damage tensor t D in tension, and the scalar damage c D in compression. In tension, Rankine orthotropic criteria are used in a rotating crack framework [START_REF] Sellier | Orthotropic damage coupled with localized crack reclosure processing[END_REF]. The main effective tensile stresses are used to update a Rankine stress tensor which memorizes the maximal effective tensile stresses endured by the material. Crack rotation occurs when an effective tensile stress acts in a direction different from the previous main direction of this tensor. The model was successful in various benchmark tests often used on concrete damage models. It performed successfully in, among others, the Willam test concerning the ability to manage a rotation of the main damage direction, as discussed in [START_REF] Badel | Application of some anisotropic damage model to the prediction of the failure of some complex industrial concrete structure[END_REF][21] (results available in [START_REF] Sellier | Orthotropic damage coupled with localized crack reclosure processing[END_REF]). The main advantage of the orthotropic formulation of tensile damage is, as explained below, to facilitate localized crack reclosure management. The Rankine Criterion (Maximal Tensile Stress criterion, also called MTS by Erdogan and Sih [START_REF] Erdogan | On the crack extension in plates under plane loading and transverse shear[END_REF]) is often used to model damage or plasticity in brittle materials. In the present model, the main values of the damage tensor ( t D main values) are computed according to an evolution law based on experimental results, which is compatible with the second principle of the thermodynamics [START_REF] Lemaitre | Mécanique des matériaux solides[END_REF].

As illustrated in Fig. 2, the behaviour law presents a softening phase. The independence of the fracture energy with respect to the finite element size is ensured through an anisotropic Hillerborgh method [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF] able to consider finite elements with anisotropic geometries [7][10]. This particularity of the model is clarified below.

In compression, the negative part c   ~ of effective stresses is used to assess a Drucker Prager equivalent stress DP σ (3), on which the damage variable c D depends. The damage evolution law is also chosen in accordance with experimental results and thermodynamic principles. It includes a Hillerborgh method to control the energy dissipated during softening [START_REF] Sellier | Orthotropic damage coupled with localized crack reclosure processing. Part I: Constitutive laws[END_REF].

3 6 1 2 I δ J σ d DP   (3) 
where d J 2 is the second invariant of the deviator of c 

 ~; 1 I is the trace of c   ~ ; δ is the Drucker
Prager constant, which depends on the internal friction angle  as follows in [START_REF] Helmerich | Multi-tool inspection and numerical analysis of an old masonry arch bridge[END_REF].

  sin 3 sin 3 2   δ (4)
Once the damages are known, they influence the effective stress  ~(6). They allow crack reclosure to be included in the mechanical formulation, through the effective stress in the localized cracks f   ~ given in [START_REF] Sellier | Coupled damage tensors and weakest link theory for the description of crack induced anisotropy in concrete[END_REF]. The apparent stress   to be used at integration points of the finite element code is obtained by ( 6), where 1 is the identity tensor.

pl f         (5)       f t t c D       . . . 1 D D 1     (6) 
In [START_REF] Sellier | Coupled damage tensors and weakest link theory for the description of crack induced anisotropy in concrete[END_REF],

pl  
~ is a plastic stress following a crack reclosure yield function described in [START_REF] Sellier | Orthotropic damage coupled with localized crack reclosure processing. Part I: Constitutive laws[END_REF]. It is equal to   ~ during the tensile damage process. Thus, the stress in the localized cracks

f   ~ is zero
until a crack reclosure is activated. Details of the reclosure process modelling are given in [START_REF] Sellier | Orthotropic damage coupled with localized crack reclosure processing. Part I: Constitutive laws[END_REF]. The advantage of using an orthotropic damage tensor is the possibility it provides to activate crack reclosure in a single direction, without modifying the stress in the two orthogonal cracks. In a masonry structure, this possibility is important since several cracks can coexist in the same element because of the complex loading history. For example, a support displacement can create a transversal crack under the vault and, later, a large load on the bridge can create a longitudinal crack in the same finite element.

The behaviour law of the material under uniaxial loading is represented in Fig. 2. 



. Before damage, the law is characterized by a same elastic modulus in uniaxial compression and tension, noted

E . These 4 parameters ( c f , t f , E , peak c,



) have to be determined experimentally or by a homogenization technique if the damage model is applied to a sizeable zone of masonry including stones and mortar joints. As illustrated in Fig. 2, the damage evolution law leads to a post-peak softening phase in relation with the fracture energy in tension evolution law must depend anisotropically on the finite element size. For an eight-node cubic element, the element length is assessed by [START_REF] Sellier | Orthotropic damage coupled with localized crack reclosure processing[END_REF].

I I e J l    1 2 (7) 
In [START_REF] Sellier | Orthotropic damage coupled with localized crack reclosure processing[END_REF], I e  is a main direction of the Rankine effective stress tensor, 1  J is the inverse of the Jacobian Matrix corresponding to the geometric transformation between the reference finite element and the real ones. An anisotropic Hilleborgh method allows the structure to be meshed independently of the forecast cracking pattern. An anisotropic volume cracking energy t g (or c g ) is then used (( 8) and ( 9)), depending on the orientation of the crack, and chosen in such a way that the energy under the tensile curve equals t G (or c G ) whatever the size of the element (noted I l ) in the direction perpendicular to the crack, i.e. in the main direction "I" of the stress tensor.

I t t l g G   (8)         I tR peak t l tI t t d D E E g     , 1 2 f 2 (9)
The model also supplies the Crack Mouth Opening Displacement ( CMOD ). It is calculated directly at the Gauss point during the finite element solving procedure. CMOD depends both on the damage state and on the strain state. In the present model, it corresponds to the average crack opening displacement computed assuming a single localized crack in each direction of an element damaged in tension. It is approached using [START_REF] Stablon | Influence of building process on stiffness: numerical analysis of a masonry vault including mortar joint shrinkage and crack re-closure effect[END_REF] in the main direction of the Rankine effective stress "I". It is convenient for practitioners to have the CMOD to compare the value supplied by the finite element code with those measured in situ. Another advantage is to manage the crack reclosure directly in terms of CMOD , instead of strains, as explained below.

                             peak t peak t tI peak t peak t tI tI I D D D . D D D . E σ . l CMOD , , , , 1 H 1 ~ (10) 
In [START_REF] Stablon | Influence of building process on stiffness: numerical analysis of a masonry vault including mortar joint shrinkage and crack re-closure effect[END_REF], tI D is the tensile damage value in the main direction I;

peak t D ,
is the damage value at peak tension; tI σ ~ is the current value of the tensile effective stress in the main direction I; H is the Heaviside function defined by   1 H  X for X > 0, 0 otherwise. [START_REF] Stablon | Influence of building process on stiffness: numerical analysis of a masonry vault including mortar joint shrinkage and crack re-closure effect[END_REF] assumes that CMOD becomes equal to the displacement at the edges of the "cracked" finite element when the tensile damage tI D tends to 1. It also assumes that the localization starts at the peak of the tensile law behaviour peak t D , . Another advantage of using this variable to complement the classic damage variable is the fact that, even if many limited cracks occur in a massive structure, only the main cracks will stay open until failure and all the surrounding ones will be reclosed. CMOD is then able to capture this main crack among the multiple damaged elements. This ability of the model is described in [START_REF] Sellier | Orthotropic damage coupled with localized crack reclosure processing. Part I: Constitutive laws[END_REF]) for crack propagation in a concrete element. To describe the progressive restitution of stiffness in compression during the crack reclosing process (step 2 in Fig. 2), the model introduces a specific parameter, noted ref w . This parameter allows the roughness of the crack edges to be taken into consideration. The effective stress in the direction "I" perpendicular to the crack is given by [START_REF] Jefferson | Craft--a plastic-damage-contact model for concrete. I. Model theory and thermodynamic considerations[END_REF].

ref ref t fI w CMOD w      f ~ (11)
where  has a value close to zero, arbitrarily chosen to prevent division by zero when the crack is subjected to high compression. The behaviour of a crack corresponding to this equation is illustrated in Fig. 3. When a crack reclosure is activated, as illustrated for the loading pass 1-2-3 in Fig. 2, a uniaxial plastic flow is activated. The curve in Fig. 3 then corresponds to the evolution of the yield function associated with this plastic flow. The advantage of the orthotropic formulation is to have a different yield function for each of the three possible cracks that can coexist in a finite element. Another advantage is linked to the fact that crack reclosure have to be managed in terms of CMOD (and not strains). The CMOD is independent of the finite element sizes thanks to the anisotropic Hillerborgh method, which regulates the mesh dependency accurately.

To finish the presentation of this model, it is necessary to recall that, as CMOD and the damage are the internal variables of the model, they can be initialized to non-zero values in order to consider possible pre-damage to the masonry. In the next section, this possibility is exploited to adapt the model to old masonry.

Application to old masonry 1.2.1 Pre-damage

The main adaptation of the model to old masonry consists of considering the fact that an old masonry structure is pre-damaged in its current state. Furthermore, at the very beginning of the loading, the experimental curves in compression show a progressive increase of the stiffness until the Young's modulus E is reached. This phenomenon comes from the fact that the material contains initial cracks that reclose in compression. These initial cracks characterize calcareous rocks, and, in the case of masonry structures, also result from the initial building process as shown by Stablon et al. [START_REF] Stablon | Influence of building process on stiffness: numerical analysis of a masonry vault including mortar joint shrinkage and crack re-closure effect[END_REF]. In masonry structures, the shrinkage of the mortar joints between the stones, at construction time, creates pores and cavities that weaken the masonry. These experimental results are considered in the model by means of initial pre-damage 0 t D . The behaviour law taking this pre-damage into account is illustrated in Fig. 4. As the thermodynamic conditions require an increase of tI D , condition ( 12) is always satisfied by the model, ensuring that the calculated damage is always greater than the imposed predamage.

0  tI D  (12) 
When initial damage is imposed in an element, the model automatically calculates the initial Crack Mouth Opening Displacement 0 CMOD given in [START_REF] Carol | On the formulation of anisotropic elastic degradation. I. Theory based on a pseudo-logarithmic damage tensor rate[END_REF], corresponding to a material free of stresses. This relation is the consequence of ( 10) and [START_REF] Jefferson | Craft--a plastic-damage-contact model for concrete. I. Model theory and thermodynamic considerations[END_REF]. It means that if damage exists, an associated non-zero CMOD has existed before, and, due to the plastic flow rules, a plastic CMOD remains since the material was unloaded. The point A in Fig. 4 is then the new initial material state. If this point is shifted to zero, the behaviour law obtained seems to present a curvature inversion at the beginning of the compressive loading. In fact, this curvature inversion is the consequence of a crack reclosure.

E l D w l CMOD I t ref t I 0 0 f  (13) 
(14) gives the initial plastic stress pl  ~ in the crack. This plastic stress is considered in ( 5) and (6) to model the curvature inversion.

0 f ~CMOD w ref t pl   (14) 
To summarize: if the first stress applied to the pre-damaged material is a compression, it will first be necessary to reclose the crack. In this way, the initial compaction phase of cracked materials (observed during tests) is modelled.

Homogenization

In a macro approach, the behaviour law uses homogenized parameters to represent the mechanical behaviour of the composite material, from the healthy state without any cracks, or pre-damaged state, up to failure. In cases of existing masonry, as it is often impossible to take a 

Homogenization in compression

There are two steps in the method: the first is experimental, the second is numerical. It is summarized in Fig. 5. First, the mechanical parameters of each component of the masonry are determined separately. This begins by a characterization of the elementary material (stones on one side, mortar on the other) by means of displacement controlled compression tests. The compression strength of the mortar embedded between two pieces of stone increases due to the confinement effect, which acts in the Drucker Prager criterion through the parameter δ . It is assessed by means of compression tests carried out on multilayer samples (stone-mortar-stone) extracted from masonry, so that the interface is not altered. The value of δ is chosen so as to recover the experimental stress-strain curves with a FEM simulation. The individual parameters are introduced into a numerical calculation of a masonry representative volume, as suggested in a previous study presented at SAHC10 [START_REF] Domede | Experimental and Numerical Analysis of Behaviour of Old Brick Masonries[END_REF]. This homogenization method uses the damage model described above to consider each elementary phases of the masonry at this scale, but other models could also be used successfully. For the homogenization in compression, a representative elementary volume (REV) of masonry is computed numerically, considering each individual material with its own characteristics given by the tests. The REV chosen is a numerical wall, the dimensions of which are defined for "real tests" in the European standard specifications (EN 1052-1, 1999). The wall is loaded by applying a vertical displacement inducing compression and transverse tensions in the composite wall. The parameters of the homogenized masonry damage law are then fitted. This step provides the elastic moduli, the compressive strength, the Poisson's ratio, the strain at peak and the fracture energy of the masonry, in compression. The parameter δ is not modified.

E , ,

Homogenization in tension

The homogenized non-linear law is controlled by the stone-mortar interface, since it is the weakest zone of the stone masonry. Kim et al. [START_REF] Kim | The effect of damage and creep interaction on the behaviour of masonry columns including interface debonding and cracking[END_REF] confirmed recently that interface debonding occurs before the blocks crack. Therefore, it is assumed that the softening branch of the masonry behaviour in tension is that of the mortar-stone interface. The behaviour of the interface is measured by means of 3-point bending tests, carried out on special samples with an interface in the middle. Then, the analysis of load-displacement curves gives the fracture energy in tension, the tensile strength, and the pre-damage 0 t D . Fig. 5. Individual material characterization (step 1) and homogenization method principles (step 2)

The bridge under study

Description

The bridge studied (Fig. 6) was a stone masonry viaduct built in 1904 (9 spans, total length 136m) in the close neighbourhood of Paris. Traffic on the two railway lines is very intense and the bridge is subjected to the repeated passage of suburban passenger trains and freight trains, with 80 to 150 crossings daily. Disorders have appeared on this bridge: displacements of foundations, and transversal, longitudinal and skew cracks in the third span (Fig. 7). The bridge has been reinforced by adding steel arches under some of the original arches of the viaduct (no reinforcements in the third span). Concrete and steel micro-piles were installed beside the original timber piles in 2008. Cracks can still be seen on the spandrel wall and in the intrados of the vaults. They most often pass through the mortar joints between the stone blocks (especially longitudinal and skew cracks under the intrados) but sometimes through the stones themselves.

Paris Argenteuil Crack 4mm Debonding

Argenteuil Paris Crack 0,7mm View from under the intrados Fig. 7. Disorders in third span, side views from the north and the south, and longitudinal view under the intrados [START_REF] Stablon | Méthodologie pour la requalification des ponts en maçonnerie[END_REF].

Measurement of displacement and crack opening under service loads

All the measurements were made in the third span, while a freight train was crossing the bridge. They included: -Measurement of relative and absolute deflection under the intrados at mid span, -Measurement of horizontal and vertical displacement at the 4 points shown on Fig. 8, -Measurement of width of cracks (precision 10.10 -6 m). At the same time, the train weight, temperature and relative humidity were noted. These investigations showed that the axle loads varied from 115 to 133kN, and the deflection reached a maximum value of 0.33mm. The mean value of the vertical displacement under the freight train was 0.22mm. The opening variation of the cracks was negligible under the train load.

Paris Argenteuil Crack Fig. 8. In-situ measurements on the third span of the bridge [START_REF] Fichant | Continuum damage modelling: Approximation of crack induced anisotropy[END_REF] 

Extraction of cores from the masonries

In July 2008 and January 2009, 5 cores were extracted from the bridge, in the third span, from under the intrados of the vault. The cores were 0.7 to 1.20m long, with a diameter of 9.5cm (Fig. 9). Fig. 9. Cores extracted from under the 3 rd span.

Examination of the cores showed that there were 2 types of stone in this masonry bridge: a beige exterior calcareous stone (at left on the photo) and a grey calcareous stone for interior masonry (at right on the photo). The mortar linking the stone blocks consisted of small and large aggregates. In these cores, small samples were extracted from each of the 3 components to determine their individual properties, and from the mortar above the mortar-block joints to determine its behaviour when embedded between two stone blocks. The behaviour of the mortarstone interface was also investigated, as described below.

Laboratory tests and homogenization process

The homogenization processes had to be carried out for each of the three main zones of the bridge: Zone 1: vault and spandrel wall composed of "exterior" stone and mortar Zone 2: internal masonry composed of "interior" stone and mortar Zone 3: internal fill.

Individual mechanical characteristics of stones and mortar

The mechanical parameters of each component of the masonry (stones, mortar, and mortar-stone interface) were determined separately by means of an experimental procedure (Fig. 5, step 1). Both types of stone were calcareous, homogenous and isotropic. The characteristics of the materials are given in Tab. 1. The Poisson coefficient (), the Young's modulus ( E ), and the compressive strength f c are the mean values of the results of uniaxial compression tests as defined in EN14580 ( and E ) and EN1926 ( c f ) (6 samples of interior stone, 2 samples of exterior stone, and 8 samples of mortar). The split tensile test (NFP94-422-5) gave the mean value of the tensile strength t f (4 samples of each material). Fig. 10 compares the behaviour of stones in compression with model (Fig. 10.1 and Fig. 10.2) and the behaviour of mortar in compression (Fig. 10.

3). The values of the fracture energy in compression c

G and strain at peak peak c,  are fitted on these curves.

Without experimental results able to provide cracking energy in tension, the authors calculated t G using [START_REF] Carol | An "extended" volumetric/deviatoric formulation of anisotropic damage based on a pseudo-log rate[END_REF], valid for geomaterials, where c l is the characteristic length of the sample, i.e. 10 cm. This formula gives an approximate value within 20%.

E l G t c t 2 f  (15) 
Table 1.

Parameters used for individual materials *only one experimental value; ** only 2 experimental values; the coefficient of variation is indicated in brackets (%).

Material 

 E (GPa) c f (MPa) peak c,  (mm/m) c G (MJ/m 2 ) t f (MPa) t G (MJ/m 2 )

Experimental characterization of the confinement effect of mortar

This was achieved by means of compression tests on stone-mortar-stone multilayers. Nine uniaxial compression tests were carried out on cylindrical cores (diameter 2.65cm, height 6.6cm to 9.25cm) including mortar embedded between two pieces of stone (Fig. 11). The failure of the sample resulted from failure of the mortar when the mortar width was large relative to that of the stone but from failure of the stone (axial crack) when the mortar width was small, because of the confinement effect applied to the mortar joint by the bonded stone blocks. Thus, these tests gave the effect of confinement on mortar. A numerical inverse analysis of these tests determined the confinement parameter δ = 0.52 (relative to an internal friction angle = 23°). 

Homogenization

In compression

The mortar and stone composite behaviour was assessed by calculating a representative elementary volume as explained in section 2.3. We obtained the parameters given in Tab. 2. (The dimensions of the stone blocks were 40cm x 25cm x 30cm. The mortar joint thickness was 2cm). Fig. 12 compares mortar behaviour in compression, exterior facing stone behaviour, and the homogenized behaviour law for the masonry. 

In tension

The homogenized behaviour was the same as in compression for elastic properties but, for the non-linear phase, only the mortar-stone interface was considered. Six 3-point-bending tests were carried out on special samples made of a mortar joint embedded between 2 pieces of stone as can be seen in Fig. 13 (displacement increasing by 0.01mm/min). The numerical inverse analysis of these tests gave the pre-damage 0 t D of the stone-mortar interface. The law adopted is shown in Fig. 13. The parameter ref w can only be determined by cyclic tension-compression tests, which were not been carried out during this research. So the value adopted for this parameter was the same as for concrete fracture, 10µm [START_REF] Sellier | Orthotropic damage coupled with localized crack reclosure processing[END_REF]. The back fill

It was forbidden to pierce the water insulation while coring as it prevents water seepage into the vault. For this reason, no samples were collected from the back fill. So no experimental campaign was possible for this part of the bridge. Without any data about the fill, the stiffness of its constitutive material was set arbitrarily. We assumed that the fill acted as a Drucker Prager material with negligible cohesion, negligible tensile strength, and with a compression strength c f and a Young's modulus E equal to half the values for interior stone masonry. Thus, the role of the backfill in the mechanical behaviour of the bridge was simply to transmit railway loading to the masonry (unfavourable assumption), and provide gravity loads (favourable), as demonstrated by Gago et al. [START_REF] Gago | The effect of the infill in arched structures: Analytical and numerical modelling[END_REF].

Numerical analysis of the bridge studied

Mesh

The mesh was built in such a way that the final calculation tool could be used for any masonry arch by providing a limited number of geometrical parameters as described in Fig. 14 (A preprocessor was developed to facilitate the data input). The bridge was divided into 5 zones: the vault (interior stone masonry), which was embedded between the two spandrel walls and the two rings (exterior stone masonry), the abutments (interior stone masonry) and the fill (Drucker Prager material with negligible cohesion). 

Boundary conditions

The vertical planes located at each end of the three calculated spans were blocked horizontally in order to simulate the continuum of the bridge symmetrically on each side (Fig. 16).

The soil and foundations under the bridge were modelled by elastic joint elements, the rigidity of which was calculated with respect to the results of the on-site investigations (displacements of pile bases under freight train loads) described in 2.2.3. A first calculation of the bridge determined the rigidity of the foundations such that their vertical displacement under the freight train reached the mean value measured (0.22mm). The foundation rigidity was k n =75MPa/m. The railway tracks and their support system were added on to the bridge in the form of 4 lines by means of beam elements with an elastic linear law ( E = 30GPa, =0.2), linked to the structure by joint elements (vertical rigidity = 100MPa/m, longitudinal rigidity = 1000MPa/m). To simplify the approach, the beam finite-elements included the railway tracks, the sleepers and the ballast. This approach was adopted by Noorzaei et al. [START_REF] Noorzaei | Numerical Simulation of Railway Track Supporting System Using Finite-Infinite and Thin Layer Elements Under Impulsive Loads[END_REF] for dynamic loading of railway bridges, with an elasto-plastic material. In our case, an elastic model was used for the tracks to avoid the appearance of damaged areas and localization phenomena in this element (which it was not our goal to study here), Fig. 16. Location of tracks and loads, boundary conditions

Calculation method under loads

Three types of actions were considered and applied successively, step by step (Fig. 17): selfweight, displacements of foundations, traffic loads. 

Results of calculation

Before any calculations, the pre-damage in tension assessed in 3.2.2 was applied to the whole structure. The material parameters for each zone were those obtained from experimental results by homogenization, as explained in section 3.

Self-weight

Under self-weight, a few very thin cracks appeared symmetrically (Fig. 18). The vault deflection was 2.2cm (point A on Fig. 20). 

. Displacements of foundations

In order to create a skew crack opening of 0.7mm under the intrados of the third span as actually observed on the bridge (Fig. 7), differential displacements from 5 to 12cm were applied under the second pile (Fig. 19). Note that these imposed displacements were not measured on site, but fitted to explain the current crack pattern observed (point B on Fig. 20). Then, the loads were increased until collapse. On Fig. 20, the real service train is indicated by the point C1. The cracking scheme to collapse is given in Fig. 21. As loads increase, some cracks, in the spandrel walls, reclose. It can be observed that the real train load had no significant effect on the crack opening as measured on site. The calculation was stopped at failure (25MN, point C2 in Fig. 20), i.e. a train load of 15MN. On the example of Fig. 20, the safety margin between failure load and service load is very high. The bridge studied is very massive and thick. Consequently, below a very high load (around 8MN in this case study), crack propagation did not lead to a sufficient concentration of stress to damage the bridge. When load increased, a crack propagated near the first support, from the extrados. Progressively, the damaged zone in tension extended towards the intrados (In Fig 21 the compressive zone corresponds to the undamaged parts, and becomes smaller from state C1 to C2). At failure, in the same section, a small zone of the intrados was damaged in compression (Fig. 22). Consequently, a plastic hinge appeared in this section, and failure occurred. Finally, collapse was obtained by the crushing of a block after the occurrence of several stress redistribution mechanisms in the structure. These redistributions were initiated by support settlements and amplified by the propagation of cracks in tension. Therefore, the stress redistribution depended on the ability of the model to capture the crack evolution. In fact, the propagation, opening and reclosure of the cracks decreased the masonry stiffness in tensile zones and, consequently, concentrated stresses in residual compressive zones, finally leading to a crushing of the compressed blocks. observed in the masonry structure. Thus, the main cracks observed during on-site investigations are explained thanks to a first calculation step, which is a simulation of the bridge history until today. This step mainly concerns the support settlements. Then, the following steps of the calculation, with application of traffic loads, start from a simulated cracking state corresponding to the actual state. It allows the bridge behaviour to be assessed up to failure, which occurs by concentration of compressive stresses in the vault after the tensile cracks have deeply modified the stress distribution.Therefore, the compressive strength of the masonry remains a decisive factor in the load-bearing capacity of the bridge. The methodology described in this paper is able to consider existing disorders and, consequently, to predict their effects in the presence of various new actions due to, for example, higher traffic loads, increases in train velocity, additional displacement of supports, ballast resurfacing, and widening or reinforcements on the structure.
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 6 Fig. 6. The masonry bridge studied (9 spans about 12.5 m long, 8m wide)

Fig. 10 . 1 .Fig. 10 . 3 .
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 11 Fig. 11. Compression tests on composite sample. Comparison between tests and model.
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 12 Fig. 12. Compression behaviour law for exterior stone masonry: comparison between mortar, stones and homogenized masonry models.
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 13 Fig. 13. 3-point-bending test on multilayers (left) and damage model of the mortar-stone interface (right)
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 192020 Fig. 19. CMOD due to displacements of foundations, applied to create the current cracked state
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 2122 Fig. 21. CMOD and cracking scheme under train load
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