\

Soil parameter identification for cyclic loading

Aurélie Papon, Zhen-Yu Yin, Kevin Moreau, Yvon Riou, Pierre-Yves Hicher

» To cite this version:

Aurélie Papon, Zhen-Yu Yin, Kevin Moreau, Yvon Riou, Pierre-Yves Hicher. Soil parameter identifica-
tion for cyclic loading. 7th European Conference on Numerical Methods in Geotechnical Engineering
(NUMGE 2010), Jun 2010, Trondheim, Norway. pp.113-118. hal-01736235

HAL Id: hal-01736235
https://hal.insa-toulouse.fr /hal-01736235
Submitted on 20 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.insa-toulouse.fr/hal-01736235
https://hal.archives-ouvertes.fr

Soil parameter identification for cyclic loading

A. Papon, Z.-Y. Yin, K. Moreau, Y. Riou & P.-Y. Hier
Research Institute in Civil and Mechanical Enginegr UMR CNRS 6183, Ecole Centrale de Nantes, Fganc

ABSTRACT: An identification of soil arameters is performed by inverse analysis of taarained triaxia

cyclic tests on normally consolidated clay (kad&hi A two-surface plasticity model is used for glations

and genetic algorithms are selected for the op#tiom procedure. First the problem of inverse asialys

formulated as a mono-objective problem, so thah eest is considered separately and both sets|uii®ws

are analyzed. Secondly, in order to take into agteunultaneously the results of both tests, airobiective

problem is considered and solved with a multi-ofbyecgenetic algorithm, which provides a set ofieglent

solutions in terms of Pareto. Considering this gaétadeoff is determined in order to fit at béxst €xperimen-
tal and numerical curves for both tests and thevegice of the selected constitutive model is dssals

1 INTRODUCTION 2 CONSTITUTIVE MODEL

Fatigue in soils is a relevant phenomenon for mang'1 Choice of the model
structures such as wind power plants, offshoralinst As aforementioned, the classical theory of elasto-
lations, embankment, railway and tunnel (Andersemlasticity has been extended for a better reprasent
2009). To obtain reliable results for the design otion of plastic strains during cyclic loading. Balin
structures, the constitutive model has to be able ting surface plasticity for soil models, described b
reproduce with good accuracy the cyclic behavior oDafalias & Hermann (1982), generates plastic strain
soil. An accumulation of permanent strains duringwithin the bounding surface depending on the varia-
cyclic loadings with a possible stabilization degien tion of the hardening modulus. This modulus varies
ing on the applied stress level is often obserf/ed. from a high value when the stress point is far from
this purpose, models based on extension of the claghe bounding surface, to a lower value when the
sical theory of elastoplasticity have been devadope stress point is on the bounding surface. Therefore,
At the same time, the development of sophistithe model guarantees a smooth transition between
cated constitutive models with increasing number oélasticity and elasto-plasticity. However bounding
parameters leads to complex identification processurface plasticity assumes a purely elastic behavio
for soil parameters. Satisfactory parameter idientif whereas experiments show a limited elastic domain,
cation from laboratory or in-situ tests is needed f during unloading.
engineering practice. Therefore, new techniques of Kinematic hardening models consider kinematic
resolution accounting for the characteristics of inyield surfaces within the bounding surface. Mroz
verse analysis have been performed. (1967) propose a set of kinematic nesting surfaces
In this paper, a modification is made on the two-with constant hardening moduli. As long as the
surface model of Al-Tabbaa (1987) to describestress point is within the smallest kinematic stefa
undrained cyclic behavior of clay with high numberthe behavior is assumed to be elastic. As sooheas t
of cycles. A new method of soil parameter identifi-stress point reaches the smallest kinematic syrface
cation by inverse analysis is proposed. Then, thedbe behavior becomes elasto-plastic with respect of
principles are applied to undrained triaxial cyclicthe corresponding hardening modulus and the sur-
tests on normally consolidated clay (kaolinite): Fi face follows the stress path. If the stress point
nally conclusions on the identification of the pa-reaches the next nesting surface, the hardening
rameters and on the relevance of the model ammodulus associated with it becomes relevant and
drawn. both surfaces are dragged along the stress paith. Th
strategy makes the storage of loading history possi



modulus. dp,=—

A two-surface model has been proposed by Al- Pe 4
Tabbaa (1987) and described by Muir Wood (1991) dp, s-s,
as an intermediate solution between a bounding sufs =—— S, +5[ R }
face model and a multi-surface model. This model Pe

provides a smooth decrease of the hardeninghere the scalar quanti§is obtained by the consis-
modulus and a memory of the previous stress patiiency condition for the kinematic yield surface.
Because of its simplicity and its interesting prepe  The plastic flow rule is assumed to be associated

ble and a stepwise decrease of the hardening dp S{p-_p- D R?p' 2
(-]

(4)

ties, a model of this type is selected for thiglgtu and thus the plastic strain is given by:
1 [9F,)";, 4[0F
2.2 Principles of the model de” = A+A {0_0)—/} {da}{a—ay} ©)

The two-surface model, developed by Al-Tabbaayhere & = plastic strain tensorf, = hardening

(1987), is an extension of the modified Cam Claymodulus given by the modified Cam Clay model;
m_od_el, where a kl_nematlc yield surface is |_ntro_cdiJce and A; = hardening modulus given by an interpola-
within the bounding surface. The behavior is astion rule. Al-Tabbaa (1987) specifies that the inter
sumed to be elastic within the kinematic yield surpolation rule is not unique. Based on the works of
face. The bounding surface corresponds to the modHashiguchi (1985), Al-Tabbaa (1987) proposed a

fied Cam Clay yield surface: hardening modulug, depending on the measure of
N2 _ 2 the distance between the kinematic yield surfack an

F, =[p-_&J L3si9) P (1) the bounding surface. Therefore when the two sur-
2 2M? 4 faces are in contact, the valée is equal to 0 and

only the hardening modulu& is mobilized. In this

wherep’ = mean effective stresp;. = value of the study, the hardening modulés is given by:

mean effective stress at the intersection of the cu
rent swelling line with the isotropic compression 4(1+e) b ¢ D 3
line; s = deviatoric stress tensor; akid= slope of A = l/{ j (—Cj R?
the critical state line in g-p’ space. The kinematic A-k Birax =0 2

yield surface has the same shape as the boundi%ereeo = void ratio: /= material constant witty

(6)

surface: unde_r triaxial compression alq,ag under triaxial ex-
s—c):(S—5 R2p' 2 tension (R = Ye); ¢ = material constant; arishax
F,=(p-p.)°*+ A(s-s) E ) AN - (2) = maximal value ob equal to:
2M 4
Drax = 2P - R)

wherep’, = mean effective stress at the center of the™ (7)

kinematic yield surfaces, = deviatoric stress tensor According to Al-Tabbaa (1987}, is the scalar prod-

at the center of the kinematic yield surface; & ||+ of the outward normal to the kinematic surface

ratio between the sizes of the kinematic surfack ant the current stress state and the vegarhich

of the bounding surface. The rafiis assumed t0 be |inys the current stress state (point A in Figtdjhe

a model parameter. . stress state on the bounding surface with the same
The bounding surface evolves according the sa tward normal (point A’ in Fig. 1).

isotropic hardening rule as in the modified CamyCla

model: g
dp, _ 1+ i
# — —q)dgvp (3) P /4 [1ve
p. A-k I .
wheres? = volumetric plastic strainje= initial void a7~ ST |
ratio; A = slope of the isotropic normal compression o’ T
line; andx = slope of the swelling line. T
The kinematic yield surface evolves according to T i YT SR
} kinematic yieid surface

a combination of isotropic and kinematic hardening

rules, as follows: Figure 1. Representation of bounding and kinemastd sur-

faces in (p’, q) plan.

Model parameters can be separated into two cate-
gories: the parameters related to the monotonic be-



havior (v, k, A, ey, M, p’c0) and those related to the ternative to the non-uniqueness of the solutiom- Se
cyclic behavior R, ¢, Ry, §). ondly, by means of some modifications, genetic al-
We note that, in this paper, the slope of the-critigorithms for mono-objective problems can be
cal state line is expressed as (Sheng et al. 2000): adapted for multi-objective problems. In termsrof |
1a verse analysis, a multi-objective problem makes pos
M = 2c’ ®) sible the use of several experimental curves sanult
“\1+c*+(@1-c*sin3d neously. Because of these two interesting aspects,
genetic algorithms are selected in this study.

where @is the Lode’s angled= -7#6 under triaxial
compression)M. represents the slope of the critical
state line under triaxial compression; ands de-
fined as follows according to Mohr-Coulomb:

3.2 Genetic algorithms in case of mono-objective
problem

Genetic algorithms, originally introduced by Holdan
: (9) (1975), are derived from Darwin’s evolution theory.
3+sing Their principles were set and developed by Goldberg
(1989). They belong to the family of stochastic algo
rithms and reproduce the biological process: the
probability of survival of the best adapted indiwd
als, represented here by the best set of parameters
and the probability of the multiplication of compet
tive ones are improved by the transmission of a fa-

c= 3-sing,

where @ = friction angle at critical state under triax-
ial compression.

To introduce the anisotropy of the hardening
modulus, we made the material constgnfiunction
of Lode’s angle. Similar tM, ¢ is expressed as:

oR “ 14 vorable gene pool.
W=y R (10) Genetic algorithms work from an initial popula-
|1+R,*+ @~ R,")sin38 tion, i.e. a set of individuals, randomly generated

among the search space. This population is modified
Therefore,Ry can be used to control the magnitudeaccording to a process based on the value of the er
of plastic strains under loading and unloading ¢ond function through the following operations: selentio
tions. cross-over and mutation. Selection and cross-over
improve mainly the performance of individuals,
whereas mutation makes possible to continue the
3 PARAMETER IDENTIFICATION exploration of a given search domain and to avoid t
3.1 Principle and choice of the identification converge prer_naturely towards; a _sec_onda_ry mini-
method mum. Generation after generation, i.e. iteratiaeraf
iteration, the performance of the overall populatio
Inverse analysis consists in determining the set dg improved. Finally the solution corresponds to an
parameters, which minimizes the difference betweesntire population of individuals with different gen
experimental and numerical data. In this study, th@ools and the result gives a global view of thisage
difference between experimental and numerical datgjene pools. Contrary to deterministic algorithrhs, t
called the error functiofe, corresponds to the sur- aim of genetic algorithms is to detect individuals
face between the experimental and the numericaiith low error functions, using a reduced number of
curves, i.e. the integral of the absolute valu¢hef iterations compared to a systematic search, rather
error (in permanent strain) during the test. Theesfo than to guarantee the detection of an optimal et o
some possible isolated measurement points do nparameters.
have an influence as important as by the method of
square root. Inverse analysis is generally a mathe- L
matical ill-posed problem, for which the existence3-3 Multi-objective problem
and uniqueness of solution are not guaranteed. A multi-objective formulation can be useful in two
Traditionally, inverse analysis for geotechnicalcases. The user wants to enrich the experimenial dat
problems is carried out with gradient methods (Dango that the parameter identification is more rdgiab
et al. 2006). However other optimization algorithmsTo do so, inverse analysis for several curves has to
have been applied to geotechnical problems, as simpe simultaneously performed. Another reason of us-
plex method (Gioda 1985), neural network techniquéng multi-objective formulation is connected to the
(Obrzud et al. 2009) or genetic algorithms (Levasvalidation of constitutive model. A model can be
seur et al. 2008). Genetic algorithms work simultaconsidered as validated, if, from parameter identif
neously with a group of parameter sets. This specigation using a given set of experiments, the model
strategy gives to genetic methods two main advarcan reproduce other independent experiments.
tages over other methods. Firstly, they determine @®herefore, if it cannot be found parameters which
set of ‘satisfactory’ solutions rather than the @xa reproduce two or more different experiments, then
mathematical one and they propose, therefore,-an ahe model is not relevant and cannot be validated.



Mertens et al. (2006) used multi-objective formula-tionship with genetic algorithms in case of claakic
tion for two reasons: Parameter identification andnono-objective algorithms. MOGA has been intro-
model verification. In this study, multi-objective duced by Fonseca et al (1993). They modified the
formulation is adopted to give some informationoperation of selection in a classical mono-objectiv
about the relevance of the model and about thetradgenetic algorithm in order to deal with a multi-
off, which has to be done for identification. objective problem. A new method of selection based

To solve a multi-objective problem, different on the dominance in terms of Pareto is performed. |
resolution methods have been developed. DeMOGA, the performance of an individual decreases
(2001) distinguishes the methods which need tavith the number of times for which the individual i
make preferences before the optimizatianp¢iori  dominated by another individual.
methods) and the ones which need to make prefer-
ences after the optimizatioma fposteriorimethods).

For geotechnical problems it seems difficult to de-
cide a priori which test is the most reliable and es-
pecially to set the weight applied to each tAspos-
teriori methods aim at determining a so-called
Pareto frontier.

If we consider five sets of parameters and the cor- !
responding values of the error functions in case of
two-objective problem, as shown by Figure 2, we 0 !
can say that the set of parametétsfits better the
first experimental curve than the set of parameters — Pareto frontier
x?, whereas the set of parametgfs fits better the , o o
second experimental curve than the set of parametéfigure 2. Solutions of a two-objective optimization
xg; Withouta pri((er)i preferences, we cannot say that
X is better thax*”’ and vice versa. Originally intro-
duced by Pareto (1897), Pareto dominance is used fh APPLICATION
order to overcome this problem. By definition, a so
lution X dominates a solutiox in terms of Pareto, 4.1 Undrained triaxial tests
if both conditions of Equation 11 are fulfilled.
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The study considers two undrained triaxial tests on

OmO[LM], FL(x?) < FR(x”) (11) normally consolidated clay under one-way loading

CMOLM], F(xV) < FM(x?) performed by Hicher (1979). Soil parameters diyectl
— determined from monotonic tests are summarized in

where M = the number of objectives. Table 1. The ratid? can be determined from an iso-

. . . (1) . (4) (2) . . . .
q Cmadeg)ng(glguae & (3?°mé”%t)e9( andx tropic compression test with unloading stage. Ia th
ominatesc™, X andx™. X andx™ are not com-  gy,dy we assum@ = 0.1, a typical value fdR

parable in terms of Pareto. The solutions of a multi
objective problem correspond to the Pareto optimataple 1. Soil parameters for kaolinite clay.
solutions, which are not dominated by any otherg— 3 % M. Do
sets 8}‘ parameterls. In tl‘lle exam?li of Figul;g“?, KPa
andx’ are equivalent solutions of the two-objective

problems andFe(X) and Fe;(X?) belong to the 03 008 025 115 10 200
Pareto frontier. When the Pareto frontier is deter-
mined, the user can select the best set of pareﬂ:netc%h
considering the Pareto frontier and others critezia
lated to the specific application.

In this study, inverse analysis is used to deteemin
e parameters which can not be deduced directly
from experimental tests. Therefore the inverse analy
Mertens et al. (2006) used the scalarization tect'ﬁ-_'S is performed on three parametes: R, and .
nique, which consists in building a global errondu 10 dO SO, the curve which gives the evolution of the

e Permanent axial strain as function of the number of

tion from the initial error functions, which ar : . ) :
weighed. To determine the Pareto frontier monotycles is considered. Permanent strains are defined

objective optimizations are carried out with digiet 35 t?e remalnln% Stra'ESGgftEE a c3écle._T8V\A/fokI8ad|ng
weights. However this method cannot detect no ek\]/es are COIHS(Ij ereql = aatr; 9 ~d duri a
convex parts of the Pareto frontier. Moreover a-con' '€ Maximal deviator stress obtained during an

tinuous variation of the weights does not imply-nec Egdraisr]ed triaxiall_mt())_not(_)nic teg} Is .eq;JaI tol 12d4
essarily a continuous variation along the Parain-fr KP&. Since a multi-objective problem is formulated,
: dpth error functions are divided by the number of

with a multi-objective resolution technique and se-cYcles of the test, so that the error functiongesor

lect the Multi-Objective Genetic Algorithm called SPONd to the mean error per cycle.
MOGA because of its simplicity and its close rela-



4.2 Computational program lization occurring during both tests does not appea

The identification is carried out by using two drffe contrary to the previous inverse analysis.

ent codes: the constitutive model is implemented in 1
a FORTRAN routine and the optimization process is 10
run by ModeFrontier, developed by ESTECO,
(ModeFrontier 4). For all the optimizations the gam
domain is explored (Table 2).

€. (%)

8
6
4
2
0

Table 2. Studied domain. ‘ ‘

Parameters 17/5 & R " 0 500 1000 1500 2000
— number of cycles

Minimal value 16 1 0.1 — experiment g=65kPa - - simulation g=65kPa

Maximal value 165 8 10 —experiment g=84kPa - - simulation g=84kPa

The initial populations contain 200 individuals. Figure 3. Comparison of the experimental and nuraegyclic
They are generated with the deterministic algorithnfurves for the best set of parameters for g = &b kP
SObOI. which is used to J'” unlfprm|y the|8trd!ed Table 4. “Satisfactory” individuals obtained withergetic
domain (Sobol 1967, ModeFrontier 4). CalculationSyethod for the test = 84 kPa
are performed during 15 generations.

e 3 Rl// R (%)
1e9 8 2.512 0.2177
4.3 Results 1e9 8 3.981 0.2177
1e9 8 1.585 0.2177
1e9 8 1 0.2180
4.3.1 Case of mono-objective problem 1e9 8 0.631 0.2181
Since genetic algorithms provide a set of solutionsle9 8 0.398 0.2185
only a limited set of the best solutions &= 65kPa
is taken into account and summarized in Table 3. We 35 T —
can notice that the parameteaps and ¢ are closely $ D
related, whereaR, seems to be independent. Small A
values of the parametBy, are more satisfactory. S s ]/’
1
Table 3. “Satisfactory” individuals obtained withergetic sl
method for the test = 65 kPa 0
[//C { R‘// Fe" (%) i 500 numbeiogf cycles o -
1.0e5 4 0.159 0.034 — experiment q=65kPa - - simulation g=65kPa
1.0e9 8 0.1 0.055 — experiment q=84kPa - - simulation g=84kPa
3.2e6 5 0.1 0.055
1.0e9 8 0.159 0.056 Figure 4. Comparison of the experimental and nuraedyclic
1.0e9 8 0.251 0.057 curves for the best set of parameters for q = & kP
1.0e9 8 0.398 0.057

4.3.2 Case of multi-objective problem

The set of parameters, which provides the best fitfhe question remained open in the previous section
ting between the experimental and numerical curvesan be answered thanks to a multi-objective formula
for g = 65 kPa is selected and the correspondingtion. If no satisfactory tradeoff can be determitgd
curves for both tests are plotted in Figure 3. Tike f the multi-objective problem, then the relevance of
ting for g = 65 kPais satisfactory, whereas the model can be discussed. Otherwise, the uncertainty
shapes of the experimental and numerical curves faf the identification can be removed. Figure 5 show
g = 84 kPaare totally different. A question remains the solutions of the multi-objective problem in the
open: Is the model or the parameter identificatiorcriterion space. The non-dominated solutions are en-
unsuitable? circled and are summarized in Table 5. The best sets

In the same way as for the test 65 kPa Table  of parameters obtained with both mono-objective in-
4 showed a limited set of the best solutionsofar  verse analyses can be found again (11 and 19)tend t
84 kPa The same comments as fip= 65 kPacan comments about the sensitivity Rf, can also be no-
be done except that higher valuesgfseem slightly ticed.
more satisfactory. The difference between the numerical curves of

Figure 4 represents the experimental and numerthe sets of parameters from 12 to 19 is so smait th
cal curves for the best set of parameters. Thaditti 19 can be used as reference and the best set of pa
for both tests is better that for the previous isee rameters obtained with the mono-objective inverse
analysis. However the shape of the numerical curvanalysis forg = 84 kPacan be considered as a good
for both tests is not well captured. The (quasabst tradeoff between both experiments.



err

Figure 5. Distribution of solutions of the multijebtive opti-
mization in the criterion space.

Table 5. Non-dominated solutions obtained with mult
objective genetic method.
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