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Abstract 

The aim of this paper is to analyse the performance of a finite element formulation usable to 

predict the mechanical consequences of frost effects on porous media. It considers the 

characteristics of porous media and how the frost action can be assessed. The problem is then 

separated into two parts: thermal and poromechanical calculations. The constitutive equations 

developed in the framework of poromechanics are presented and the implementation in a 

usual finite element poroelasticity formulation based on Zuber’s method is adopted. An 

analysis of the time-step influence on the convergence rate is given and leads us to propose a 

simple method in order to obtain objectivity of the finite element response and avoid over-

long calculations. Frost effect simulations are carried out on real porous media (two fired 

clays) as a case study. Although the experimental behaviour of the porous media subjected to 

frost action is in accordance with some observations, the calculated strains appear to be 

overestimated compared to measurements. The problem could be largely attributable to the 

difficulty of assessing permeability evolution during frost development. 
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1. Introduction 
The development of ice in porous media such as cement-based materials [1-5] or fired clay 

materials [6-9] and its mechanical consequences have been largely investigated in order to 

understand the mechanisms and predict the frost resistance of materials. The problem is 

usually divided into two parts: the formation of the ice in the porous medium and the effect of 

this formation on the material (deformation and damage). In porous media, the formation of 

ice is driven by the conditions of equilibrium between vapour, water and ice, which are 

influenced by the curvature of their interfaces, the presence or absence of ionic species in the 

water, and the pressures applied to the phases [1, 2, 10-12]. The deformations of the porous 

medium during ice formation are the combined effect of different processes [13, 14]. Due to 

the temperature evolution, the porous material is affected by thermal contraction. Moreover, 

below the melting temperature, ice crystals develop. The 9% expansion due to the 

transformation of liquid water into ice is the cause underlying several mechanisms: such 

expansion in a porous medium causes internal stresses in the material and causes an increase 

of the water pressure in the porosity of the material, which drives the liquid water out of the 

freezing sites. Finally, as the temperature continues to decrease, the cryo-suction effect drives 

water towards frozen sites [13, 14]. 

The aim of this paper is to present a modification of the usual finite element poroelasticity 

formulation to perform calculations based on an existing model [15, 16]. This model was 

developed in the framework of poromechanics [17] and was based on earlier works [12, 13, 

18]. Zuber’s model has two interesting characteristics. First, it proposes to determine the ice 

development and the ice pressure on the pore walls from the pore size distribution. Most finite 

element codes use only the liquid pressure as the variable and do not allow the use of a second 

pressure variable. The second characteristic of this model is to take account of the different 

mechanisms due to ice formation by their effects on only the liquid water pressure. Thus, the 

ice pressure can be taken into account via the liquid water pressure, which allows most of the 

finite element codes to be used to program this model. 

The characteristics of porous media subjected to frost action are described first: characteristics 

relative to the drained porous media (subscript 0) and to the three phases (liquid water l, ice i 

and solid s), determination of the ice development and assessment of the action of the ice 

crystals on the pore walls. The constitutive equations of the thermal and poromechanical 

problems are then presented in the framework of porous media subjected to frost action. In 

this paper, the thermal and the mechanical problems are considered as weakly coupled [15, 

19]. Numerical considerations describe how the terms due to frost action can be taken into 

consideration in the usual finite element poroelasticity formulation and propose a method to 

perform objective calculations. The last part presents analyses performed on two real porous 

media (fired clays). The capability of the calculations to predict the measurements is then 

discussed. 

2. Porous media subjected to frost action 

2.1 Characteristics of porous media and phases 

In order to perform reliable calculations on porous media, a good description of several 

physical parameters is necessary. First, the porosity has to be well known. In this paper, the 

cumulative volume of pores with a radius greater than r is defined by: 
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where ϕ represents the porosity of the pores with radius upper than r of the porous medium. 

The total porosity is: 

∫
∞

=
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n

ϕ
 

(2) 

In the calculations developed here, it is assumed that the porosity is saturated by liquid water l 

and ice i. Si is the volumetric fraction of the porosity filled by the ice and Sl is the fraction of 

the porosity filled by the water. Therefore: 

( ) ( ) 1=+ TSTS li
 (3) 

In order to assess the response of the porous media to frost action, the mechanical behaviour 

of the material has to be known. It can be characterized by an isotropic bulk modulus: 

( )0

0

0
213 ν−

=
E

K  
(4) 

where E0 and ν0 are the elastic modulus and the Poisson coefficient of the drained porous 

material. 

The bulk modulus of solid grain is linked to the total porosity and to the bulk modulus of the 

drained porous medium. In this paper, the relationship proposed by Zuber and Marchand is 

used [15]: 

( )3

0

1 n

K
K s −

=  
(5) 

Finally, the Biot coefficient related to the liquid water is: 

sK

K
b 01−=  

(6) 

2.2 Development of ice crystals in porous media 

The conditions of equilibrium between liquid water and ice in saturated porous media are 

influenced by the curvature of the interfaces and the pressures applied to the phases [1, 2, 11, 

12]. Therefore, the transformation of the liquid water into ice is not an instantaneous 

phenomenon even if the temperature is below 0°C in the whole of the porous medium. 

Relations between freezing or melting point and pore diameter of the material depend on the 

kinetics of freezing and thawing and are difficult to obtain. In this paper, the relation is 

assumed to be based on the equilibrium between the phases deduced from thermodynamic 

models [12-14]. Thus, the smallest curvature radius of an ice crystal that can be formed at a 

given temperature, T, can be deduced from Eq 7 (as illustrated in Figure 1): 
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with γli, the surface tension of the liquid/ice interface, ΣM, the melting entropy, T the 

temperature of the medium and Tm, the temperature of the melting point (Tm = 273 K) [13]. 

The value of γli and ΣM are given in the ‘Application’ section. ΣM is assumed to be constant 

[12-14]. 
Moreover, in porous media, a part of the water is adsorbed on the pore walls and cannot 

freeze. This adsorbed water can be represented by a layer of water whose thickness depends 

on the temperature. Fagerlund proposed the following empirical relation [20]: 

( ) 3
1

97.1
TT

T
m −

=δ  (in nm) (8) 

with δ the thickness in nm (Figure 1). 

Therefore, the part of the porosity filled by the ice is composed of the pores of radius larger 

than: 

( ) ( ) ( )TTRTR eqPeq δ+=  (9) 

During the calculations, the part of the porosity filled by liquid water and the part filled by ice 

have to be known. The water adsorbed on the pores walls forms part of the liquid water. In 

order to assess the volume of the adsorbed water, it is necessary to make an assumption on the 

shape of the pores. In the assumption of cylindrical pores, the relative volume of adsorbed 

water in a pore of radius )(TRr Peq≤  is given by: 

( ) ( ) 2

11, 
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r

T
Trg

δ
 (10) 

with δ the thickness of the layer of the adsorbed water. 

Therefore, the variation of the volume filled by the ice between two time steps t and t+dt 

depends on the related temperature evolution T(t) to (T+dT)(t+dt): 

( ) ( )( )
( )

( )

∫
+

−=
∂
∂

∂
Φ∂ dTTR

TR

i

Peq

Peq

drTrg
dr

d
dt

t

T
T

T
,1

ϕ
 (11) 

and the mass variation of the liquid water, transformed into ice, with time is: 

( ) ( )T
T

T
T

i
i

il

∂
Φ∂

=
∂

∂ → ρω
 (12) 

with ρi the density of ice. 

2.3 Action of ice crystals in porous media 

The consequences of the development of ice crystals in porous media are well-known. 

However, the quantification of the action of the ice growth on the surrounding media is not 

easy. In this paper, the effect of the ice on the surrounding media is assessed from Zuber’s 

approach [15, 16], based on Scherer’s work [12]. It is thus possible to evaluate the pressure of 

the ice crystal on the porous medium from the pore size distribution. First, Zuber assumed that 

the pressure pi at the interface between the ice crystal and the free water was mainly 

controlled by the interface between liquid and ice and was equal to: 
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( ) ( ) ( )TTpTp li κ+=  (13) 

pl is the pressure in the liquid water (Figure 1) and κ is an additional pressure to take the 

spherical shape of the interface between liquid and ice into consideration. This pressure can 

be calculated by the Laplace equation: 

( ) ( ) ( ) ( )
( )TR

T
TpTpT

eq

li
li

γκ 2
=−=  

(14) 

The cylindrical shape of the frozen pores (r > RPeq(T)) leads to a second interface equilibrium 

condition: 

( )
( )Tr

T
TrTp li

ii δ
γπ
−

=− ),()(  
(15) 

where πi is the pressure in the adsorbed water on the frozen pore walls (Figure 1); it can be 

expressed as follows: 

( ) ( ) ( )TrTpTr li ,, χπ +=  (16) 

where ( )Tr,χ is the supplementary pressure on the frozen pore wall due to the formation of 

ice, evaluated by combining eqs 14 and 15: 

( ) ( ) ( ) ( )
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,  
(17) 

Finally, the action of the ice on the porous medium can be represented by the mean value of 

this supplementary pressure averaged over the pore volume filled by ice: 

( ) ( )∫
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=

=
PeqRr

dr
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d
Tr

n
TX

ϕχ ,
1

 
(18) 

3. Constitutive equations 
The problem of porous media subjected to the action of frost can be divided into two main 

phenomena and can be solved by thermal and mechanical equations. The two events are 

usually assumed to be weakly coupled [15, 16, 19] in the sense that the mechanical behaviour 

depends on the thermal effect (through the ice formation and the thermal dilation of the 

different materials) but thermal effects are independent of the mechanical behaviour (pore 

shapes, thermal conductivities, etc. are assumed to be independent of the strain state). 

Therefore, in order to analyse the effect of frost on porous media, heat transfer and 

poroelasticity equations can be solved in turn. 

3.1 Heat transfer 

The classical heat transfer equation is used to derive the evolution of the temperature T within 

the porous medium: 
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( ) ( ) mmmm STgraddivTc
t

+=
∂
∂ λρ  

(19) 

mρ  and 
mc  are the mass density and the heat capacity of the porous medium, 

mλ  is the heat 

conductivity of the porous medium and Sm the sink term defined below. The determination of 

the two values 
mρ mc  and 

mλ  is based on the average method. This takes into account the 

fraction of solid [(1 – n), with n the porosity of the media], the part of the porosity filled by 

ice (nSi) and by liquid water (nSl) and the respective mass densities and heat capacities of the 

three phases (
sscρ , 

iicρ  and 
ll cρ ): 

( ) ( ) ( ) ( )( )llliiissmm cTScTSncnTc ρρρρ ++−= 1  (20) 

mλ  is calculated by the same method: 

( ) ( ) ( ) ( )( )lliism TSTSnnT λλλλ ++−= 1  (21) 

with 
sλ , 

iλ  and 
lλ  the heat conductivity of the solid, the ice and the liquid respectively. 

In Equation (19), Sm, the sink term, accounts for the heat production or depletion due to the 

phase changing process between liquid water and ice. It is the product of the latent heat and 

the evolution of the ice mass with the time, thus Equation (19) can be expressed: 

( )( ) ( )( ) ( ) ( )( )TnS
t

TLTgradTdivTTc
t

iiilmmm ρλρ
∂
∂+=

∂
∂

>  
(22) 

Ll>i is the latent heat due to the phase changing process between liquid water and ice. For 

materials with large permeability, the heat transfer by advection should also be taken into 

account. 

3.2 Poroelasticity 

According to Biot’s approach [21], the total stress tensor σ  is determined by the relationship: 

*' bp−= σσ  (23) 

with 'σ , the effective stress tensor and p*, the pore pressure. 

 

The first equation of the thermo-poroelastic approach developed in [15] to take into account 

the frost action is the mechanical equilibrium equation (gravity effects being neglected): 

( ) 0*2
3

2
00000 =







 −−−+






 − IbpITTKtrKdiv mαεµεµ  
(24) 

with ε , the strain tensor and I , the unit matrix. 

The parameters are α0, the coefficient of volumetric thermal expansion of the drained porous 

medium, b, the Biot coefficient and µ0 given by: 



 7
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(25) 

with E0 Young’s modulus and ν0, Poisson’s coefficient of the drained porous material. 

p*, the pore pressure, is the average pressure exerted by the ice crystals and the liquid phase 

on the pore walls [15, 16]: 

( ) ( ) ( )tXtptp l +=*  (26) 

with X(t) given by Equation (18). 

The second equation of the thermo-poroelastic approach developed in [15] is the fluid mass 

balance equation: 

( ) ( )
( ) ( )
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with: 
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The term S takes the volumetric variations induced by the temperature change into account 

and is composed of four terms: 

1. the volumetric variation during the phase change between liquid water and ice 

(
il→ω  is given by equation 12), 

2. the thermal volumetric expansion of the three phases, 

3. the pore volume variation rate due to the supplementary pressure of the ice on the 

pore walls (X) (X is given by equation 18), 

4. the ice volume change due to the variation of the interface pressure (κ) (κ  is given 

by equation 14) which depends on the lowest pore radius of the specimen and 

supposed a connectivity between this pore and all the other already frozen. 

 

The parameters are: 

β, the inverse of the Biot modulus, which takes the compressibility of the three phases (liquid 

water, ice and solid) into account: 

( ) ( ) ( )
si

i

l

l

K

nb

K

TnS

K

TnS
T

−++=β  
(29) 

ηl, the viscosity of liquid water, which is a function of temperature (given in Section 5.2), 

αm, the average coefficient of volumetric thermal expansion of the porous medium: 

( ) ( ) ( ) ( ) siillm nbTnSTnST αααα −++=  (30) 

and D, the permeability of the porous medium. 

Concerning the permeability, the development of the ice crystals in the pores of the medium is 

responsible for the closing of the pores and thus the decrease in water permeability. When the 
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volume of ice increases, the volume of liquid water and the permeability decrease. This 

phenomenon is usually modelled by van Genuchten’s relation [22]: 

( ) ( ) ( )( )( )
0

2
/1

11 DTSTSTD
mm

ll −−=  
(31) 

where m is a parameter depending on the porous medium and D0, the initial water 

permeability. 

4. Numerical considerations 

4.1 Analogy with classical finite element formulation 

For the thermal calculations, Equation 22 can be reformulated noting that: 

( )( ) ( )( )
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=
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(32) 

This leads to: 
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(33) 

The latent heat is thus included in an equivalent heat capacity ρceq. The resolution of the 

problem is performed step by step. The nonlinearity in Equation 33 is taken into account 

through the parameters modified at every step according to the temperature calculated at the 

previous step. Therefore, the problem is solved by successive linear calculations. 

 

For the mechanical calculations, the classical thermo-poroelastic formulation for a finite 

element is: 

02
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with αf, the coefficient of volumetric temperature-pressure interaction. 

 

The analogy between equations 24 and 34 leads us to add a supplementary pressure X on the 

pore volume filled by ice (equation 18) in α0, the coefficient of volumetric thermal expansion 

[16]: 

( )
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0

0 αα ⇔








∂
∂+

T

TX

K

b
 

(36) 
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The analogy between equations 27 and 35 leads us to take into account the effect of the 

development of ice crystals on the pressure in αf, the coefficient of temperature-pressure 

interaction: 

( ) ( ) ( ) ( ) ( )
f

i

i
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m

il
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∂−−+
∂
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− →11

 
(37) 

Note that, to come under the classical framework of poro-mechanics, the thermal dilation 

coefficient and the temperature-pressure interaction are redefined as non-linear functions 

depending on the temperature through the Equation 7, which itself allows the pore size 

distribution to be considered. Consequently, the sharper the pore size distribution is, the more 

non-linear the coefficient of equivalent poro-mechanical formulation will be and the harder 

the convergence problems will be during the numerical solving process. The nonlinearity of 

the terms in Equations 36 and 37 is taken into account with the same method than for the 

thermal calculation. 

4.2 Objectivity 

As mentioned above, according to the pore size distribution, the evaluation of the frost effect 

on porous media can be highly non-linear, which implies major problems of objectivity 

towards spatial and time discretisation. In order to solve equation 27, the calculation 

objectivity can be obtained by using time steps smaller than the characteristic time [16]: 

2x
D

l ∆≤
βητ  

(38) 

with ∆x, the mesh size. 

Due to the evolution of the parameters (β, ηl and D) with the temperature, the characteristic 

time increases when the temperature in the porous medium decreases. Around 0°C, the 

characteristic time is very small: τ is about 10-3 s for 0°C but reaches 105 s for -20°C (with 

finite element size around 1 mm). For the case study presented just below, more than 20,000 

time steps would be necessary to respect this condition. The use of such small time 

increments has a sense only if the pressure increment is really large. This depends not only on 

the equation but also on the boundary conditions and imposed loading. Therefore, we propose 

to calculate the time increment so as to limit the maximal pressure increment to a limit value 

∆Plim and obtain objectivity of the calculation for longer time-steps. For this purpose, a 

pressure variation rate [ ]tP ∆∆ /  is assessed at each point of the mesh by a linear regression 

obtained on the three previous time-steps. In order to limit the possible pressure variations 

during the following time step, τ is determined assuming the variation rate of P will be of the 

same order in the following time step as in the three previous converged ones. Consequently, 

the following time step is assessed: 








∆
∆

∆
≤⇒

∆
≤






∆
∆

t

P

PP

t

P limlim τ
τ

 
(39) 

∆Plim is the parameter of calculations representing the limit of pressure variation between two 

successive time steps in the linear assumption. The shortest time on the mesh is kept to 

perform the following calculations. ∆Plim has to be determined for each material to obtain 
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objective calculations. Practically, it is chosen as a small fraction of the maximal pressure 

expected in the porous medium. For a given problem, different values of ∆Plim are tested until 

constant results are obtained (∆Plim is about 1% of the maximal effective pressure in this 

study). The result of this method is discussed in the following section. 

All the calculations have been performed with the finite element code CASTEM [23] 

developed and tested at the CEA (French Atomic Research Center). It allows the new 

developments presented just above to be taken into account and guarantees confidence in the 

resolution of usual thermal-pore fluid-mechanical problems. 

 

5. Application 

5.1 Experimentations 

In this part, the model is tested to study the behaviour of fired clay materials subjected to frost 

analysed in experimentations presented in [24]. In this experimental campaign, the behaviour 

of fired clay materials with different physical and mechanical properties (porosity, 

permeability, mechanical strength and elasticity modulus) was subjected to freeze–thaw 

cycles (temperature lying between 15°C and -16°C) [24]. Density, porosity and pore size 

distribution, permeability, Young modulus and tensile strength of the two materials (Table 1 

and Figure 2) were measured [24]. The specimens subjected to freeze–thaw cycles were 

prismatic (length = 170 mm, width = 115 mm, thickness = 19 mm – Figure 3). The two 

porous materials present different frost behaviours: the first one, FC1, is quickly damaged (the 

first cracks appeared before 15 cycles) while FC2 shows a high resistance to frost action 

(cracking occurred after 135 cycles) [24]. The differences of behaviour can be explained by 

permeability (Table 1 - FC2 is more permeable than FC1), mechanical properties (Table 1) or 

by the difference in pore distribution (Figure 2). Moreover, the temperature and the strains of 

the specimens during the cycles were measured (the places of the sensors are shown in Figure 

3). The coefficient m of van Genuchten’s relation (Equation 31) was determined for two 

porous materials close to those studied in this paper [25, 26]. The mean value of the two 

measurements (m = 0.5) was kept for the calculations carried out in this analysis. A study of 

sensitivity to this parameter is also performed below. 

In fired clay, the water in the pores is poor in ionic species. This is one of the advantages of 

testing the model on this type of materials because ionic species modify the melting 

temperature of water, which makes the problem more complex [16]. In this paper, the effect 

of the pore size distribution on the frost durability of porous materials [1-9] is taken into 

account by the progressive development of the ice in the pores (Equations 7 and 11) and by 

the action of the ice on the pore walls (Equation 18). In order to solve these equations, the 

pore size distributions of the two porous media are needed (Figure 2). Figure 4 shows the 

development of the ice according to the temperature in the porosity (using equation 11). This 

figure does not represent a state of the material at a given time but shows an intrinsic relation 

between the temperature and the ice fraction in the material taking into account the pore size 

distribution. If the temperature is known in a point of the specimen, the relation presented in 

Figure 4 gives the ice fraction in this point. The ice fraction in material FC2 is greater than in 

FC1 due to the higher porosity. Moreover, the pores with radii larger than 60 nm are filled by 

ice crystals at -1°C (Equation 7). Thus the porosity of the two materials is almost full of ice 

once the temperature reaches -1°C (Figure 4). 

The numerical problems are analysed on these two materials. Thermal calculations were 

carried out in 3D analyses. The poromechanical calculations can be very long because of the 

high variation rate of the equation coefficients. The problem is particularly time consuming 
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for 2D and 3D analyses. Therefore, mechanical calculations were performed in one- and two-

dimensional analysis and discussed with respect to experimental measurements. 

5.2 Parameters 

The constants concerning liquid water and ice, which are necessary to perform the thermal 

and the mechanical calculations, have been taken from [15, 16, 19] (Table 2). In order to 

determine the pore radius above which the porosity is filled by ice (Equation 7), the melting 

entropy ΣM was taken constant and equal to 1.2 MPa/K given by [13, 14]. The thermal 

calculations need the enthalpy of fusion of ice per unit of mass 
ilL > , which depends on the 

temperature and can be deduced from [27]:  

( ) ( )2335 100125.01083.41034.3 mmil TTTTL −×+−×+×= −−−
>  (40) 

The mechanical calculations require the surface tension between liquid water and ice ( )Tliγ  

to be quantified (Equation 17) [15]: 

( )( ) 31025.036 −×−+= mli TTγ  (41) 

in N/m, and the evolution of the liquid water viscosity with the temperature [28]: 

( ) ( ) ( ) ( ) 
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0
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tT

B

tT

B

tT

B
Tl ηη  

(42) 

with η0 = 4.601x10-5 mPa.s, B1 = 3068.6°C, B2 = -3.3775x105°C2, B3 = 1.4781x107°C3 and t0 

= 123.15°C. 

5.3 Thermal calculations 

5.3.1 Specimen geometry and meshes 

As the specimens have three planes of symmetry (Figure 3), only an eighth of them have to be 

meshed if a realistic representation of the edge effect is sought. Of course, in this case, the 

heat flux is taken to be 0 on the planes of symmetry of the problem. The direction and the 

cross-section studied in 1D and 2D analysis respectively are defined in Figure 3. 

5.3.2 Boundary conditions and objectivity 

Before freezing, the specimens were subjected to progressive soaking in water during the time 

necessary to saturate the whole porosity. Then, the water was removed and the specimens 

kept in air at 15°C. The temperature of the air was reduced rapidly to reach -5°C after 15 min. 

and -16°C after 2 hours [24]. In this paper, only the negative temperature have been analysed 

(Figure 5). During freezing, they were exposed to air on the six faces. The air temperature Tair 

was given by measurement [24] and the boundary condition was a heat flux related to this 

imposed temperature: 

( )nTTh air−=ϕ  (43) 

with ϕ  the heat flux, h the heat transfer coefficient, Tair the temperature of the air surrounding 

the specimens and n  the direction perpendicular to the boundary. 
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No objectivity problems with mesh size were observed during the thermal calculations. 

However, some problems of convergence appeared for large time steps. In order to perform 

the thermal calculations, a method analogous to that presented just above for the pressure 

calculations (Eq 39) was used (with a limit of temperature variation,  ∆Tlim, of 0.1°C). The 

heat transfer coefficient h was determined by curve fitting so that the temperature calculated 

at the position of the temperature sensor was equal to the measured temperature (Figure 5).  

5.3.3 Comparison between calculations and experiments 

The temperature measurement at the location of the sensor (Figure 3) is well reproduced for 

the two materials (Figure 5). Without the sink term due to this latent heat, the thermal 

behaviour of the specimens appears to be very different, with temperature always close to the 

air temperature (Figure 5). Due to the latent heat created by the ice formation, the specimens’ 

temperature stays quite constant and close to 0°C over a long period and decreases later than 

without ice formation. 

However, the fitting of the temperature measurement of FC1 is obtained for a heat transfer 

coefficient of 26 W/m2/K while the coefficient is equal to 34 W/m2/K for the second material. 

The first value is quite usual for transfer in a well ventilated environment as in the tests 

studied here. However, it is quite unusual to obtain coefficients that are so different for 

specimens in a similar environment. If the calculation of FC2 is performed with the 

coefficient obtained for FC1, the calculated temperature decreases less rapidly than the 

temperature measured on the real specimen (Figure 5).  

Different thermal behaviour between FC1 and FC2 could be expected because of the 

differences of water porosity (Table 1). Material FC2 has considerably greater porosity than 

material FC1 (37% versus 25%). If the porosity is saturated by water, the volume of ice 

created in the specimens should be greater in FC2 than in FC1 with a difference of about 30% 

as shown in Figure 2. Thus, more latent heat should be created when the temperature of the 

FC2 specimen falls to below 0°C and the decrease of temperature in FC2 should be slower 

than for FC1 as already observed in previous experiments in the same conditions on 

comparable materials [25]. Therefore, the thermal calculations show possible problems during 

the experimentation: either the specimens were not in exactly the same conditions (heat 

transfer coefficient different for the two materials) or the FC2 specimens were not totally 

saturated. However, the physical mechanisms are complex and assumptions made to perform 

the calculations (constant heat transfer coefficient, kinetics of the transformation of liquid 

water in ice…) could lead to approximations in the results. 

5.3.4 Comparison between 1D, 2D and 3D calculations 

The evolution of temperature at characteristic points of the specimens obtained in 1D, 2D and 

3D calculations have been plotted in Figure 7 in order to assess the impact of the different 

assumptions on the thermal results. In the comparison between 1D and 3D, two points have 

been defined: point P1 is the core of the specimen and P5 is the centre of the external surface 

(Figure 6). Because the specimens are flat plates, the boundary conditions have little effect on 

the temperature in the centre (Figure 6). This result is confirmed by the comparison of the 

thermal evolution at the two points P1 and P5 (comparison between 1D and 3D analyses) and 

at the position of the temperature sensor (comparison between 2D and 3D analyses) obtained 

by the three analyses (Figure 7). Therefore, the 1D and 2D analyses used to investigate the 

behaviour of the fired clay under frost action have little effect on the thermal results at the 

characteristic points of the study. 
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5.4 Mechanical calculations 

5.4.1 Boundary conditions 

Usually, authors assume that the surface of the specimens is covered by a thin ice layer [19] 

and that the interface between the ice crystal and the external air is flat as proposed in [5]. The 

ice is then subjected to atmospheric pressure [16, 19]. Equation 44 then gives the boundary 

conditions for the liquid pressure: 

( ) ( ) ( )
( )TR

T
TTp

eq

li

l

γκ 2
−=−=  

(44) 

Equation 7 gives the expression for Req(T) and equation 44 becomes: 

( ) ( )TTTp mMl −Σ−=  (45) 

T is negative temperature; thus it leads to suction on the boundary. 

5.4.2 Calculation objectivity 

Time-step influence 

The mechanical problem of frost development in porous media presented above is highly non-

linear due to the non-linearity of the coefficients in equations 34 and 35. This non-linearity, 

from a physical point of view, corresponds to the propagation of the ice front in the specimen 

(Figure 8 for 1D calculation on FC1). Therefore, it is important to give careful consideration 

to the problem of objectivity according to time-step and mesh size. The time-step control 

proposed above (Equation 39) is presented for 1D calculations and its effect is analysed on the 

value of the pressure in the core of the FC1 specimens (point P1 – Figure 9). If the limit 

pressure increment ∆Plim is too large (greater than 1 MPa for FC1 and FC2), the calculations 

appear to be non-objective (Figure 9). For smaller values, the different calculations give 

similar results. The value of 1 MPa was used for all the following calculations. This value 

depends on the type of porous medium and particularly on the pore size distribution and has 

to be determined for each material. Figure 9 shows the performance of the time control 

proposed with the representation of the time steps necessary to perform objective calculations. 

When the pressure variations are small (at the beginning and at the end of the calculation), the 

time step is maximal (equal to 50 seconds in this paper). As soon as the pressure variations 

become large, the time step decreases to reach values of less than 10 seconds for a 1D 

calculation (it can reach less than one millisecond for 2D and 3D calculations as discussed 

below). Thus, the time step is always in good accordance with the pressure evolution in the 

specimen. The calculation is performed with long time steps when there is no evolution and 

short time steps when the evolution is rapid. 

Influence of mesh element size  

In order to investigate the objectivity according to mesh size, calculations with various 

densities of the mesh in the core of the specimen (density D1) and near the external surface 

(density D2) were performed with 1D calculation. When one of the two densities varied, the 

other was taken to be equal to 1 mm. The dependence of the pressure in the core of the 

specimen (point P1) on mesh size is represented in Figure 10 for material FC1. The mesh size 

in the core of the specimen mainly has an impact on the maximal pressure but the impact on 

the kinetics is small (Figure 10a). In contrast, the mesh density close to the external surface 
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has an effect on the kinetics and on the maximal pressure (Figure 10b). In fact, the effect on 

the kinetics is mainly a delay in the increase of pressure at the beginning of the test (around 

1000 and 2000 seconds) which is never compensated and explains the difference of maximal 

pressure. This delay is due to the development of ice crystals in the specimen. The increase of 

the pressure in the specimen is explained by the term S of equations 27 and 28 and by the 

decrease in the permeability. The larger the first element is, the longer is the time to reach a 

temperature cold enough to close the porosity and thus to decrease the permeability 

sufficiently. For the two materials, a constant density of 1 mm in the whole specimen appears 

to be necessary to obtain precise calculations. 

5.4.3 Comparison between calculations and experiments 

Once the problem of objectivity had been treated, calculations were carried out in order to 

compare the calculated strains with the measurements performed during the experiment [24]. 

1D calculation is not sufficient to compare computed and experimental values because of the 

position of the strain gauge on an edge of the specimen (and not in the middle where the 1D 

calculation is performed, see Figure 3), so 2D or 3D analyses are necessary. However, in 2D 

and 3D calculations, the evolution of the pressure can be rapid particularly at singular points 

like corners. The time control method proposed above then leads to time steps tending 

towards zero and thus the calculations become impossible. The 3D calculations could only be 

performed on the first 800 seconds (while the duration of the experiment was about 6500 

seconds), which did not allow interesting comparisons to be made with experiment. 2D 

calculations could be performed over a longer time (about 2000 s) and were used for this 

analysis. 

Figure 11 presents the initial and the deformed specimens at 2000 s for material FC1. At this 

time step, the deformation according to the height (direction z in Figure 11) is smaller on the 

small external face (point P4) than in the core of the specimens (point P1). Figure 12 shows 

that the difference begins to appear at about 1500 s. Before 1500 s, the porosity at the external 

boundary is not completely filled by ice and the permeability is still quite large. Thus the 

pressure in the specimens is quite uniform and so are the deformations. After 1500 s, the 

permeability decreases rapidly and first on the external boundary. The external points are then 

subjected to negative liquid pressure (Equation 42) while the liquid pressure in the core of the 

specimen increases due to ice formation and low permeability, causing the divergence of 

behaviour. This result is in accordance with the experimental observations which show the 

largest damage in the central part of the specimens [24]. The gradient of strains induced in the 

specimens leads to tensile stresses close to the external surfaces in the two directions, along 

the length y and the height z, and to smaller total stresses in the core. 

 

The deformed specimens determined by calculations are in accordance with the experimental 

observations. However, the calculated strains appear to be too large compared to the 

measurements. The two materials showed the same strain through the height of the specimens 

during cooling (Figure 13). In order to compare the calculated value with the measurement, 

the calculated strain was determined as the average of the strain at point P4 and at a point 

located 5 mm above in order to take the length of the gauge sensor into account. For FC1, the 

calculated value is positive, as expected and observed in Figure 11 while, for FC2, the 

calculated value is negative (Figure 13). The analysis of the pressure in the core of the 

specimens (Figure 14) shows that the problem of time objectivity is more important in 2D 

calculations than in 1D. For material FC1, the pressures in the core of the specimen in 1D and 

2D calculations are equal, as expected due to the large width and length of the specimens 

compared to their height (Figure 14). For material FC2, the calculated pressures obtained for 

the two calculations are totally different, which can be explained by the objectivity problem. 
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The problem of objectivity is more severe for FC2 due to faster ice development (Figure 4) 

and larger porosity of the material, which cause faster and larger pressure increase and thus 

higher non-linearity. Thus, materials with large porosity and quite uniform pore radius give 

highly non-linear calculations and are difficult to analyse with 2D calculations. 

Figure 13 shows that the value calculated for the FC1 specimen is about 10 times larger than 

the measurements. Therefore, with realistic input data, the calculation results are unrealistic. 

This can be explained by experimental problems, like crack development around the strain 

gauge or by unrealistic assumptions made in the development of the model. Thus, it could be 

interesting to perform measurements to determine the ice development according to the 

temperature on these two porous materials [25, 26, 29] in order to compare the usual relation 

between ice crystal radius and temperature (Equation 7) with experimentation. Another 

assumption is to assess the decrease of permeability with ice development using van 

Genuchten’s relation (Equation 31). This relation represents the reduction of the permeability 

with the decrease of the liquid fraction in the porosity and was initially established by Van 

Genuchten for unsaturated soils where the two phases were water and air [22]. The initial Van 

Genuchten’s relation has already been modified for gas permeability in order to better 

describe the measurements in cement based materials [30]. Therefore, the decrease of water 

permeability with ice development by van Genuchten’s relation may not be representative of 

reality. In order to study the effect of this relation on the calculated strains, the calculations 

were performed with coefficient m (Equation 31) varying from 0.5 (the initial value) to 1 

(Figure 15). With larger coefficients, the decrease of the permeability with decreasing 

temperature is slower: for a given temperature, the permeability is higher for m equal to 1 

than for m equal to 0.5. With higher permeability, the liquid pressure is lower and thus the 

resulting strains are smaller as shown in Figure 15. The strains obtained with m lying between 

0.8 and 1 are close to the measured strains during the 2500 first seconds. However, after this 

time, the liquid pressure is mainly driven by the negative pressure at the boundary. Thus, after 

2500 seconds, the pressure and the strains decrease while the measured strain does not show 

any decrease and remains at constant values. 

5.4.4 Comparison of the two materials 

The finite element poroelasticity formulation presented in this paper takes account of the main 

thermal and poromechanical parameters involved during ice development in porous media 

and their coupled effects. Although the previous comparison with experiment shows that the 

model overestimates the frost consequences, it can be used to compare the behaviour of 

porous media subjected to frost action from usual material parameters. In this part, the 

behaviour of the two materials, FC1 and FC2, under frost conditions is calculated with 1D 

analysis in order to analyse the differences that could explain the high frost resistance of FC2 

and the low frost resistance of FC1. The comparison is made in terms of pressure (determined 

in the core of the specimen – point P1 – Figure 16a) and total stress along the length 

(determined in the core and on the external surfaces – points P1 and P5 – Figure 16b). The 

pressure is about twice as great in material FC2 as in FC1 (Figure 16a). This can be explained 

by: 

- the greater porosity: the greater the porosity, the larger the pressure increase due to the 

volume increase during the transformation of liquid water in ice. This is already 

observed in some empirical models used to assess the frost resistance of fired clay [7]. 

- the higher Young’s modulus: the greater the Young’s modulus, the larger the pressure 

increase. This is usually not considered in the empirical models, which focus on the 

size pore distributions without taking the mechanical properties into consideration [24] 

The effects of these two parameters on the pressures could have been diminished by the 

greater permeability of FC2. Greater permeability implies that a larger quantity of liquid 
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water can go out of the porous media without increasing the pressure. However, van 

Genuchten’s relation (Equation 31) causes a fast decrease of the permeability with liquid 

saturation and thus with temperature. Therefore, the permeability of the two materials is 

quickly of the same order, particularly close to the boundary. 

The total stresses are negative (compressive stresses) in the core of the specimens and positive 

close to the boundary (tensile stresses). The total stresses are due to the gradient of strains 

induced by the ice formation and vary according to the propagation of the ice front. The 

tensile stresses are of the same order for both materials while the compressive stresses are 

greater for FC2. However, they are small (lower than 3 MPa) compared to the effective 

stresses due to the pressure term (Equation 23). With the mechanical characteristics of the 

material given in Table 1, the Biot coefficients are about 0.59 for FC1 and 0.75 for FC2. 

Therefore, the effective stresses are mainly negative close to the boundary, due to the negative 

imposed liquid pressure at the boundary (Equation 45 – Figure 16b), and are positive in the 

core of the specimens (due to positive pressure – Figure 16b). In the core of the specimens, 

the tensile effective stresses reach about 40 MPa for FC1 and 140 MPa for FC2. These stress 

values are positive and can explain the damage observed during frost experiments. However, 

they are largely greater than the tensile strength of the material (Table 1), while FC2 presents 

high frost durability with no major cracking before 135 cycles [24]. It confirms the 

overestimation of the frost effect on porous media already pointed out by the comparison of 

the calculated and measured strains. 

Therefore, the comparison of the behaviour of the two materials based on the coupled effects 

of the physical and mechanical properties during frost action does not explain the differences 

of behaviour of the two fired clays (poor resistance for FC1 and high resistance for FC2). 

However, the thermal calculations show that the FC2 specimens could not have been totally 

saturated. This lack of saturation could then explain the better frost resistance during the test. 

Supplementary experiments on materials with good frost resistance appear to be necessary to 

test again the capability of the model to assess the behaviour of porous media to frost. 

6. Conclusion 
Assessing the effect of ice development in porous media is a complex problem. The 

framework of poromechanics [17] can be used to evaluate the consequences of ice 

development in porous media in terms of pressure, strains and stresses. The aim of the paper 

was to present the comparison of the calculations based on an existing model [15] using the 

finite element formulation with experimentation performed on fired clays. In the approach 

presented here, the thermal and the mechanical problems have been considered as uncoupled. 

The thermal problem does not pose any difficulties. The latent heat due to ice formation has 

been successfully taken into account in the usual thermal finite element formulations. The 

thermal analysis of the two materials has revealed experimental problems (problems of 

exposure to air or saturation of the porosity). The particularities of the frost model developed 

by Zuber [15] have been taken into account in the usual finite element poroelasticity 

formulation. This part of the calculations is highly non-linear, and particular care is required 

to perform objective calculations. A method to determine the time between two calculation 

steps according to the evolution of the pressure in the specimen is proposed to avoid over-

long calculations and ensure objectivity. Due to the high non-linearity of the calculations, 2D 

and 3D calculations are difficult for materials with large porosity and narrow pore size 

distribution. For such analyses, the time steps should be lower than a millisecond to guarantee 

objectivity. For materials with larger pore size distributions, the ice development would be 

more progressive, which could slow down the pressure increase and avoid the convergence 

problem observed for the two materials studied in this paper. The characteristic of the model 

presented here is to take into account the main thermal and poromechanical properties 



 17

involved during ice development in porous media and their coupled effects. This paper is an 

attempt to validate this model by comparing the calculations with experiments performed on 

real building materials. The model appears to overestimate the strains and the stresses due to 

frost action. This can be observed in the large increase of the liquid pressure in the specimen 

with the ice development and can be explained by the determination of the permeability. The 

problem of assessing permeability is multiple. First, all the calculations are based on the pore 

size distribution in accordance with the experimental and theoretical observations of ice 

mechanisms. However, the pore size distribution was determined by the usual mercury 

intrusion, which is known to measure the diameter of the pore access and not really the mean 

pore diameter. Thus the largest pores, which have a great effect on permeability, are neglected 

by this method. Secondly, the decrease of the permeability with the ice development is 

determined by van Genuchten’s relation. The paper shows that modifying the parameter of 

this relation can have an important impact on the results. Finally, the permeability could be 

greater than assumed due to the development of micro cracking in the material. Such micro 

cracking could be caused by the large tensile effective stresses and imply an increase of the 

permeability as early as the first cooling. This phenomenon could be taken into account using 

damage modelling of the material matrix. Furthermore, new experiments appear to be 

necessary to study, in particular, the evolution of permeability with ice development in porous 

media. 
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Tables 
 

Table 1: Input data for two porous materials (fired clays) [24] 

Parameter Symbol Identification FC1  FC2 Units 

Physical properties      

Density ρs measurement 1900 1700 kg/m3 

Porosity n measurement 0.25 0.37  

Permeability D measurement 4.0x10-17 1.5x10-16 m2 

Thermal properties      

Conductivity λs usual value 0.5 0.5 W/m/K 

Heat capacity cs usual value 900 900 J/kg/K 

Mechanical properties      

Volumetric thermal dilation αs usual value 20x10-6 20x10-6 K-1 

Young modulus E0 measurement 3.85 9.90 GPa 

Poisson coefficient ν0 usual value 0.2 0.2  

Tensile strength ft measurement 1.1 2.7 MPa 

 

 

Table 2: Input data for liquid water and ice [15, 16, 19] 

Parameter Symbol Liquid water  Ice Units 

Physical properties     

Density ρl, ρi 1000 920 kg/m3 

Thermal properties     

Conductivity λl, λi 0.57 2.20 W/m/K 

Heat capacity cl, ci 2100 4220 J/kg/K 

Melting entropy ΣM 1.2 MPa/K 

Mechanical properties     

Volumetric thermal dilation αl, αi ( ) 510.07.22.9 −∆+− T  
5

10.
200

15.16
−








 ∆+ T
 K-1 

Bulk modulus Kl, Ki 2.2 8.3 GPa 
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Figures 
 

 
Figure 1: Development of ice crystal in the porous media according to the pore size 

 

 

 
Figure 2: Pore size distribution of the two porous materials obtained by Mercury Intrusion 

Process 
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Figure 3: Specimens (P1 is at the core of the specimen, P5 is the centre of the external surface 

of the specimen) and measurement equipment 

 

 

 
Figure 4: Evolution of ice fraction with temperature, according to eq. 11 and pore size 

distribution supplied in Figure 2 

 

 

 
Figure 5: Evolution of the temperature at the temperature sensor level for the two materials 

(the air temperature is the measurement performed by the sensor shown in Figure 3) 
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Figure 6: Temperature in the FC1 specimen at 1000 s (a), 2500 s (b) and 4000 s (c) 

 

 

 
Figure 7: Calculated temperatures at the sensor position and at the centre of the specimen in 

3D, 2D and 1D calculations (for the points P1 and P5 see Figures 3 and 6) 
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Figure 8: Propagation of the ice front in the depth of the FC1 specimen in 1D calculation 

 

 

 
Figure 9: Analysis of the time objectivity according to the limit pressure increment ∆Plim for 

FC1 and evolution of the time steps obtained for ∆Plim = 1 MPa in 1D calculation 
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Figure 10: Analysis of the objectivity according to the mesh size on the total kinetics for FC1 

for various densities in the core of the specimen D1 (a) and close to the external surface D2 

(b) 

 

 

 
Figure 11: Initial (red contour) and deformed meshes of FC1 specimen after 2000 seconds 

(2D calculation) 

 

 



 25

 
Figure 12: Calculated strains in the z direction (specimen height direction) in the core (P1) 

and on the external surface (P4) for 2D calculation 

 

 
Figure 13: Measured and calculated strains in the z direction (specimen height direction) 

 

 
Figure 14: Pressures in the core of specimens FC1 and FC2 (1D and 2D calculations) 
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Figure 15: Effect of the decrease of the permeability with ice development on the calculated 

strain (m is the Van Genuchten exponent) 

 

 

 
Figure 16: Pressure evolution at P1 (a) and stress evolution at P1 and P5 (b) versus time for 

FC1 and FC2 specimens (1D analysis) (for the points P1 and P5 see Figures 3 and 11) 

 

 


