P. Léger, P. Cote, and R. Tinawi, Finite element analysis of concrete swelling due to Alkali-569

, Aggregate Reaction in Dams, Comput. Struct, vol.60, pp.601-611, 1996.

S. Malla and M. Wieland, Analysis of an arch-gravity dam with a horizontal crack, p.571

, Comput. Struct, vol.72, pp.267-278, 1999.

F. Ulm, O. Coussy, L. Kefei, and C. Larive, Thermo-chemo-mechanics of ASR expansion 573 in concrete structures, ASCE J. Eng. Mech, vol.126, issue.3, pp.233-242, 2000.

K. Li and O. Coussy, Concrete ASR degradation: from material modeling to structure 575 assessment, Conc. Sc. Eng, vol.4, pp.35-46, 2002.

V. Saouma, L. Perotti, and T. Shimpo, Stress Analysis of Concrete Structures Subjected to 577

, Alkali-Aggregate Reactions, ACI Struct. J, vol.104, issue.5, pp.532-541, 2007.

E. , Caractérisation des effets du gonflement provoqué par la réaction alcali-579

, silice sur le comportement mécanique d'une structure en béton, p.580

S. Toulouse and F. , , 2007.

A. Sellier, E. Bourdarot, S. Multon, M. Cyr, and E. , Assessment of the residual 582 expansion for expertise of structures affected by AAR, 13th Int, Conf AAR, p.583

. Norway, , 2008.

J. Duchesne and M. Bérubé, Discussion of the Paper "The effectiveness of 585 supplementary cementing materials in suppressing expansion due to ASR -Part 1, Concrete 586 expansion and portlandite depletion, Cem. Conc. Res, vol.24, issue.8, pp.1572-1573, 1994.

B. Lagerblad and J. Trägardh, Slowly reacting aggregates in Sweden -Mechanism and 588 conditions for reactivity in concrete, 9th ICAAR, vol.106, p.589

. London and . Great-britain, , pp.570-578, 1992.

W. J. French, Maintenance of mobile alkali concentration in cement paste during alkali-591 aggregate reaction, Enclosure to Proc. 8th ICAAR, 1989.

P. Goltermann, Mechanical predictions on concrete deterioration, ACI Mat. J, vol.91, issue.6, pp.543-550, 1994.

Z. P. Bazant, G. Zi, and C. Meyer, Fracture mechanics of AAR in concretes with waste glass 595 particles of different sizes, ASCE J. Eng. Mech, vol.126, issue.3, pp.226-232, 2000.

Y. Furusawa, H. Ohga, and T. Uomoto, An analytical study concerning prediction of 597 concrete expansion due to alkali-silica reaction, 3rd Int. Conf. on Durability 598 of Concrete, 1994.

A. Nielsen, F. Gottfredsen, and F. Thogersen, Development of stresses in concrete 600 structures with alkali-silica reactions, Mater. Struct, vol.26, pp.152-158, 1993.

A. Sellier, J. Bournazel, and A. Mébarki, Modelling the alkali aggregate reaction within a 602 probabilistic frame-work, 10th ICAAR, pp.694-701, 1996.

Z. Bazant and A. Steffens, Mathematical model for kinetics of alkali-silica reaction in 604 concrete, Cem. Conc. Res, vol.30, pp.419-428, 2000.

A. Suwito, W. Jin, Y. Xi, and C. Meyer, A mathematical model for the pessimum effect of 606 ASR in concrete, Conc. Sc. Eng, vol.4, pp.23-34, 2002.

S. Poyet, A. Sellier, B. Capra, G. Foray, J. Torrenti et al., , p.608

, Chemical modelling of Alkali Silica reaction: Influence of the reactive aggregate size 609 distribution, Mater. Struct, vol.40, pp.229-239, 2007.

L. S. Glasser and N. Kataoka, The chemistry of Alkali-Aggregate Reactions, p.5

C. Icaar, . Town, and A. South, , pp.252-275, 1981.

S. Chatterji, The role of Ca(OH)2 in the breakdown of portland cement concrete 613 due to Alkali-Silica Reaction, Cem. Conc. Res, vol.9, pp.185-188, 1979.

S. Diamond, ASR -Another look at mechanisms, 8th ICAAR, p.83, 1989.

T. N. Jones, A new interpretation of alkali-silica reaction and expansion mechanisms in 617 concrete, Chemistry and Industry, vol.18, pp.40-44, 1988.

C. A. Rogers and R. D. Hooton, Reduction in mortar and concrete expansion with reactive 619 aggregates due to alkali leaching, Cement, Concrete and Aggregates, vol.13, issue.1, pp.42-49, 1991.

D. W. Hobbs, Deleterious alkali-silica reactivity in the laboratory and under field 621 conditions, Mag. Conc. Res, vol.45, issue.163, pp.103-112, 1993.

M. D. Thomas, B. Q. Blackwell, and P. J. Nixon, Estimating the alkali contribution from fly 623 ash to expansion due to alkali-aggregate reaction in concrete, Mag. Conc. Res, vol.48, issue.177, pp.251-264, 1996.

M. H. Shehata and M. D. Thomas, The effect of fly ash composition on the expansion of 626 concrete due to alkali-silica reaction, Cem. Conc. Res, vol.30, issue.7, pp.1063-1072, 2000.

S. Diamond, Alkali reactions in concrete -pore solution effects

, Conference on AAR in Concrete, pp.155-166, 1983.

P. Rivard, M. A. Bérubé, J. Ollivier, and G. Ballivy, Decrease of pore solution alkalinity in 630 concrete tested for alkali-silica reaction, Mater. Struc, vol.40, pp.909-921, 2007.

S. Urhan, Alkali Silica and Pozzolanic Reactions in concrete. Part 1 : interpretation of 632 published results and an hypothesis concerning the mechanism, Cem. Conc. Res, vol.17, issue.1, pp.141-152, 1987.

N. Thaulow, U. Jakobsen, and B. Clark, Composition of alkali silica gel and ettringite in 635 concrete railroad ties: SEM-EDX and X-ray diffraction analyses, Cem. Conc. Res, vol.26, p.636, 1996.

H. F. Taylor, Cement Chemistry, 1990.

M. Kawamura and H. Fuwa, Effects of lithium salts on ASR gel composition and expansion 639 of mortars, Cem. Conc. Res, vol.33, pp.919-919, 2003.

E. Grimal, A. Sellier, Y. L. Pape, and E. Bourdarot, Creep shrinkage and anisotropic 641 damage in AAR swelling mechanism, part I: a constitutive model, ACI Mat. J, vol.105, issue.3, pp.642-227, 2008.

, Règles techniques de conception et de calcul d'ouvrages et constructions en 644

, béton armé suivant la méthode des états limites, vol.645, 1991.

L. M. Kachanov, Introduction to continuum damage mechanics, Martinus Nijhoff, p.647

. Publishers, , 1986.

J. Lemaître and J. Chaboche, , p.649

. France, , 1988.

T. Siemes and J. Visser, Low tensile strength in older concrete structures with Alkali-Silica 651

, Reaction, 11th ICAAR, pp.1029-1038, 2000.

S. Multon, M. Cyr, A. Sellier, N. Leklou, and L. Petit, Coupled effects of aggregate size and 653 alkali content on ASR expansion, Cem. Conc. Res, vol.38, issue.3, pp.350-359, 2008.

. Afpc-afrem, Association Française Pour la Construction -Association Française de 655

, Durabilité des bétons. Méthodes 656 recommandées pour la mesure des grandeurs associées à la durabilité. Mesure de la masse 657 volumique apparente et de la porosité accessible à l, Recherche et Essais sur les Matériaux de construction)

T. Techniques, , pp.121-124, 1997.

S. Poyet, Etude de la dégradation des ouvrages en béton atteints de la réaction alcali-660 silice: approche expérimentale et modélisation numérique multi-échelle des dégradations dans 661

F. Vallée, , 2003.

C. Larive, Apports combinés de l'expérimentation et de la modélisation à la 664

, compréhension de l'alcali-réaction et de ses effets mécaniques, Laboratoire Central des Ponts 665 et Chaussées (Edt.), Ouvrage d'Art, Rapport OA 28, 1998.

A. Perruchot, P. Massard, and J. Lombardi, Composition et volume molaire apparent des 667 gels Ca-Si, une approche expérimentale, C. R. Geoscience, vol.335, pp.951-958, 2003.
DOI : 10.1016/j.crte.2003.07.005