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1 INTRODUCTION 
 
Fatigue in soils is a relevant phenomenon for many 
structures such as wind power plants, offshore instal-
lations, embankment, railway and tunnel (Andersen 
2009). To obtain reliable results for the design of 
structures, the constitutive model has to be able to 
reproduce with good accuracy the cyclic behavior of 
soil. An accumulation of permanent strains during 
cyclic loadings with a possible stabilization depend-
ing on the applied stress level is often observed. For 
this purpose, models based on extension of the clas-
sical theory of elastoplasticity have been developed.  

At the same time, the development of sophisti-
cated constitutive models with increasing number of 
parameters leads to complex identification process 
for soil parameters. Satisfactory parameter identifi-
cation from laboratory or in-situ tests is needed for 
engineering practice. Therefore, new techniques of 
resolution accounting for the characteristics of in-
verse analysis have been performed.  

In this paper, a modification is made on the two-
surface model of Al-Tabbaa (1987) to describe 
undrained cyclic behavior of clay with high number 
of cycles. A new method of soil parameter identifi-
cation by inverse analysis is proposed. Then, these 
principles are applied to undrained triaxial cyclic 
tests on normally consolidated clay (kaolinite). Fi-
nally conclusions on the identification of the pa-
rameters and on the relevance of the model are 
drawn.  

2 CONSTITUTIVE MODEL 

2.1 Choice of the model 

As aforementioned, the classical theory of elasto-
plasticity has been extended for a better representa-
tion of plastic strains during cyclic loading. Bound-
ing surface plasticity for soil models, described by 
Dafalias & Hermann (1982), generates plastic strains 
within the bounding surface depending on the varia-
tion of the hardening modulus. This modulus varies 
from a high value when the stress point is far from 
the bounding surface, to a lower value when the 
stress point is on the bounding surface. Therefore, 
the model guarantees a smooth transition between 
elasticity and elasto-plasticity. However bounding 
surface plasticity assumes a purely elastic behavior, 
whereas experiments show a limited elastic domain, 
during unloading.  

Kinematic hardening models consider kinematic 
yield surfaces within the bounding surface. Mroz 
(1967) propose a set of kinematic nesting surfaces 
with constant hardening moduli. As long as the 
stress point is within the smallest kinematic surface, 
the behavior is assumed to be elastic. As soon as the 
stress point reaches the smallest kinematic surface, 
the behavior becomes elasto-plastic with respect of 
the corresponding hardening modulus and the sur-
face follows the stress path. If the stress point 
reaches the next nesting surface, the hardening 
modulus associated with it becomes relevant and 
both surfaces are dragged along the stress path. This 
strategy makes the storage of loading history possi-
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ble and a stepwise decrease of the hardening 
modulus.  

A two-surface model has been proposed by Al-
Tabbaa (1987) and described by Muir Wood (1991) 
as an intermediate solution between a bounding sur-
face model and a multi-surface model. This model 
provides a smooth decrease of the hardening 
modulus and a memory of the previous stress path. 
Because of its simplicity and its interesting proper-
ties, a model of this type is selected for this study.  

2.2 Principles of the model 

The two-surface model, developed by Al-Tabbaa 
(1987), is an extension of the modified Cam Clay 
model, where a kinematic yield surface is introduced 
within the bounding surface. The behavior is as-
sumed to be elastic within the kinematic yield sur-
face. The bounding surface corresponds to the modi-
fied Cam Clay yield surface: 
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where p’ = mean effective stress; p’c = value of the 
mean effective stress at the intersection of the cur-
rent swelling line with the isotropic compression 
line; s = deviatoric stress tensor; and M = slope of 
the critical state line in q-p’ space. The kinematic 
yield surface has the same shape as the bounding 
surface:  
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where p’a = mean effective stress at the center of the 
kinematic yield surface; sa = deviatoric stress tensor 
at the center of the kinematic yield surface; and R = 
ratio between the sizes of the kinematic surface and 
of the bounding surface. The ratio R is assumed to be 
a model parameter. 

The bounding surface evolves according the same 
isotropic hardening rule as in the modified Cam Clay 
model: 
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where εv
p = volumetric plastic strain; e0 = initial void 

ratio; λ = slope of the isotropic normal compression 
line; and κ = slope of the swelling line. 

The kinematic yield surface evolves according to 
a combination of isotropic and kinematic hardening 
rules, as follows:  
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where the scalar quantity S is obtained by the consis-
tency condition for the kinematic yield surface. 

The plastic flow rule is assumed to be associated 
and thus the plastic strain is given by: 
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where εp = plastic strain tensor; A0 = hardening 
modulus given by the modified Cam Clay model; 
and A1 = hardening modulus given by an interpola-
tion rule. Al-Tabbaa (1987) specifies that the inter-
polation rule is not unique. Based on the works of 
Hashiguchi (1985), Al-Tabbaa (1987) proposed a 
hardening modulus A1 depending on the measure of 
the distance between the kinematic yield surface and 
the bounding surface. Therefore when the two sur-
faces are in contact, the value A1 is equal to 0 and 
only the hardening modulus A0 is mobilized. In this 
study, the hardening modulus A1 is given by: 
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where e0 = void ratio; ψ = material constant with ψc 
under triaxial compression and ψe under triaxial ex-
tension (Rψ = ψe/ψc); ξ = material constant; and bmax 
= maximal value of b equal to:  
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According to Al-Tabbaa (1987), b is the scalar prod-
uct of the outward normal n to the kinematic surface 
at the current stress state and the vector ββββ which 
links the current stress state (point A in Fig. 1) to the 
stress state on the bounding surface with the same 
outward normal (point A’ in Fig. 1).  

 

 
 
Figure 1. Representation of bounding and kinematic yield sur-
faces in (p’, q) plan. 

 
Model parameters can be separated into two cate-

gories: the parameters related to the monotonic be-



havior (ν, κ, λ, e0, M, p’c0) and those related to the 
cyclic behavior (R, ψc, Rψ, ξ). 

We note that, in this paper, the slope of the criti-
cal state line is expressed as (Sheng et al. 2000): 
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where θ is the Lode’s angle (θ = -π/6 under triaxial 
compression); Mc represents the slope of the critical 
state line under triaxial compression; and c is de-
fined as follows according to Mohr-Coulomb: 
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where φc = friction angle at critical state under triax-
ial compression.  

To introduce the anisotropy of the hardening 
modulus, we made the material constant ψ function 
of Lode’s angle. Similar to M, ψ  is expressed as: 

4/1

44

4

3sin)1(1

2














−++
=

θ
ψψ

ψψ

ψ

RR

R
c  (10) 

Therefore, Rψ can be used to control the magnitude 
of plastic strains under loading and unloading condi-
tions.  

3 PARAMETER IDENTIFICATION 

3.1 Principle and choice of the identification 
method 

Inverse analysis consists in determining the set of 
parameters, which minimizes the difference between 
experimental and numerical data. In this study, the 
difference between experimental and numerical data, 
called the error function Ferr, corresponds to the sur-
face between the experimental and the numerical 
curves, i.e. the integral of the absolute value of the 
error (in permanent strain) during the test. Therefore, 
some possible isolated measurement points do not 
have an influence as important as by the method of 
square root. Inverse analysis is generally a mathe-
matical ill-posed problem, for which the existence 
and uniqueness of solution are not guaranteed. 

Traditionally, inverse analysis for geotechnical 
problems is carried out with gradient methods (Dano 
et al. 2006). However other optimization algorithms 
have been applied to geotechnical problems, as sim-
plex method (Gioda 1985), neural network technique 
(Obrzud et al. 2009) or genetic algorithms (Levas-
seur et al. 2008). Genetic algorithms work simulta-
neously with a group of parameter sets. This special 
strategy gives to genetic methods two main advan-
tages over other methods. Firstly, they determine a 
set of ‘satisfactory’ solutions rather than the exact 
mathematical one and they propose, therefore, an al-

ternative to the non-uniqueness of the solution. Sec-
ondly, by means of some modifications, genetic al-
gorithms for mono-objective problems can be 
adapted for multi-objective problems. In terms of in-
verse analysis, a multi-objective problem makes pos-
sible the use of several experimental curves simulta-
neously. Because of these two interesting aspects, 
genetic algorithms are selected in this study.  

3.2 Genetic algorithms in case of mono-objective 
problem 

Genetic algorithms, originally introduced by Holland 
(1975), are derived from Darwin’s evolution theory. 
Their principles were set and developed by Goldberg 
(1989). They belong to the family of stochastic algo-
rithms and reproduce the biological process: the 
probability of survival of the best adapted individu-
als, represented here by the best set of parameters, 
and the probability of the multiplication of competi-
tive ones are improved by the transmission of a fa-
vorable gene pool.  

Genetic algorithms work from an initial popula-
tion, i.e. a set of individuals, randomly generated 
among the search space. This population is modified 
according to a process based on the value of the error 
function through the following operations: selection, 
cross-over and mutation. Selection and cross-over 
improve mainly the performance of individuals, 
whereas mutation makes possible to continue the 
exploration of a given search domain and to avoid to 
converge prematurely towards a secondary mini-
mum. Generation after generation, i.e. iteration after 
iteration, the performance of the overall population 
is improved. Finally the solution corresponds to an 
entire population of individuals with different gene 
pools and the result gives a global view of this set of 
gene pools. Contrary to deterministic algorithms, the 
aim of genetic algorithms is to detect individuals 
with low error functions, using a reduced number of 
iterations compared to a systematic search, rather 
than to guarantee the detection of an optimal set of 
parameters. 

3.3 Multi-objective problem 

A multi-objective formulation can be useful in two 
cases. The user wants to enrich the experimental data 
so that the parameter identification is more reliable. 
To do so, inverse analysis for several curves has to 
be simultaneously performed. Another reason of us-
ing multi-objective formulation is connected to the 
validation of constitutive model. A model can be 
considered as validated, if, from parameter identifi-
cation using a given set of experiments, the model 
can reproduce other independent experiments. 
Therefore, if it cannot be found parameters which 
reproduce two or more different experiments, then 
the model is not relevant and cannot be validated. 



Mertens et al. (2006) used multi-objective formula-
tion for two reasons: Parameter identification and 
model verification. In this study, multi-objective 
formulation is adopted to give some information 
about the relevance of the model and about the trade-
off, which has to be done for identification.  

To solve a multi-objective problem, different 
resolution methods have been developed. Deb 
(2001) distinguishes the methods which need to 
make preferences before the optimization (a priori 
methods) and the ones which need to make prefer-
ences after the optimization (a posteriori methods). 
For geotechnical problems it seems difficult to de-
cide a priori which test is the most reliable and es-
pecially to set the weight applied to each test. A pos-
teriori methods aim at determining a so-called 
Pareto frontier.  

If we consider five sets of parameters and the cor-
responding values of the error functions in case of a 
two-objective problem, as shown by Figure 2, we 
can say that the set of parameters x(1) fits better the 
first experimental curve than the set of parameters 
x(2), whereas the set of parameters x(2) fits better the 
second experimental curve than the set of parameters 
x(1). Without a priori preferences, we cannot say that 
x(1) is better than x(2) and vice versa. Originally intro-
duced by Pareto (1897), Pareto dominance is used in 
order to overcome this problem. By definition, a so-
lution x(i) dominates a solution x(j) in terms of Pareto, 
if both conditions of Equation 11 are fulfilled.  

)()(],;1[

)()(],;1[
)()(

)()(

jm

err

im

err

jm

err

im

err

xFxFMm

xFxFMm

<∈∃
≤∈∀

 (11) 

where M = the number of objectives. 
Considering Figure 2, x(1) dominates x(4) and x(2) 

dominates x(3), x(4) and x(5). x(3) and x(5) are not com-
parable in terms of Pareto. The solutions of a multi-
objective problem correspond to the Pareto optimal 
solutions, which are not dominated by any others 
sets of parameters. In the example of Figure 2, x(1) 
and x(2) are equivalent solutions of the two-objective 
problems and Ferr(x

(1)) and Ferr(x
(2)) belong to the 

Pareto frontier. When the Pareto frontier is deter-
mined, the user can select the best set of parameters 
considering the Pareto frontier and others criteria re-
lated to the specific application. 

Mertens et al. (2006) used the scalarization tech-
nique, which consists in building a global error func-
tion from the initial error functions, which are 
weighed. To determine the Pareto frontier, mono-
objective optimizations are carried out with different 
weights. However this method cannot detect non 
convex parts of the Pareto frontier. Moreover a con-
tinuous variation of the weights does not imply nec-
essarily a continuous variation along the Pareto fron-
tier. For these reasons, the authors propose to deal 
with a multi-objective resolution technique and se-
lect the Multi-Objective Genetic Algorithm called 
MOGA because of its simplicity and its close rela-

tionship with genetic algorithms in case of classical 
mono-objective algorithms. MOGA has been intro-
duced by Fonseca et al (1993). They modified the 
operation of selection in a classical mono-objective 
genetic algorithm in order to deal with a multi-
objective problem. A new method of selection based 
on the dominance in terms of Pareto is performed. In 
MOGA, the performance of an individual decreases 
with the number of times for which the individual is 
dominated by another individual. 

 

 
 
Figure 2. Solutions of a two-objective optimization. 

4 APPLICATION 

4.1 Undrained triaxial tests 

The study considers two undrained triaxial tests on 
normally consolidated clay under one-way loading 
performed by Hicher (1979). Soil parameters directly 
determined from monotonic tests are summarized in 
Table 1. The ratio R can be determined from an iso-
tropic compression test with unloading stage. In this 
study we assume R = 0.1, a typical value for R. 

 
Table 1. Soil parameters for kaolinite clay. ____________________________________ 
ν  κ   λ   e0   Mc  p’c0 
              kPa ____________________________________ 
0.3 0.08  0.23  1.15  1.0  200 ____________________________________ 

 
In this study, inverse analysis is used to determine 

the parameters which can not be deduced directly 
from experimental tests. Therefore the inverse analy-
sis is performed on three parameters: ψc, Rψ and ξ. 
To do so, the curve which gives the evolution of the 
permanent axial strain as function of the number of 
cycles is considered. Permanent strains are defined 
as the remaining strains after a cycle. Two loading 
levels are considered q = 65 kPa and q = 84 kPa. 
The maximal deviator stress obtained during an 
undrained triaxial monotonic test is equal to 124 
kPa. Since a multi-objective problem is formulated, 
both error functions are divided by the number of 
cycles of the test, so that the error functions corre-
spond to the mean error per cycle. 



4.2 Computational program 

The identification is carried out by using two differ-
ent codes: the constitutive model is implemented in 
a FORTRAN routine and the optimization process is 
run by ModeFrontier, developed by ESTECO, 
(ModeFrontier 4). For all the optimizations the same 
domain is explored (Table 2).  

 
Table 2. Studied domain. ____________________________________________ 
Parameters     ψc     ξ     Rψ ____________________________________________ 
Minimal value   103    1     0.1 
Maximal value   1016    8     10 ____________________________________________ 

 
The initial populations contain 200 individuals. 

They are generated with the deterministic algorithm 
Sobol which is used to fill uniformly the studied 
domain (Sobol 1967, ModeFrontier 4). Calculations 
are performed during 15 generations. 

4.3 Results 

4.3.1 Case of mono-objective problem 
Since genetic algorithms provide a set of solutions, 
only a limited set of the best solutions for q = 65 kPa 
is taken into account and summarized in Table 3. We 
can notice that the parameters ψc and ξ are closely 
related, whereas Rψ seems to be independent. Small 
values of the parameter Rψ  are more satisfactory.  

 
Table 3. “Satisfactory” individuals obtained with genetic 
method for the test q = 65 kPa. __________________________________________________ 
ψc      ξ      Rψ       Ferr

 (%) __________________________________________________ 
1.0e5     4      0.159     0.034 
1.0e9     8      0.1      0.055 
3.2e6     5      0.1      0.055 
1.0e9     8      0.159     0.056 
1.0e9     8      0.251     0.057 
1.0e9     8      0.398     0.057 __________________________________________________ 
 

The set of parameters, which provides the best fit-
ting between the experimental and numerical curves 
for q = 65 kPa, is selected and the corresponding 
curves for both tests are plotted in Figure 3. The fit-
ting for q = 65 kPa is satisfactory, whereas the 
shapes of the experimental and numerical curves for 
q = 84 kPa are totally different. A question remains 
open: Is the model or the parameter identification 
unsuitable? 

In the same way as for the test q = 65 kPa, Table 
4 showed a limited set of the best solutions for q = 
84 kPa. The same comments as for q = 65 kPa can 
be done except that higher values of Rψ seem slightly 
more satisfactory. 

Figure 4 represents the experimental and numeri-
cal curves for the best set of parameters. The fitting 
for both tests is better that for the previous inverse 
analysis. However the shape of the numerical curve 
for both tests is not well captured. The (quasi-) stabi-

lization occurring during both tests does not appear 
contrary to the previous inverse analysis.  
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Figure 3. Comparison of the experimental and numerical cyclic 
curves for the best set of parameters for q = 65 kPa. 

 
Table 4. “Satisfactory” individuals obtained with genetic 
method for the test q = 84 kPa. __________________________________________________ 
ψc      ξ      Rψ       Ferr

 (%) __________________________________________________ 
1e9     8      2.512     0.2177 
1e9     8      3.981     0.2177 
1e9     8      1.585     0.2177 
1e9     8      1       0.2180 
1e9     8      0.631     0.2181 
1e9     8      0.398     0.2185 __________________________________________________ 
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Figure 4. Comparison of the experimental and numerical cyclic 
curves for the best set of parameters for q = 84 kPa. 

4.3.2 Case of multi-objective problem 
The question remained open in the previous section 
can be answered thanks to a multi-objective formula-
tion. If no satisfactory tradeoff can be determined by 
the multi-objective problem, then the relevance of 
model can be discussed. Otherwise, the uncertainty 
of the identification can be removed. Figure 5 shows 
the solutions of the multi-objective problem in the 
criterion space. The non-dominated solutions are en-
circled and are summarized in Table 5. The best sets 
of parameters obtained with both mono-objective in-
verse analyses can be found again (I1 and I9) and the 
comments about the sensitivity of Rψ can also be no-
ticed.  

The difference between the numerical curves of 
the sets of parameters from I2 to I9 is so small that 
I9 can be used as reference and the best set of pa-
rameters obtained with the mono-objective inverse 
analysis for q = 84 kPa can be considered as a good 
tradeoff between both experiments.  



 
 
Figure 5. Distribution of solutions of the multi-objective opti-
mization in the criterion space.  

 
Table 5. Non-dominated solutions obtained with multi-
objective genetic method. __________________________________________________ 
  ψc    ξ   Rψ    Ferr

1 (%)   Ferr
2 (%) __________________________________________________ 

I1  1.0e5   4   0.159  0.0339   3.3312 
I2  1.0e9   8   0.1   0.0550   0.2196 
I3  1.0e9   8   0.159  0.0564   0.2193 
I4  1.0e9   8   0.251  0.0573   0.2186 
I5  1.0e9   8   0.398  0.0577   0.2185 
I6  1.0e9   8   0.631  0.0582   0.2181 
I7  1.0e9   8   1.000  0.0582   0.2180 
I8  1.0e9   8   1.585  0.0583   0.2177 
I9  1.0e9   8   2.512  0.0584   0.2177 __________________________________________________ 

5 CONCLUSIONS 

A modification was made on the two-surface model 
of Al-Tabbaa (1987) to describe undrained cyclic 
behavior of clay with high number of cycles. A 
method of soil parameter identification accounting 
for the characteristics of inverse analysis was pro-
posed. 

The method of parameter identification shows the 
multiple assets of genetic algorithms. Contrary to 
traditional algorithms, genetic algorithms provide a 
set of solutions, which seem to be consistent with 
the non-uniqueness of the solution of inverse analy-
sis. The analysis of this set of solutions gives infor-
mation about the sensitivity of the model parameters 
and their coupling effects. The formulation of prob-
lem as multi-objective makes possible the use of 
several tests simultaneously. As a result, model pa-
rameters can be more efficiently identified. If no 
tradeoff concerning the model parameters can be de-
termined from different tests, then the relevance of 
the model can be discussed. 

The proposed method of identification was ap-
plied to identify model parameters from two 
undrained triaxial tests on clay under one-way load-
ings. Satisfactory identification of a tradeoff from 
both tests was obtained. However the (quasi-) stabi-
lization of permanent strain observed during the ex-
periments cannot be very well captured. The per-
spectives of the study concern the application of the 
new method to tests on natural clays.  
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