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Part I

Introduction

General Principles

This document describes the constitutive equations currently implemented in the numerical model FLUENDO3D. This model, clarified in LMDC Toulouse, is dedicated to the numerical simulation of non linear behaviour of matrix reinforced by distributed reinforcements. The matrix behaviour law considers both localised and diffuse damages, permanent strains induced by creep or plasticity, and effects of pressures in its porosity. The pressures can be induced by water dying or internal swelling reactions. Different reinforcements can be considered simultaneously. Each of them is oriented and acts on the matrix either thanks to a perfect bond or by a sliding interface. The reinforcement's behaviour includes permanent strains induced by plasticity or relaxation. The matrix cracking is simulated resorting to the damage theory. The distributed crack method is used. The model supplies the localised cracks orientations and openings. It can also consider presence of defects in the matrix thanks to a theory based on probabilistic considerations. The different components of this model can work alone or together, depending on the user's intentions. For instance if the damage module is not required all the other modules stay active invoking the model with the FLUAGE3D command instead of FLUENDO3D command. On the contrary if the creep modules are not needed the ENDO3D command allows to skip the creep modules and keep the damage ones. However, the plastic modules and the chemical modules are always active. But, of course, if data relative to the chemical modules are omitted by the users the corresponding module are dis-activated automatically. Concerning distributed reinforcements types, their number can be chosen between 0 (none reinforcements) and 5. More reinforcements types could be considered but a re-compilation of the model should be done with adequate parameters.

Main features

The different features available in this model are summarized below. The constitutive equations corresponding to each item are supplied in next chapters. The data list and the internal variables list corresponding to each phenomenon are summarized at the end of the document.

• Matrix -distributed reinforcements sliding (method under licence(c)LMDC)

• Probabilistic scale effect based on the Weakest Link and Localization method Considers random distribution of tensile strength without random sampling Direct access to the most likely failure mode (WL2 method [START_REF] Sellier | Weakest link and localisation WL 2 : a method to conciliate probabilistic and energetic scale effects in numerical models[END_REF]).

• Strengh in tension and compression dependence on loading speed Modified CEB dynamic amplification coefficient for tensile and compressive strength Strenght amplification from 5.10 -6 s -1

Interactions between phenomemena

The method used to couple the different mechanisms involved in the behaviour law of the matrix consists to work in a poro-mechanics framework [START_REF] Coussy | Poromechanics[END_REF]. Some interactions exit between the different phases presents in the pores thanks to their poro-mechanics formulation. For instance the pressure induced by a swelling reaction acts on the solid skeleton of the matrix, which in turn is damaged in tension. Concerning the reinforcements, their effects are considered through a mix law method. The different options concerning the organization between the different modules are schemed in figure 1. 

Basic creep

Delayed strains of solid skeleton are called basic creep strains. They can be permanent or reversible, depending on underlying phenomena. In the model, basic creep constitutive equations are always used coupled to a plastic strains model which insures the stress field compatibility with the strength criteria. Practically, the basic creep model involves two usual rheologic modules : a Kelvin solid for reversible creep and a Maxwell visco elastic fluid for permanent creep as illustrated in figures 1 and 1.1. Effects of poral pressure are considered through the poromechanics framework [START_REF] Sellier | Concrete creep modelling for structural applications : non-linearity , multi-axiality , hydration , temperature and drying effects[END_REF].

Permanent creep

Constitutive relations

Basic creep is a macroscopic consequence of nano-scale phenomena, in fact some solid phases are intrinsically viscous due to the weak inter-atomic links existing at the lowest scales. When submitted continuously to a loading, these links locally break and repair (or not) and a new geometric configuration is reached, corresponding to a delayed macroscopic strain. At the macroscopic scale, it is assumed that permanent creep velocity is proportional to the elastic strain (ε E ) as expressed in equation (1.1). This assumption is supported by experimental evidences showing that multiaxial creep can be deduced from uniaxial creep with a quasi constant Figure 1.1: Idealized rheologic scheme for poro-mechanics creep model Poisson ratio effect [START_REF] Gopalakrishnan | Creep Poisson's Ratio of Concrete Under Multiaxial Compression[END_REF].

∂ε M IJ ∂t = ε E IJ τ M IJ (1.1)
In this equation τ M IJ if the characteristic time for the strain component ε M IJ with I and J subscripts corresponding to eigen-directions of ε M . In this base τ M IJ can be assessed with equation (1.2).

τ M IJ = min τ M I , τ M J (1.2)
With τ M I defined by equation 1.3. In fact, at nano-scale basic creep is caused by atomic link instabilities, which are themselves affected by physical conditions (temperature (T), humidity (H) and mechanical loading (M)). At upper scale (micro and meso scale) stress redistribution between viscous phases and non-viscous phases leads to consolidation (C) and damage (D). consequently the basic creep characteristic time (τ M I ) is managed by at mean three physical conditions:

• Temperature (T),

• Humidity (H),

• Mechanical loading (M).

These three conditions influence the way how the material evolves two physical phenomena for which internal variable have to be defined and linked to the characteristic time :

• Consolidation (C),

• Damage (D).

Damage acts directly at macro level to amplify elastic strain , as usually admitted in damage mechanics theory [START_REF] Kachanov | Introduction tp continuum damage mechanic[END_REF] [START_REF] Lemaitre | Mécanique des matériaux solides[END_REF].In the model damage Variable D C and D T used in (3.1) consider respectively creep damage and thermal damage. Consolidation is considered using a consolidation function C C I affecting characteristic time :

τ M I = τ M ref C C I (1.3)
With τ M ref a reference characteristic time, used as fitting parameter in reference condition (high humidity, reference temperature, without initial creep strain). Permanent creep strain origins take place in viscous material phases of solid skeleton. But solid skeleton contains also non viscous grains, and microscopic arrangements of viscous and non viscous phases is generally aleatory. As viscous strains come along with strains of non viscous grains, a local heterogeneity of stress and strain fields appears. The macroscopic consequence of this heterogeneity is that non-viscous phases oppose to viscous strains of viscous ones. At the beginning viscous strains are relatively easy, but the number of non-viscous inclusions hampering viscous strain increases with the creep deformation. If non-viscous inclusions are only elastically perturbed the creep is reversible (see 1.1.2), but if non-viscous inclusions are embedded in a viscous matrix, a permanent creep appears. The consolidation function is proposed to model these phenomena in a simplify way at the macroscopic scale, the consolidation function C C I was initially proposed in an isotropic form in [START_REF] Sellier | Vers une modélisation simple et unifiée du fluage propre, du retrait et du fluage en dessiccation du béton[END_REF] and improved in [START_REF] Sellier | Modélisation probabiliste pour un chargement THM, Prise en compte des effets d'échelle aléatoires induits par le retrait différentiel pâte granulat[END_REF]. The current version uses an an-isotropic 

Characteristic time X 2 k ref X 2
C C I = 1 k exp   1 k ε M I ε E II +   (1.4)
The positive part () + means the consolidation coefficient cannot be lesser than 1/k M . ε E II is the elastic strain in direction I, k M is the creep coefficient for the current temperature and loading :

k = k ref C T C H C M (1.5)
with k ref the creep coefficient defined as the ratio a characteristic strain of creep and a reference elastic strain corresponding to a standard loading. 

k ref = ε M ref ε E ref (1.

Water Effect on basic creep

Some solid cohesion forces are sensitive to the water saturation degree as explained in 1.2. In the model a linear dependence is used :

C H = S r (1.7)
With S r = φ w /φ the water saturation rate of porosity (φ w the water content and φ the porosity).

Temperature effects on basic creep

Temperature has two effects on basic creep; on one hand it modifies intrinsic viscosity of viscous phases embedding water, due to the dependence of water viscosity to temperature, and on the other hand provokes differential dilation between phases, this last can increase creep potential releasing viscous phases, an cause thermal damage.

C T = C T w C T p (1.8)
The effect of temperature on water viscosity is taken equal to the water viscosity dependence to temperature, it is an Arrhenius law independent of material composition. In (1.9) E a w ≈ 17000J/mol the activation energy of water viscosity T ref the reference temperature for which the characteristic time τ M ref is measured, and R = 8.31J/mol/K the gaz constant.

C T w = exp - E a w R 1 T - 1 T ref (1.9) C T p =        exp - E a p R 1 T - 1 T thr if T > T thr 1 if T T thr (1.10)
C T p function parameters depend on material composition through two fitting parameters : E a p ≈ 25000J/mol which is is a fitting constant and T thr ≈ 45 • C the threshold temperature from which thermal damage appears and modifies the creep potential [START_REF] Ladaoui | Analysis of interactions between damage and basic creep of HPC and HPFRC heated between 20 and 80 ÂřC[END_REF].

Mechanical loading effect on basic creep

The Mechanical loading coefficient C M considers the possible non linear dependence of creep potential on mechanical loading level. So, C C starts from 1 for unloading material and diverges if loading level reaches a critical value provoking tertiary creep. As it is assumed tertiary creep occurs only in case of deviatoric loading, C C depends only on the loading level through an equivalent shear stress τ DP :

C M = τ DP cr τ DP cr -τ DP (1.11)
A Drucker Prager formulation [START_REF] Drucker | Soil mechanics and plastic analysis for limit design[END_REF] is chosen for τ DP to consider benefits of triaxial confinement to reduce deviatoric creep. In fact τ DP is a function of two first stress tensor invariants.

(1.12), and τ DP cr the Drucker Prager critical stress leading to tertiary creep.

τ DP = σd : σd 2 + δ Tr (σ) 3 (1.12)
δ is the confinement effect coefficient which takes into account benefits of hydro-static pressure on shear strength. For some material it depends on water saturation rate, but this option is not implemented in the current version. The critical stress can be linked to the corresponding uniaxial critical stress intensity σ cr , the relation implies the confinement coefficient δ and ans assume the uniaxial critical stress is a compression. 

τ DP cr = σcr √ 3 1 - δ √ 3 (1.13)
In the model σcr is computed from a non linear amplification coefficient χ M , supplied by the user, and corresponding to the non-linearity of creep under an applied compression stress of 66%R c . With this definition the link between χ M and σcr is :

σcr = 2 3 χ M χ M -1 Rc (1.14)
The evolution of basic specific creep non linear amplification function is illustrated in figure 1.3.

Reversible creep

Constitutive relations

Reversible creep is modelled thanks to Kelvin module, in which stress is replaced by a a reduced elastic strain corresponding to the final strain of Kelvin module.

∂ε K ij ∂t = 1 τ K ε E ij ψ K -ε K ij (1.15)
Reversible creep, like permanent creep depends on temperature and water content. The same coefficients, C T w (equation 1.9) and C W (equation 1.7), than for permanent creep are used. 

τ K = τ K ref C W C T w (1.16)

Shrinkage and drying creep

Water has complex effects in porous media. It can react with solid skeleton, be adsorbed on porous walls, and exerts capillary forces on solid skeleton. In some materials, such as clay or concrete, water molecules are present in nanoscopic material inter-layers causing attractive or repulsive forces according to their environmental conditions (mechanical loading, temperature...). These effects have several macroscopic consequences. Among other, delayed strains depend on the thermo-mechanical state of water. To model the most important visible consequences of water solid interactions it is convenient resorting to the capillary pressure theory in the context of poro-mechanics (Biot theory extended to non saturated media by Coussy).

Water capillary pressure

The capillary pressure can be modeled using a two parameters water retention curve equation called Van-Genuchten model. This equation provides the capillary pressure (P c ) as a function of saturation rate (S r ). If gas pressure is neglected relatively to water pressure (P w ), water pressure can be directly expressed as a function of water saturation rate (1.17) as illustrated in figure 1.4 page 18.

P w = M sh   1 -S -1 mvg r   (1-mvg)
(1.17)

The water retention curve given by (1.17) is modified by temperature. At high temperature, for a given relative humidity, the saturation rate Sr decreases as observed in [START_REF] Ranaivomanana | Transferts dans les milieux poreux réactifs non saturés : application à la cicatrisation de fissure dans les matériaux cimentaires par carbonatation[END_REF].The dependence to the temperature is modelled changing the Van Genuchten equation parameter's M sh . (1.18). 

M sh = M ref sh exp - T -T ref T vg k -T ref (1.18)

Interactions between water and solid

Shrinkage is induced by solid-water interactions. Tension forces at interfaces between liquid water and gas acts on solid skeleton to contract it, but the efficiency how the pressure acts depends on the stress state σ applied on material. In fact as explained in [START_REF] Sellier | Vers une modélisation simple et unifiée du fluage propre, du retrait et du fluage en dessiccation du béton[END_REF][START_REF] Sellier | Modélisation probabiliste pour un chargement THM, Prise en compte des effets d'échelle aléatoires induits par le retrait différentiel pâte granulat[END_REF], solid skeleton can be damaged by differential shrinkage between solid grains more or less sensitive to water content variation (specially aggregates and paste in concrete). If this damage occurs, it limits the capillary pressure transmission from paste to other phases and the macroscopic effect of paste shrinkage is reduced. On the contrary, if a compression stress is applied in a direction, damage induced by differential shrinkage between paste and aggregate is avoided and capillary pressure are better transmitted. To consider this non linear interaction between solid skeleton and water effects during drying or humidification, the cracking induced by the cpaillary forces is modeled as illustrated in the global rheologic scheme 1.In tension or weak compression the matrix cracks and the caipllary effect is not integrally transmitted at upper scales while under high compression, the pressure effect is balanced by the compression and the abscence of cracking leads to a better transmission of capillary forces from micro structures to macro-scale [START_REF] Sellier | Nonlinear basic creep and drying creep modelling[END_REF].

Transient thermal creep

Transient thermal creep is observed only if material is loaded in compression just before or during heating [START_REF] Zp Bazant | Temperature effect on concrete creep modeled by microprestress-solidification theory[END_REF]. According to Cagnon et al. [START_REF] Cagnon | Drying creep in cyclic humidity conditions[END_REF], it depends also on the consolidation state of material, and it is proportional to the heating rate. Its modeling is under clarification in the PhD of F.Manzoni (to be published sept 2019).

Chapter 2

Plastic strains

Several plastic criteria are used in the model, each of them manages the evolution of an inelastic strain. Most of these criteria are written in terms of total undamaged stresses(2.1), itself obtained by time integration of total stresses increments (2.2).

σij = t 0 dσ ij (2.1)
The total undamaged stress increment depends on effective stress increment dσ ij which is relative to the solid skeleton behavior, and d (b g p g + b w p w ) relative to the porous pressures, d (b g p g ) for the gel pressure and d (b w p w ) for the hydric effects.

dσ ij = dσ ij -δ ij d (b g p g + b w p w ) (2.2) 
In (2.2), σ ij is the effective stress in the undamaged part of material matrix, directly linked to the elastic strain thank to the material stiffness S ijkl :

dσ ij = S ijkl : dε E kl (2.3)
In (2.1) δ ij is the Kronecker symbol used to consider internal pressure effects are equivalent to isotropic stresses. b g and p g are respectively the biot coefficent and pressure associted to ISR. b w and p w are the Biot coefficent and pressure for hydric effects. In tension three orthogonal Rankine criteria, sometimes called principal stress criteria as in [START_REF] De | Gradient plasticity in numerical simulation of concrete cracking[END_REF], are used to limit the undamaged total stress(2.1) to Rt . When needed,the criteria have to be able to rotate to consider non radial loading pass. Plastic strains in tension are used to represent crack opening, but if a sufficient compression stress if applied after a damage in tension, cracks can re-closed. On purpose, and as suggested by Jefferson [START_REF] Jefferson | Craft-a plastic-damage-contact model for concrete. I. Model theory and thermodynamic considerations[END_REF], re-closure plastic criteria can be used to model re-closure. In the present model three principal stress criteria are also used to manage independently the re-closure of the three main cracks generated in tension. In shear and compression a Drucker Prager [START_REF] Drucker | Soil mechanics and plastic analysis for limit design[END_REF] criterion is used, it is implemented in a non standard way (non associated flow) to consider possible material dilatancy. If material porosity is subjected to a pore pressure exceeding the solid skeleton tensile strength, inelastic strains appears, they are managed by three other plastic criteria written in terms of principal stresses in solid skeleton. Therefore, the model considers ten plastic criteria:

• Three for cracking in direct tension (Rankine criteria i.e Principal positive stresses) or for macro-crack re-closure (Principal negatives stresses)

• Three for solid skeleton cracking under pore over pressure induced by alkali reaction (AAR)

• Three for solid skeleton cracking under pore over pressure induced by delayed ettringite (DEF)

• Three for solid skeleton cracking under capillary pressure of free water (with possibility of micro crack reclosing)

• One for shear cracking (Drucker Prager with non associated flow), this is this last criterion which considers implicitly the failure in compression.

These 13 plastic criteria manage 5 plastic strains tensors :

• One for plastic strain in tension, managed by the first plastic criteria

• One for inelastic strain induced by AAR

• One for inelastic strain induced by DEF

• One for inelastic strain induced by the Water

• One for shear and compression

The specificity of the model consists in its ability to manage together the two types of creep strains (reversible and permanent) and the plastic criteria.

Plastic criteria

The Rankine criteria f t , re-closure criteria f r , and Over pressure criteria f g are defined in the principal base of undamaged stresses tensor {σ I , σII , σIII }. Therefore, the orthotropic tensile criteria can be expressed as follows :

f t I = σI -Rt I with I ∈ [I, II, II] (2.4) 
Rt I the effective tensile strength in a principal direction of stress. If a tensile plastic strain occurs, and if an unloading occurs later, the following re-closure criteria can be reached, they lead to a reduction of tensile plastic strains :

f r I =    (-σ I ) -Rr I with I ∈ [I, II, II] if ε pl,t I > 0 0 if ε pl,t I 0 (2.5)
With Rr I the stress needed to re-close a tensile crack, and ε pl,t I the plastic strain induced by Rankine criteria in tension (2.4). In criteria (2.4) or (2.5), the stress σeq I involved is associated to external loading, so as considered in the section dedicated to damage, the plastic strain associated to Rankine and Re-closure criteria correspond to localized cracks, but diffuses cracks can also occur in case of over pressure induced by AAR, DEF or WATER in material porosity. This possibility is considered through the over-pressure criteria which are obtained replacing σI by σeq I in (2.6):

f g I = C g p g + min(σ I , 0) σeq I -Rt I with I ∈ [I, II, II] (2.6)
With p g the pressure, and C g the stress concentration factor associated to this pressure. Thank to this coefficient C g , users have the possibility to control the ability for pressure to create cracking and plastic strains. In fact, if C g = 0 and b g = 0 the gel acts only through the linear poro-mechanical effect, while, on the contrary, if b g = 0 and C g = 0, the gel creates cracking and plastic strains without poro-mechanical effects. Of course all other intermediate cases can be envisioned, provided that b g 1. From a practical point of view, the plastic swelling associated to these cracks becomes anisotropic in presence of anisotropic compressive loading. Another cause of diffuse cracking leading to plastic strain is the propagation of micro-cracks induced by shear stresses. This cracking phenomenon is sensible to hydrostatic pressure which improves the shear strength. To model this last cracking possibility a Drucker Prager criterion is used.

f DP =   σd ij : σd ij 2 + δ Tr (σ ii ) 3   -Rc 1 √ 3 - δ 3 (2.7)
Rc the compressive strength, δ the Drucker Prager confinement coefficient, σd the diviatoric components of stress tensor,Tr (σ) its trace. To manage interaction between Drucker Prager and Rankine criteria the following conditions are added:

• First, the initial threshold of compression hardening ( Rc 0 ) is chosen such as the tri-tension state reaches earlier the Rankine criteria than the Drucker Prager criterion :

Rc 0 Rt 3δ √ 3 -δ (2.8)
• Secondly, a uniaxial tension in any main direction must reach the Rankine criterion before the Drucker Prager one.

Rc 

0 Rt √ 3 + δ √ 3 -δ (2.

Plastic flow 2.2.1 Consistence condition

Anelastic strains result from a Kuhn Tucker problem with the objective (2.10).

f i 0 ∀i ∈ [1...N ] (2.10)
In (2.10) i = 1 → N stands for each criterion (N ≤ 13)). As f i (σ) 0 are convex domains, as illustrated in figure 2.1 in the principal stress base, it is possible to find Lagrange multiplicators λ i satisfying the consistence conditions (2.11). With N the number of criteria activated by a total strain increment starting from a previous admissible stress state, and computed assuming none plastic flow during the first elasto-plastic tentative (analogous to the elastic predictor step in elasto-plastivity). Solving (2.11) consists to find Lagrange multiplicator increments dλ j . The algorithm used is based on a return mapping one [START_REF] Ortiz | A constitutive therory for the inelastic behvior of concrete[END_REF]. As some criteria f j use directly a pressure (P ) in their expression (2.6), the general form for the variation of f j is :

∀i ∈ [1..N ] / f i > 0 → f i + N j=1 dλ j ∂f i ∂λ j = 0 (2.11)
∂f i ∂λ j = ∂f i ∂ σkl ∂ σkl ∂λ j + g ∂f i ∂p g ∂p g ∂λ j + ∂f i ∂ Ri ∂ Ri ∂λ j (2.12) with g ∈ [AAR, DEF, W ater].

Plastic strain increment direction

For each active criterion, the plastic strain increment is assumed to derive from a convex yield function F i such as :

dε pl,j mn = dλ j ∂F j σmn (2.13)
For Rankine criteria (tension or reclosure for external loading or its combination with stress induced by a pressure in the porosity), the plasticity is associated:

F i = f i if i 12 (2.14)
For the shear criterion (Drucker Prager), a non associated Yield function is used to control the dilatancy:

F DP = σd ij : σd ij 2 + β Tr (σ ii ) 3 (2.15)
With β the dilatancy coefficient ( β = 0 induces a plastic flow without dilatancy).

Plasticity and Creep Coupling

If creep is considered, the effective stresses and the pressures depend also on the Kelvin and Maxwell strains, so these strains evolve during the return mapping procedure, and consequently the criteria function evolution depend also on their increments. The dependence of plastic criteria on creep strains is given by (2.16).

         ∂f i ∂ε K mn = ∂f i ∂ σ kl ∂ σ kl ∂ε K mn + ∂f i ∂p g ∂p g ∂ε K mn ∂f i ∂ε M mn = ∂f i ∂ σ kl ∂ σ kl ∂ε M mn + ∂f i ∂p g ∂p g ∂ε M mn (2.16)
The dependence can be expressed using the evolution of effective stress versus elastic strain (2.3), in which, during the return mapping at constant total strain, the elastic strain increment can be replaced by the sum of inelastic strains increments:

dε E mn = -   j dε pl,j mn + dε K mn + dε M mn   (2.17)
The effective stresses variations are deduced using the stiffness matrix components S klmn :

         ∂ σ kl ∂λ j = -S klmn ∂ε pl,j mn ∂λ j = -S klmn ∂F j ∂ σmn ∂ σ kl ∂ε K mn = ∂ σ kl ∂ε M mn = -S klmn (2.18)
As anelastic strains affect also the pressures though the term (b g p g ), the total stress variation induced by a plastic strain increment becomes:

                   ∂ σkl ∂λ j = -S klmn + δ kl δ mn ∂b g p g ∂ε pl,j mn ∂F j ∂σ mn ∂ σkl ∂ε K mn = -S klmn + δ kl δ mn ∂b g p g ∂ε K mn ∂ σkl ∂ε M mn = -S klmn + δ kl δ mn ∂b g p g ∂ε M mn (2.19)
The Kronecker symbol (δ mn = 1 if (m = n)) is used to consider that the pressure affects only normal stresses. Coupling between creep strains and plastic strains depends on the numerical method chosen to solve the creep problem. If the general method used for temporal integration is a semi-implicit scheme (θ method for instance), the elastic strain involved in the creep increment assessment is a mix between its values at beginning and the end of the time step:

           dε K mn = dt τ K ε E mn ψ K -ε K mn t (1 -θ) + θ ε E mn ψ K -ε K mn t+dt dε M mn = dt τ M mn ε M mn t (1 -θ) + θ dt τ M mn ε M mn t+dt (2.20)
As the return mapping is applied after visco-elastic prediction, only the variation of ε E mn at the end of the step time is considered. The equation's set to be solved for the return mapping is deduced (2.21). It allows to assess simultaneously the creep strain corrections dε K mn and dε M mn , and the plastic multiplicators dλ j :

                   dε K mn 1 + θdt τ K 1 + 1 ψ K + θdt ψ K τ K dε M mn + dλ j ∂F j ∂σ mn = 0 dε M mn 1 + θdt τ M mn + θdt τ M mn dε K mn + dλ j ∂F j ∂σ mn = 0 dε K mn ∂f i ∂ε K mn + dε M mn ∂f i ∂ε K mn + dλ j ∂f i ∂ε pl,j mn ∂F j ∂σ mn + f i = 0 (2.21)
Once the plastic multiplicators are computed the plastic strain increment can be assessed using (2.13). The creep strains have also to be actualized to consider their variations during the return on yield surfaces.

Effective strength hardening laws

Plasticity is used to limit effective stress σeq . During damage process if a residual undamaged material sub-zone subsists, it is because its effective strength is greater then the material already damaged. So, a positive or null hardening is chosen to model each effective strength evolution versus plastic strain. Note this choice is not in contradiction with a softening behaviour of concrete, it means simply that softening is not due to the plasticity but to the damage induced by the plasticity. The coupling between plasticity and damage will be treated in the next section. ∂ Rt

I ∂λ Rt I = H t ≥ 0 (2.22)
In compression a non linear hardening function H c (ε pl,c,eq ) is defined such as the global uni-axial stress-strain response remains parabolic until the compression strength Rc is reached.

∂ Rc ∂λ Rc = H c (ε pl,c,eq ) ≥ 0 (2.23)
ε pl,c,eq is the equivalent plastic strain defined as follows :

ε pl,c,eq = 2 3 t 0 dε pl,c mndε pl,c mn (2.24)
and the hardening function is build such as the uni-axial pre-pick behavior law is:

σ = Rc 0 + Rc -Rc 0 1 -1 - ε -ε 0 ε c -ε 0 2 (2.25)
After the pick, a quasi null hardening is used as illustrated in 2.2. For over pressure criteria, a constant and positive hardening H g is used to avoid unstable bifurcation of micro-cracks induced by over pressures. In fact, in case of isotropic loading, if none hardening would be used, the crack propagation would occur arbitrarily in a given main direction and would continue in this one only, leading to an arbitrary an-isotropic swelling. If used together with the damage theory, this effective stress is affected by an integrity variable R r = 1 -D r which considers the roughness density decrease versus crack opening. As this integrity variable is not yet applied in 2.2, the crack reclosure stress R f appears to be constant (bacause in this example H = 0), in fact it is the effective reclosure crack, notyet the apparent one.

∂ Rg I ∂λ Rg I = H g ≥ 0 (2.

Numerical implementation of creep and multi-criteria coupling 2.4.1 Treatment of interaction between criteria

For some criteria, like the ones concerning diffuse cracking, the external stresses used in the criteria to balance the pressure effects can be overestimated before all the other criteria (Drucker Prager or Rankine) are verified, that is the reason why the positive stresses used in these criteria are limited to positive or null conventional values. The current values used are zero, so that only the negative part of un-damaged stresses are considered to mitigate swelling due to the pressure of AAR or DEF.

Hierarchical resolution of multi-criteria plasticity

Solving multi-criteria plasticity can present some difficulties when several Rankine criteria and Drucker Prager one are active simultaneously. In fact a classical radial return mapping algorithm can lead to an overestimation of some plastic strains to the detriment of other ones.

For instance when a great strain increment leads to exceed simultaneously the Rankine and the Drucker Prager criteria several paths allow to return onto the yield surfaces. That is the reason why a hierarchical method is used to consider progressively the coupling between the different plastic flows: First the Rankine criteria are solved for the diffuse cracking alone, then the criteria for external loading are verified.During this second stage of solving, if a localized crack re-closure occurs, the verification of the corresponding criterion is proprietary.

Chapter 3 Damages

As suggested by Kachanov [START_REF] Kachanov | Introduction tp continuum damage mechanic[END_REF] or Lemaitre and Chaboche [START_REF] Lemaitre | Mécanique des matériaux solides[END_REF], damage origin takes place in the creation of cavities in the material, which come along with plastic phenomena. For geomaterial such as rocks and concrete, the damage theory is usually used until failure. Therefore, it includes not only the stage of voids nucleation, as in the original theory of Kachanov, but also the void coalescence until macro-crack occurrence. Consequently damage models such as Mazars [START_REF] Mazars | A description of micro-and macroscale damage of concrete structures[END_REF], Laborderie [START_REF] Laborderie | Approche mésoscopique du comportement du béton[END_REF], Pijaudier-Cabot [START_REF] Pijaudier | Nonlocal damage theory[END_REF] [10] base their criteria on strain extensions which is supposed representative of crack opening. In the present model, damage is also based on extension phenomena, but the link with the void nuclation is assumed driven only by anelastic strains. In addition to creep and thermal damage, one damage is associated to each positive plastic strain type. Consequently several damage families coexist in the model:

• As tensile damage becomes strongly anisotropic during localization process, in the post peak phase of the behaviour law, two types of tensile damages are differentiated in the model, an isotropic one before tensile peak (D t 0 in (3.1)), based on effective stress evolution, and an orthotropic one after the peak. Post peak localized damage in direct tension (D t ijkl in (3.1)) is associated to Rankine plastic strains, so it is computed in each main principal direction of plastic strain in tension,it is an orthotropic damage able to rotate according to the plastic strain tensor evolution [START_REF] Sellier | Orthotropic Damage Coupled with Localised Crack Reclosure Processing[END_REF][START_REF] Sellier | Orthotropic Damage Coupled with Localized Crack Reclosure Processing[END_REF].

• Damages induced by AAR, DEF and capillary pressure, also computed in each principal direction of plastic strain tensor induced by over pressure of AAR, and able to rotate with it [41][9]. As shown in [START_REF] Capra | Orthotropic modelling of alkali-aggregate reaction in concrete structures : numerical simulations[END_REF], effects of AAR cracks are different on tensile and compressive stresses, due to the fact that compressive stresses re-close some AAR micro-cracks. So, this damage is split in two parts, D tg ijkl and D cg ijkl in (3.1) (with g ∈ [AAR, DEF, W AT ER], affecting respectively principal stresses of tension and compression. The general form, combining the 10 damages, is given by equation (3.1), where the integrity variables R i are defined as complementary of damage variables D i .

σ ij = 1 -D Cr R Cr (Creep) 1 -D T h R T h (T hermal) 1 -D s R s (Shear) Isotropic Damages   1 -D t 0 R t 0 (P re-peak) 1 -D t ijkl R t ijkl (P ost-peak) g 1 -D tg klmn R tg klmn (g /T ension)
T ensile Damages

σ+ mn + (1 -D r ) ijkl R r ijkl (Cracks Reclosure) g (1 -D cg ) klmn R cg klmn (g /Compression) Compressive Damages σ- mn   (3.1) 
Due to softening, tensile damage and compressive damage lead to strains localization [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF]. The objectivity of FEM solution towards mesh is processed thank to a Hillerborgh method [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF].

To avoid dependency of Hillerborgh method toward finite element shape, the model uses an anisotropic description of element size based on the node coordinates [START_REF] Morenon | Impact of stresses and restraints on ASR expansion[END_REF].

Damages affecting tensile stresses

As explained above, two types of damage are envisioned:

• a pre-peak isotropic damage can occur if tensile peak strain is greater than the elastic strain at the peak R t /E

• and in any case, an orthotropic damage occurs during the post peak phase corresponding to the localization of tensile cracks.

The two types of damage are schemed in Figure 3.1.

Pre-peak tensile damage

Isotropic pre-peak damage depends on the principal effective stresses:

D t 0 = 1 -exp - 1 m σI Rt m (3.2)
With m a parameter computed such that the behavior law passes by σ I = R t when ε I = ε peak,t . With these conditions the tensile damage value at the peak of stress-strain relation in tension is:

D t,peak 0 = 1 -exp - 1 m (3.3)
This last relation implies the following relationships between parameters and tensile damage at the peak.

           Rt = R t 1 -D t,peak 0 m = - 1 ln 1 -D t,peak 0 (3.4)
D t 0 acts isotropically on the effective stresses tensor, as expressed in (3.1).

Post-peak tensile damages

Localized tensile damages are computed in the principal directions of localized cracks. The orthotropic approximation of localized cracks consists in an idealization of the crack pattern in each element with three orthogonal cracks in three dimensions, (or two orthogonal cracks in two dimensions, as schemed in Figure 3.1). Localized damages depend directly on the maximal crack's openings w pl,t,max I for I ∈ (I, II, III).

D t I = 1 - w k,t I w k,t I + w pl,t, max I 2 (3.5) 
with w pl,t,max I the maximal value of the crack opening w pl,t I , w k,t I a characteristic crack opening computed such as the dissipated energy during localized damage (rising from 0 to 1) is equal to the fracture energy in tension Gf t .

Gf t ≈ l I (R t ) 2 2E(1 -D t 0 ) + ∞ 0 (1 -D t 0 )(1 -D t I )σ + I dε pl t ≈ l I (R t ) 2 2E(1 -D t 0 ) + R t I w k,t I (3.6)
With R t I the tensile strength and l I the finite element length in the principal direction of cracking I. Different methods can be used to assess l I . If the model is used with a reinforcement ratio non null (cf. chapter 6.3.2), the fracture energy effectively dissipated in each direction depends on the cracks number in the element (n c I given by equation (6.35)). The fracture energy is then anisotropic and given by equation (6.30). Among others, a method based on the Jacobian matrix of geometric transformation from reference to real base was clarified during the Stablon's PhD work and is described in [START_REF] Stablon | Influence of building process on stiffness: numerical analysis of a masonry vault including mortar joint shrinkage and crack re-closure effect[END_REF]. A simpler method based on the node coordinates of the finite element is given in [START_REF] Morenon | Impact of stresses and restraints on ASR expansion[END_REF], it consists to project the node coordinates of the finite element in the principal directions I and than to assume l I ≈ (max(p) -min(p)), with (p) the node coordinate projection on principal direction number I. The value of w k,t I can be computed for a given finite element with a length l I using (3.6). This calculus remains possible while the size of the finite element verifies the condition:

l I < 2E(1 -D t 0 )Gf t (R t ) 2 (3.7)
If the mesh does not verify condition (3.7), the model adopts a fracture energy Gf t * I sufficient to avoid a snap back of the behaviour law, so an overestimation of the fracture energy is provoked imposing a softening modulus H at the beginning of localized damage such as:

0 > H = ∂σ ∂ > - E 0 n (3.8)
With n ≈ 6 an arbitrary factor allowing the control of softening branch whatever the finite element size. The consequence of this overestimation is an over-dissipation of fracture energy, but only if the finite element damages. Thanks to this possibility, large finite elements can be used in zones where damage remains small enough to avoid localization. Only the zones where the post peak damage is active have to verify (3.7). It is possible to visualize the zones requiring a finest mesh thanks to an error variable Err GF which is computed and stored in an internal variable Err GF :

Err GF = max I D t I Gf t * I -Gf t Gf t (3.9)
This variable could be used in an automatic meash refinement method for instance. Damage D t I acts on Young modulus, but affects also the Poisson's coefficients as follows [START_REF] Sellier | Orthotropic Damage Coupled with Localised Crack Reclosure Processing[END_REF]:

         ε E II = C IIII 1 -D t I σ + II + C IIJJ σ + JJ + C IIKK σ + KK ε E IJ = C IJIJ 1 -max(D t I , D t J ) σ + IJ ≡ ε E IJ = C D IJKL σ + KL (3.10)
Relationships (3.10) are defined in the principal directions (I, J, K) of tension plastic strains. On another hand the principle of equivalence in strains proposed in [START_REF] Lemaitre | Mécanique des matériaux solides[END_REF] allows to express the effective stresses as a function of elastic strains:

ε E IJ = C IJKL σKL (3.11)
Relations (3.11) and (3.10) allow to compute the integrity tensor components R t IJKL used in (3.1).

(

-D t ) IJKL = (C D ) -1 IJM N C M N KL (3.12) 1 
Thank to relation (3.10), the Poisson ratio reductions and Young modules reductions are combined to simulate large crack opening without lateral contraction.

Tensile crack opening

The widths (w pl I ) of localized tensile cracks are computed assuming the tensile plastic strains correspond, in fact, to the permanent crack's openings. In case of radial loading (without change of principal direction), the relationship between a main plastic strain ε pl,t I and the corresponding crack's opening is obvious.

w pl I ≈ l I ε pl,t I (3.13)
This approximation is valid as soon as ε pl,t I other strains. Relation (3.13) is no-more usable in case of non-radial loading if the finite element in which the crack appears is not isotropic in terms of size (l I = l II ), because the rotation of the principal directions need using different finite element sizes. In this case, it is proposed to compute a crack opening matrix containing the symmetric part of the crack-opening's increments.

∂ wpl ∂t = ∂w pl I ∂t ( - → e I ⊗ - → e I ) (3.14)
Each crack opening increment being computed from the eigenvalues of increment of plastic strain tensor.

∂w pl I ∂t = l I ∂ε pl,t ∂t I (3.15)
The maximal crack opening used in Equation (3.5) corresponds to the maximal values of w pl . The actualization process adopted, to compute these maximums, consists in an incremental updating of the normal displacements in the base ( - 

→ e 1 - → e 2 - → e 

Tensile damages due to over-pressures in the porosity

Internal Swelling reaction and capillary pressure damages are consequences of plastic strains induces by porous over-pressures (ε pl,g ij g ∈ [AAR, DEF, W ater]). The relationship between plastic strains and tensile damages is defined in principal direction of εpl,g .

D t,g I = ε pl,g I ε pl,g I + ε k,g (3.17) 
According to [START_REF] Capra | Orthotropic modelling of alkali-aggregate reaction in concrete structures : numerical simulations[END_REF], the characteristic strain ε k,g ≈ 0.3% for AAR and is quasi independent of material. These tensile damages are computed in the principal direction of εpl,g .

Damages affecting compressive stresses

Re-closure damages

Re-closure damages allow to consider the decrease of contacts number between tensile crack edges, so they depend on the crack opening through the principal tensile plastic strains ε pl,t I .

D r I = w pl,t I w pl,t I + 2w k,r I w pl,t I + w k,r I 2 (3.18)
With w k,r I a characteristic crack opening computed to verify that the energy Gf r is consumed during re-closing process.

Gf r = l I 0 w pl,t (1 -D r I )σ - I dw pl,t I (3.19)
The parameter supplied by the user is the re-closing energy Gf r . But, this energy can be re-evaluated by the software to insure a stiffness continuity at the end of re-closure: An example of the behaviour law obtained combining the plastic and the damage model is given in Figure 3.2.

Gf r Gf r,min with Gf r,min / l I   ∂ σ- I (1 -D r I ) ∂w pl,t I   w pl,t I =0 E (3.

Compressive damages due to over-pressures in the porosity

Due to the possibility for cracks to re-close during compressive stresses application, the material is less sensitive to damage in compression than it is in tension. More, it is assumed only cracks perpendicular to the applied direction of compressive stresses play a role, so the damage to apply in compression is deduced from damage in tension as follows:

D c,g I = 1 -1 -D t,g II 1 -D t,g III α g (3.21)
g compressive damages in the two other principal directions are obtained by cyclic permutation of subscript (I, II, III). For AAR α g ≈ 0.15 is a coupling coefficient quasi independent of material.g compressive damage is a diagonal matrix in the principal direction of εpl,g .

Isotropic damages

Shear damage

Shear damage associated to Drucker Prager criterion is assumed driven by plastic dilatancy Tr( εpl,s ). This dilatancy leads to an isotropic damage only if it is greater then a dilatancy threshold (ε th,s = Tr εpl,s peak ) corresponding to the peak in uni-axial compression test:

D s =    Tr( εpl,s )-ε th,s Tr( εpl,s )-ε th,s +ε k,s if εpl,s ) > ε th,s 0 if εpl,s ) ε th,s (3.22)
With ε k,s a characteristic strain to control the damage evolution rate versus dilatancy.

Thermal Damage

Thermal activation function C T p (1.10) of creep potential amplifies creep for temperature above T thr . The underlying phenomenon is attributed to the contrast of dilation coefficients between different phases which leads to release creep sites in temperature. It is possible this phenomenon comes along with thermal damage, specially if creep site release is due to micro-cracking. So thermal damage D T h and C T p are assumed to be linked as follows [START_REF] Ladaoui | Etude expérimentale du comportement Thermo-HydroMécanique à long terme des BHP destinés aux ouvrages de stockage des déchets radioactifs[END_REF]:

D T h = 1 - 1 A T h C T p -1 + 1 (3.23)
A T h is a fitting constant to control the damage level at given temperature. In the model, A T h is computed automatically from the measured thermal damage at 80 • C in saturated condition ( for example in [START_REF] Ladaoui | Analysis of interactions between damage and basic creep of HPC and HPFRC heated between 20 and 80 ÂřC[END_REF], the thermal damage D T h (80 • C) ≈ 0.1) and A T h can be deduced as follows [START_REF] Chhun | Modélisation du comportement thermo-hydro -chemo-mécanique de s enceinte s de confinement nucléaire en béton armé -précontraint[END_REF]:

A T h = 1 C T p (80 • C) -1 S r D T h (80 • C) 1 -S r D T h (80 • C) (3.24)
S r is the saturation rate which limits the damage due to temperature if the material is dry.

Creep Damage

Creep damage D Cr allows to consider a coupling between creep strain and possible consequences in terms of macroscopic properties such as apparent stiffness or strength. As the final creep damage D Cr U is assumed to be linked to coefficient C M defined in (1.11). The current creep damage depends both on the consolidation variable C C I which reflect the current creep strain state and the final creep damage D Cr U :

D Cr = D cr U 1 - 1 max(C C I , C C II , C C III ) (3.25) 
With C C I a consolidation coefficient defined in (1.4).

D Cr U = D Cr max τ DP τ DP lim (3.26)
Where D Cr M ax is the maximal possible creep damage, linked to the compression strength under long term loading (R LT c ).

R LT c = (1 -D Cr max ) • R c (3.27)
In (3.26) τ DP is the equivalent Drucker Prager stress computed with total stress, and τ DP lim the limit Drucker Prager stress deduced from the compression strength like in (2.7).

Damage visualisation

In order to have a few scalar variables able to summarize the global damage state in tension or in compression, two scalar indicators are build. They are not used in the model, but they give to the user a global view of the material state. The first one summarises the main causes of tensile damages :

D t = 1 -1 -D t 0 1 -D T h 1 -D Cr 1 -max D t I , D t II , D t III g 1 -max D t,g I , D t,g II , D t,g III (3.28)
The second one combines the different levels of compressive damage :

D c = 1 -(1 -D s ) 1 -D T h 1 -D Cr g (1 -max( D c,g I , D c,g II , D c,g III )) (3.29)
Chapter 4

Chemistry and Mechanics Coupling

Hydration

The hydration degree ζ, represents the fraction of material able to support a stress. It ranges from zero for not solidified matrix until one for a complete solidification. Several material parameters are linked to the hydration thanks to the De Schutter evolution law [START_REF] Schutter | Towards a more fundamental non-linear basic creep model for early age concrete[END_REF] :

X X ref = ζ -ζ th ζ ref -ζ th n X (4.1)
With ζ th the solidification threshold, ζ ref = 1 the reference hydration degree for which are given the material parameters, n X a non linearity exponent for material parameter X. X ref the value of X for ζ ref . The hydration acts also on internal variable as explained in [START_REF] Buffo-Lacarriere | Chemo-mechanical modelling requirements for the assessment of concrete structure service life[END_REF] fact, as internal variables of the model concern both the hydrated and un-hydrated parts, each of them is considered as the average value between hydrated and un-hydrated parts of the elementary volume of material, this leads to the following updating conditions:

∂V i ∂ζ = - V i ζ (4.2)
In(4.2) V i is an internal variable of the model. This updating condition is applicable to almost all the internal variables, except the chemical ones. The list of internal variables updated in case of evolution of the hydration degree are given in subroutine 'hydravar3d'.

Water content

The tensile strength depends on the water content through a linear law :

Rt = Rt sat -k w,Rt b w p w (4.3)
According to MOSAIC ANR research program [START_REF] Bucher | Effet de la microfissuration de séchage sur les propriétés mécaniques et de transfert des matériaux cimentaires[END_REF], k w,Rt ≈ 0.25 for concrete. Note, the formulation takes into account the decrease of positive effect of capillary pressure on Rt with the temperature rising, because, as explained by equation (1.18), the capillary pressure decreases with the temperature rise [START_REF] Chhun | Modélisation du comportement thermo-hydro -chemo-mécanique de s enceinte s de confinement nucléaire en béton armé -précontraint[END_REF].

Internal Swelling Reactions

Chemical advancement of Internal Swelling Reaction

Chemical advancement of the alkali aggregate reaction

The chemical advancement of AAR depends on temperature and humidity. The internal variable A aar gives the chemical advancement rate, starting from 0 for sound material until 1 when the alkali aggregates reactions are ended.

∂A aar ∂t = 1 τ aar ref C T,aar C W,aar (A aar,∞ -A aar ) (4.4)
• C T,aar the thermal activation coefficient modeled thank to the Arrhenius law:

C T,aar = exp - E aar R 1 T - 1 T ref (4.5)
With E aar ≈ 40000J/M ol the activation energy of chemical processes involved in the reaction, T ref the absolute reference temperature for which the characteristic time τ aar ref is fitted.

• C W,aar takes into account the reduction of kinetic when material is not water saturated:

C W,aar =        S r -S th,aar r 1 -S th,aar r if S r > S th,aar r 0 if S r S th,aar r (4.6)
S r the water saturation rate, S th,aar r the saturation rate threshold under which the reaction kinetic is null.

• A aar,∞ is the maximal advancement of the reaction, based on experimental works of Poyet et al [START_REF] Poyet | Influence of water on alkali-silica reaction: Experimental study and numerical simulations[END_REF] it assumes only the reactive site in contact with liquid water can react:

A aar,∞ = S r (4.7)
The amount of gel involved in the swelling processes depends both on the chemical advancement of the reaction A aar and on the gel production potential of material:

φ aar = φ aar,∞ .A aar (4.8)
With φ aar,∞ the gel production potential which is a characteristic of material.

Chemical advancement of Delayed Ettringite

The delayed ettringite is the consequence of a hot period during which the primary sulfoaluminate hydrates are dissolved, releasing sulphates and aluminates in the pore solution. These ions are then adsorbed or combined more or less definitively in the other hydrates. If the hot period is long enough, according to [START_REF] Salgues | DEF modelling based on thermodynamic equilibria and ionic transfers for structural analysis[END_REF] a part of the aluminate ions could combine with C-S-H to form hydro-garnet or with lime aggregate to form Carbo-Alumintes. As hydro-garnets and Carbo-Aluminates are stable in temperature [START_REF] Belay Zeleke Dilnesa | Synthesis and characterization of hydrogarnet Ca 3 (AlxFe1x)2(SiO4)y(OH)4(3-y)[END_REF], their combined aluminates are no more available for delayed ettringite. If the hot period is not long enough or the temperature too low, there is not enough time to convert aluminates in these stable forms, so they can recombine with sulphates when the temperature comebacks to a low level. This phenomenon explains the existence of a pessimum in terms of hot period duration. If the hot period is short only a few primary sulfo-aluminates are dissolved, if the hot period is very long, all the primary sulfo aluminates are dissolved, but aluminates can be combined in stable forms, so only intermediate hot period durations can lead to a maximum of delayed ettringite. Therefore, according to [START_REF] Sellier | Modélisation simplifiée de la réaction sulfatique interne[END_REF] the numerical implementation of an ettringite model can be based on two equations sets:

• A first one dedicated to the calculation of dissolution of primary sulfo-aluminates and to the assessment of aluminates bonding in stable froms.

• A second one aiming to model the precipitation of delayed sulfo-aluminates.

Dissolution of sulfoaluminates

As shown by Kchakech, Martin et al. in [START_REF] Kchakech | Etude de l ' influence de l ' échauffement subi par un béton sur le risque d ' expansions associées à la Réaction Sulfatique Interne[END_REF], the temperature above the sulfo-aluminates dissolves depends on the alkali concentration in the pore solution as follows :

T th,def [K] =        T k,def N a k N a -n if N a N a k T k,def if N a < N a k (4.9)
With N a k ≈ 0.28mol/l , n ≈ 0.18 and T k,def ≈ 80 • C. The dissolution rates of primary ettringite and monosulfoaluminates (E 1 and M 1 respectively) are assumed to be close and equal to thus of delayed ettringite (E 2 ), so that a single characteristic time can be used for all of them in a first order kinetic equation: τ Diss,ref is a kinetic constant characterizing the material transfer properties at the micro-scale where the dissolution processes take place, in [START_REF] Sellier | Modélisation simplifiée de la réaction sulfatique interne[END_REF] a value close to 3days is fitted on experimental results from [START_REF] Kchakech | Etude de l ' influence de l ' échauffement subi par un béton sur le risque d ' expansions associées à la Réaction Sulfatique Interne[END_REF] and [START_REF] Brunetaud | Effect of curing conditions and concrete mix design on the expansion generated by delayed ettringite formation[END_REF] ; C T,Diss considers the effect of temperature on the dissolution velocity as follows :

                 ∂E 1 ∂t = - E 1 τ Diss ∂M 1 ∂t = - M 1 τ Diss ∂E 2 ∂t = - E 2 τ Diss
C T,Diss = exp - E a,Diss R . 1 T - 1 T th,def -1 ≥ 0 (4.12)
With E a,Diss the activation energy for the dissolution processes (close to 70000J/mol according to [START_REF] Sellier | Modélisation simplifiée de la réaction sulfatique interne[END_REF]), R the gaz constant, T the absolute temperature and T th,def the threshold temperature given by (4.9). In (4.10) C N a,Diss considers the positive effect of alkali on the dissolution kinetic through the following expression :

C N a,Diss = N a N a k (4.13)
The aluminates released by the dissolution of sulfo-aluminates phases are noted Ã. As they are partially re-absorbed to form hydro-garnets stable in temperature, only a part of them are available to form delayed ettringite at long term during the cold periods. The amount of remaining aluminates is assessed as follows:

∂ Ã ∂t + Ã τ F ix = - ∂E 1 ∂t + ∂M 1 ∂t + ∂E 2 ∂t (4.14)
With τ F ix the characteristic time for the fixation of aluminates in hydro-garnets. This parameter depends on temperature according to coefficient C T,F ix , and on alkali content through C N a,F ix as follows:

τ F ix = τ F ix,ref C T,F ix C N a,F ix (4.15)
With τ F ix,ref a material constant. In [START_REF] Sellier | Modélisation simplifiée de la réaction sulfatique interne[END_REF] a value close to 3days is proposed, and C N a,F ix given by :

C N a,F ix = N a k N a m (4.16)
m ≈ 3 a fitting parameter. C T,F ix considers the effect of temperature:

C T,Diss = exp - E a,F ix R . 1 T - 1 T th,F ix -1 ≥ 0 (4.17)
In (4.17) E a,F ix ≈ 180000J/mol is the activation enerfy, and T th,F ix ≈ 70C the threshold temperature for the aluminate fixation.

The amount of sulphates released by the dissolution processes are noted S, and directly deduced from (4.10) as follows:

∂ S ∂t = -3 ∂E 1 ∂t + ∂E 2 ∂t - ∂M 1 ∂t (4.18)
Precipitation of sulfoaluminates If the condition required are satisfied (T < T th,def see. (4.9) ), the delayed ettringite can precipitate. The precipitation kinetic is assumed controlled by the sulfate supply:

∂E 2 ∂t = S τ P rec H max M 1 , Ã (4.19) 
H max M 1 , à is the Heaviside function which takes into account the presence of aluminium available for the DEF. The model gives the priority to the conversion of M 1 into secondary ettringite until M 1 is totally depleted. Next the consumption of à starts until the total depletion of à or S:

• While M 1 > 0 and if S > 0:

                 ∂M 1 ∂t = - ∂E 2 ∂t ∂ S ∂t = -2 ∂E 2 ∂t ∂ Ã ∂t = 0 (4.20)
• When M 1 = 0 and while à > 0 and S > 0:

                 ∂M 1 ∂t = 0 ∂ S ∂t = -3 ∂E 2 ∂t ∂ Ã ∂t = - ∂E 2 ∂t (4.21)
In (4.19), τ P rec is the characteristic time of the reactions. It depends on the temperature, the alkali content and the water content as follows:

τ P rec = τ P rec,ref C T,P rec .C N a,P rec .C W,P rec (4.22) τ P rec,ref is a material constant (a characteristic time of the reaction), C T,P rec considers the effect of the temperature on the precipitation rate as follows:

C T,P rec = C T,Diss (T ) C T,Diss (T ref,P rec ) exp - Ea prec R 1 T - 1 T ref,P rec (4.23)
Ea prec is the activation energy for the precipitation process, and T ref,P rec the reference temperature for the characteristic time of precipitation. C N a,P rec considers the limiting effect of alkali which, at high concentration is able to prevent the DEF. In fact in presence of Portlandite, the alkali control the amount of Calcium in solution and privilege the adsorption of sulphate in the cement matrix versus its availability for DEF:

C N a,def =        1 - N a) N a th,def m if N a < N a th,def 0 if N a N a th,def (4.24) 
In equation (4.24), N a th,def ≈ 0.92mol/l is a threshold value beyond which the DEF formation is stopped. The exponent m ≈ 3" considers the non linearity of this phenomenon. C W,P rec is computed according to the following equation which consider the better diffusion of ions in saturated porosity:

C W,P rec = exp - 1 -Sr 1 -Sr k (4.25)
With Sr k a material parameter which controls the decrease of precipitation rate according to the saturation rate Sr. Experimental program cariied out by AlShama et al. in [START_REF] Al | Etude du risque de développement d'une réaction sulfatique interne et de ses conséquences dans les bétons de structure des ouvrages nucléaires[END_REF] [START_REF] Al Shamaa | Coupling between mechanical and transfer properties and expansion due to DEF in a concrete of a nuclear power plant[END_REF] shows that DEF needs a very high humidity level corresponding to (0.9 < Sr k < 0.99). The volume of delayed products considered in the poromechanical model is deduced from the moles number of each type:

∂φ def ∂t = ∂E 2 ∂t V AF t + ∂M 1 ∂t V AF m (4.26)
With V AF t ≈ 715cm 3 /mol and V AF m ≈ 254cm 3 /mol the molar volume of ettringite and monosulfoaluminate, respectively.

Initial conditions

On one hand, the amount of aluminium and sulphates are not always known for an existing structure affected by the DEF, and on the other hand the damage state or the swelling of the structure can be known. So to facilitate the chemical data assessment, the form chosen to supply them consists to specify the Sulphate versus aluminium mole number ratio ρ and the maximal DEF volume creatable φ Def,M ax in optimal conditions.

ρ = SO 3 Al 2 O 3 (4.27)
ρ of a cement is generally ranged in [0.5 -1] Supplying this last parameter allows the user to use the poro-mechanical coupling to feet the DEF potential of the material independently of its hydration degree, and in accordance with the observed mechanical effects, without ignoring the Sulphate/Aluminium ratio which is the main parameter acting on the hot period pessimal duration. To pass from the couple ρ, φ Def,M ax to the couple

S c = SO 3 , equivalent A c = Al 2 O 3 .
The following assumptions are made:

• If ρ > 3 the aluminium mole number limits the DEF amount, and the chemical data are obtained as follows:

   A c = φ Def,M ax V AF t S c = ρA c (4.28)
• If ρ 3 the sulphate moles number limits the production of DEF:

   S c = 3 φ Def,M ax V AF t A c = S c ρ (4.29)
Once these amount assessed, the moles number of primary hydrates are deduced as follows, and used as initial conditions for the dissolutions equations (4.10) (4.14) (4.18).

• If S C > 3A c , the initial hydration products contain sulfoaluminates mainly in ettringite form:

             E 1 = A c M 1 = 0 S = S c -3E1 Ã = 0 (4.30)
• S C < A c , the initial hydration products contain sulfoaluminates mainly in monosulfoaluminate form:

             E 1 = 0 M 1 = S c S = 0 Ã = A c -M 1 (4.31)
• In the other intermediates cases, primary ettringite and monosulfoaluminates coexist:

             E 1 = S c -A c 2 M 1 = 3A c -S c 2 S = 0 Ã = 0 (4.32)
The other internal variable (E 2 ) is set to zero as initial condition, its evolution is controlled by (4.19) which acts also on S and à through equations (4.21). Users have also the possibility to impose the mole number of sulphates S c = S c imp , in this case the number of aluminates is computed directly according to ρ:

Ac = S c imp ρ (4.33)
If the imposed mole number of sulphates is not in accordance with the mole number of sulphates deduced from (4.29) then a compatibilty coefficent is automatically computed and affected to the volume of delayed ettringite:

C D ef f = S c S c imp (4.34)
As the imposed mole number of sulphates is assumed prevalent compared to the mole number deduced from (4.29), the coefficent C D ef f should allways be greater than 1, so if C D ef f < 1 a warning message is printed and the program stops.

Environmental conditions Temperature T , alkali content N a and saturation rate Sr must be supplied as data to the chemical evolution model. They can be computed before the chemomechanical or together, depending on the coupling level chosen by the user.

Pressure induced by Internal Swelling Reactions

The alkali reaction or the delayed ettringite lead to the production of new phases φ g . As the connected porosity volume is affected by the global volume change induced by the deformation, the gel pressure depends on the strain state :

p g = M g φ g -φ g 0 p g C g Rt + b g Tr ε -ε p,t + ε p,c + (1 -b g ) Tr(ε p,g ) (4.35)
Equation ( 4.35) has to verify the condition p g ≥ 0, with φ g the phase volume fraction amount assessed from the chemical advancement of the reactions, and computed for AAR gel production by equation (4.8) and for DEF production by equation (4.26):

φ g = φ aar or φ def (4.36)
In (4.35), b g is the Biot coefficient approximation supplied by a homogenization method:

b g ≈ 2φ g 1 + φ g (4.37)
and M g the Biot modulus linked to the Biot coefficient and compressibility moduli as follows:

1 M g = b g -φ g K s + φ g K g (4.38)
with K g the compressibility modulus of the new phase and K s the compressibility of the matrix defined as the material deprived of the volume occupied by the gel:

K s ≈ E 3(1 -2ν) 1 1 -b g (4.39)
with E the Young modulus of the material and ν its Poisson coefficient. In (4.35), φ g 0 is the available porosity connected to the reactive site where the new phase g is created. This volume of connected porosity is filled under a pressure p g = C g Rt, with C g the stress concentration factor defined in (2.6). If the pressure p g exceeds C g Rt the filled volume increases above φ g 0 ; In tri-axial confinement, the plastic criteria (2.6) cannot be activated and the plastic flow modelled by ε p,g does not occur, limiting the swelling to its elastic part, else the plastic criteria (2.6) can be activated and the plastic flow of ε p,g occurs, leading to a larger swellings due to microcracking. As the micro-cracks are assumed connected to the reactive site, their volume can be reached by the reactive product, modifying the pressure according to (4.35).

Chapter 5

Probabilistic scale effect in tension

Principle

The spatial random distribution, corresponding to material heterogeneity, leads to a probabilistic scale effect as soon as the behaviour law present a softening phase. This scale effect can be treated simply using a random field of tensile strength (direct random sampling or mesoscopic modelling of random distribution of heterogeneities). But as random sampling based methods need a large enough sample to have a reliable representation of the model behaviour, they are time consuming. So, an alternative method, called "Weakest Link Localization" is proposed bellow.

Weibull scale effect

This method avoids resorting to a mesoscopic modelling or to a random fields sample. The Weakest Link localization method (WL2 [START_REF] Sellier | Weakest link and localisation WL 2 : a method to conciliate probabilistic and energetic scale effects in numerical models[END_REF]) allows to assess directly the most likely tensile strength using the Weibull's concepts. In the Weibull theory the tensile strength to be used depends on the loaded volume (V eq ) through the scale effect law:

Rt Rt ref = V eq V ref -1 m (5.1)
In this scale effect law Rt ref is the average tensile strength measured with a specimen for which the loaded volume is V ref . m is the Weibull exponent which depends on the coefficient of variation (C v ) of experimental results:

C v = Γ 1 + 2 m -Γ 2 1 + 1 m Γ 1 + 1 m (5.2)
This relation admits the following inverse approximation, more useful to compute the Weibull exponent (m) as a function of the coefficient of variation (Cv) of experimental results :

m ≈ 1 10 12 C v -2 (5.3)

Weakest Link Localization method (WL2)

Principle

The WL2 method consists to assess the equivalent loaded volume V eq using a modified Weibull theory. The modification proposed in [START_REF] Sellier | Weakest link and localisation WL 2 : a method to conciliate probabilistic and energetic scale effects in numerical models[END_REF] consists to use a weighting function which considers a non-homogeneous probabilistic influence of material points (M ) towards each other (located at a distance d(M )) in equation (5.4). The weighting function ψ (5.4), accords a larger probabilistic importance to the vicinity of any material point.

ψ(M ) = exp   - 1 2 d(M ) l cp 2   (5.4)
With d(M ) the distance between any damageable material point, for instance located at M , and any other point of the structure located at the distance d(M ) from M . l cp is the characteristic length of the probabilistic weighting function; it is assessed from 0.3 → 0.5 meters for a concrete in [START_REF] Sellier | Weakest link and localisation WL 2 : a method to conciliate probabilistic and energetic scale effects in numerical models[END_REF]. The equivalent loaded volume is then defined as follows:

V eq (M ) = 1 β max Ω βψ(M )dΩ α (5.5)
With Ω the structure, dΩ a structure infinitesimal volume. β is the loading index defined at each integration point as follows:

β = max (σ I , 0) Rt ref m (5.6)
In (5.6), if the loaded index β is evaluated in a zone already damaged, it is limited to the unit to consider that as in this zone the tensile strength is known, the probabilistic weight of the residual undamaged zone around the integration point must be limited. With σ I the principal tensile stress. If the structure volume (Ω) is very large compared to the characteristic length l cp , and the stress field homogeneous, the equivalent loaded volume tends to a maximal equivalent loaded volume V max impossible to exceed whatever the stress field in the structure and the real size of the structure:

V max (M ) = Ω ψ(M )dΩ (5.7)
Due to the geometry boundary effects,V max (M ) is smaller near the geometry faces and edges. Consequently V max (M ) is a non homogeneous scalar field. It can be assessed with an integral operator before the non-linear analysis. In CASTEM, the integral operator 'NLOC' allows to compute the V max (M ) field before the non linear analysis. Note, the operator 'CONN' is able to consider symmetry plans and symmetry axis of the finite element model to establish a connectivity map exploited by the operator 'NLOC' to compute the V max (M ) field.

Implementation with an Helmholtz formulation

In [START_REF] Sellier | Weakest link and localisation WL 2 : a method to conciliate probabilistic and energetic scale effects in numerical models[END_REF], it is proposed to assess the equivalent loaded volume V eq thanks to a second gradient formulation:

α - l cp 2 2 α = βV max (5.8)
Once the non local loading variable α computed, the equivalent loaded volume is deduced:

V eq (M ) = α β max
(5.9)

In equation (5.9), β max is the maximal loading index over the structure.

Numerical Implementation of the Weakest Link Localization method

Semi-implicit procedure

Once V eq (M ) computed, it is used in the Weibull scale effect law (5.1) to assess the most likely tensile strength field. The operation has to be performed during each loading increment to adapt the tensile strength to the current loading. As the most likely tensile strength depends on the stress field in the undamaged zone, but as these zones are susceptible to damage during the non-linear analysis, a first approximation of the stress field is performed using the tensile strength field of the previous time step, then a non local sub-step is performed using this field to assess a more accurate tensile strength field. The definitive calculus is done with this last one. This formulation is available in CASTEM software using the Non-Local formulation with the keyword HELM . If this formulation is not used the WL2 method is not activate and the model works without considering the probabilistic scale effect.

Use of the Helmholtz equation in case of evolutive matrix

In equation (5.5) and (5.6),the denominator Rt ref can be simplified, showing that the equivalent loaded volume depends only on the stress field form, and not of its amplitude. On the other hand, when the matrix damages, abd as the scale effect affects only the matrix zone not yet damaged, a special treatment is done to consider that in a given finite element the Weibull scale effect could evolves during the damage process. On purpose an updating method is used during the time step ∆t:

Rt Rt ref t 0 +∆t D t t 0 +∆t = Rt Rt ref t 0 D t t 0 + Rt Rt ref D t t 0 +∆t -D t t 0
(5.10)

Limit of scale effect for small equivalent loaded volume

Several methods are implemented to allow a compatibility between criteria. In fact, for small equivalent loaded volume (V eq), the Weibull scale effect (5.1) leads to an increase of the tensile strength, and in another hand the compressive strength is assumed independent of the loaded volume. A consequence could be a modification of the ratio between the tensile and the compressive strength. However this ratio must stay in the limit needed to have an independence between the Drucker Prager and the Rankine criteria. This limit is verified during the plastic criteria assessment. If the tensile strength is locally higher then the limit, it can be limited locally to the value needed to avoid the interaction.

Chapter 6

Distributed reinforcements 6.1 Principle

To avoid or limit explicit meshing of reinforcements, their structural effects can be considered as equivalent to the ones due to orthotropic distributed reinforcements. The distributed reinforcement directions are noted ( -→ V r , with r ∈ [1..n r ]). n r the distributed reinforcements number. In each direction a reinforcement rate ρ r is considered, it corresponds to the cross section rate of the reinforcements r oriented along the axe ( -→ V r ).

Homogenized behaviour law of a reinforced matrix

If the distributed reinforcements are used in the context of damage mechanics, and if localized cracks can occur, then, if a crack's normal and a reinforcements are not aligned, as illustrated in figure 6.1, a dowel effect takes place, changing the reinforcement orientations into the cracks and closely. Elsewhere, the reinforcements stay aligned on their initial directions. Therefore, two cases have to be considered, one corresponding to the reinforcements contribution into the zones without localized cracks, and another-one into the localized cracks. As the two zones can coexist in a finite element, the combination method adopted consists to weight the dowel effect by the localized damage and the contribution into undamaged zone by its complement to the unit. The sum is done using the four order tensor D t taking into account the localized cracks, as expressed by (6.1).

σ ij = (1 - r ρ r )σ m ij + (1 -D t ijkl )σ H kl + D t ijkl σ R kl (6.1)
In (6.1), σ H is the homogenized stress induced by the reinforcements in the undamaged zone, given by Eq. (6.2). σ R if the stress state corresponding to the bridging of localized cracks by the reinforcements, given by Eq. ( 6.3).

Reinforcements contribution in undamaged zone

The homogenized behaviour law of the reinforced matrix assumes the distributed reinforcements contributions have an axial component σ r induced by the reinforcement elongation in the direction -→ V r . The contribution of a reinforcement is then directly proportional to its rate 

σ H ij = r ρ r σ r -→ V r ⊗ -→ V r ij (6.2)

Reinforcements contribution in localized cracks

In case of damage, the reinforcement orientation can be modified into the crack if the crack's normal is not aligned with the reinforcement. This is the dowel effect illustrated in 6.1, and modelled through a mis-alignment of the reinforcement force into the cracks (relatively to the initial orientation of the reinforcement). The orientation of the reinforcement into the crack I is noted -→ D r I . The method consists to replace the matrix contribution into the cracks by the reinforcement contributions. Due to the minimal value of curvature radius induced by the interaction between the reinforcement and the matrix, the orientation of the reinforcement into the crack is always comprised between the reinforcement direction into the matrix and the direction normal to the crack. Thanks to the orthotropic model adopted to consider localized cracks effects, the cracks orientations are known and noted -→ V I . In each crack the contributions of all the reinforcements crossing the crack are affected by the corresponding localized damage, summed up, and expressed into the base of localized damage thanks to the passage matrix P. A first non symmetrical matrix R is obtained (6.3).

R = r ρ r σ r P T D t I -→ V r . -→ V I -→ D r I ;P T D t II -→ V r . -→ V II --→ D r II ; P T D t III -→ V r . --→ V III --→ D r III (6.3)
The effective contributions of reinforcements into the cracks is then taken equal to the symmetrical part of R (6.4) .

D t ijkl σ R kl = P 1 2 R + R T P T ij (6.4)
Equation (6.4) is based on the fact that the dowel effect can exist only if a misalignment of a given reinforcement is balanced by a compressive link in the matrix which is itself blocked by another reinforcement with a different orientation as illustrated in figure 6.2(a). The misalignment of at least one-another reinforcement crossing the same crack or another crack is then needed. If a reinforcement is alone to cross a given crack the compressive link in the matrix needed to change the reinforcement orientation, which is quasi orthogonal to the reinforcement, cannot be balanced, and the reinforcement direction cannot be changed, as illustrated in figure 6.2(b). That is why in Eq.( 6.4), only the symmetrical part of the matrix is assumed admissible. If a single reinforcement crosses a single crack with a given relative inclination, the force orientation in the reinforcement is not aligned to the normal to the crack, but, as the equilibrium needed to have a dowel effect is possible only if the compressive links are balanced, the dowel effect must be reduced, what is done by the symmetrization operation (6.4) which in such a case divide by two the shear contribution of the reinforcement into the crack. In (6.3), the direction of the reinforcement into the crack -→ D r I is a combination between the geometric (initial) direction of the reinforcement -→ V r and the normalized value of the lateral displacement -→ g r I induced by the dowel effect :

-→ D r = cos(α r ) - → V r + sin(α r ) - → g r I || - → g r I || (6.5) 
The lateral displacement -→ g r I is the difference between the crack opening displacement and its own projection on the initial direction of the reinforcement:

- → g r I = w pl,t I - → V I - -→ V r . - → V I -→ V r (6.6)
The angle α r between the reinforcement reorientation into the crack -→ D r , and its original direction -→ V r , depends on the curvature radius R r of the reinforcement on both sides of the crack, as illustrated in figure 6.1.

α r = 2 arcsin   g r I 4R r   arccos | - → V I . -→ V r | (6.7)
R r is assessed using a based strap relationship, considering the tension in the reinforcement σ r ,the reinforcement diameter D eq r and the concrete compressive stress f c: R r = πD eq r σ r 4f c (6.8)

Note, the method to assess the misalignment uses only the current crack opening w pl,t I . Another method could consist to project the maximal crack openings w pl,t,max I in the principal base of the current opening, and add the shear component of the difference between these two tensors expressed in this base to consider the dowel effect even if cracks are re-closed, but as reinforcement's stresses remove also during re-closure processes, and as reinforcement's contribution is proportional to these stresses, the adopted formulation is an a priori admissible approximation.

Axial stress in a reinforcement

Constitutive equation for the reinforcement material

The behaviour law of reinforcements is elasto-plastic with a linear kinematic hardening and a relaxation law. It is given in each direction of reinforcement by equation (6.9):

σ r -σ r 0 = E r ( r -r,pl -r,m -r,k ) (6.9) 
With E r the reinforcement Young modulus, r i the axial strain in the reinforcement, pl,r its plastic strain, r,m its permanent viscous strain and r,k its reversible viscous strain. σ r 0 is the possible pre-stress applied to the reinforcement as initial stress (not induced by the computed strain field).

Reinforcements plasticity

The plastic criterion is uni-axial, it models a linear kinetic hardening (6.10).

f r = |σ r -H r pl,r | -f r y 0 (6.10)
With σ r the axial strain in a reinforcement in the direction ( -→ V r ), f r y the elastic limit for the reinforcements, and H r the hardening modulus.

Reinforcement relaxation

According to [START_REF] Chhun | Incremental modeling of relaxation of prestressing wires under variable loading and temperature[END_REF],the reversible viscous strain can be modelled thanks to a Kelvin element:

∂ r,k ∂t = 1 τ r,k e K -r,k (6.11)
With K the rate of reversible viscous strain relatively to the elastic strain and τ r,k the characteristic time for the reversible viscous strain which depend on the temperature:

τ r,k = τ r,k ref k r,T (6.12) K = K ref k r,T (6.13)
With τ r,k ref the characteristic time fitted at reference temperature T r,ref and k r,T the thermal activation coefficient defined by equation (6.21). According to [START_REF] Chhun | Incremental modeling of relaxation of prestressing wires under variable loading and temperature[END_REF], the uni-axial permanent viscous strain r,m derives from a non-linear Maxwell model analogue to the one used for the matrix [START_REF] Sellier | Concrete creep modelling for structural applications : non-linearity , multi-axiality , hydration , temperature and drying effects[END_REF]. The viscous strain is proportional to the current elastic strain, and inverse proportional to a consolidation coefficient Cc r which affects the characteristic time τ r if the viscous strain increases (6.14).

∂ r,m ∂t = e τ r Cc r (6.14)

The consolidation coefficient depends on the current viscous strain as follows (6.15): With µ the loading level defined as follows:

Cc r = 1 k r exp 1 k r r,
µ = |σ r | f r y (6.19)
In (6.18) µ cr is a constant depending on the sensitivity of the reinforcement material to increase non-linearly its relaxation rate when the load increases; it is linked to a characteristic data χ r called relaxation non linearity factor, defined such as the relaxation remains linear if χ r = 1 and becomes non-linear when χ r > 1:

µ cr = 2 3 χ r χ r -1 (6.20)
In (6.16), k r,T considers the effect of the temperature on the relaxation velocity. According to [START_REF] Toumi | Experimental investigations on the influence of temperature on the behavior of steel reinforcement ( strands and rebars )[END_REF] the relaxation is accelerated by the temperature rising, and a coupling with the loading level exists since this amplification depends non-linearly of the applied stress. To consider this second coupling, the model [START_REF] Chhun | Incremental modeling of relaxation of prestressing wires under variable loading and temperature[END_REF] assumes the thermal activation multiplication of the delayed strain potential (k r,T ) depends non linearly of the loading level through the thermal activation coefficient A r,T :

k r,T =        exp A r,T T -T r,ref n r if T > T r,ref exp -A r,T T r,ref -T n r if T T r,ref (6.21)
T the absolute temperature, and T r,ref the reference temperature for which the relaxation characteristic time τ r was fitted, n r ≈ 1.216 a fitted parameter.

A r,T = A r,T ref exp γ r µ thm (6. [START_REF] Kchakech | Etude de l ' influence de l ' échauffement subi par un béton sur le risque d ' expansions associées à la Réaction Sulfatique Interne[END_REF] In (6.22), k T T ref ≈ 1.5.10 -4 (according to [START_REF] Chhun | Incremental modeling of relaxation of prestressing wires under variable loading and temperature[END_REF]) is a fitted constant to consider the effect of temperature on the relaxation rate , γ r a material constant and µ thm is a loading rate able to change the activation energy defined as follows:

µ thm (t + dt) = max µ thm (t), µ(t + dt), µ thr (6.23)
µ thr ≈ 0.7 is the minimal loading level able to change the activation energy. µ(t + dt) is given by (6.19).

Reinforcement-matrix bond

Perfect bond between matrix and reinforcements

Either a perfect bond or an imperfect bond can be considered between reinforcement and matrix.

In case of perfect bond, the axial strain of the reinforcement is deduced from its approximated elongation:

r ≈ r + 1 2 γ 2 r (6.24)
With r the axial strain :

r = -→ V r t -→ V r (6.25)
and γ r the shear strain :

γ r = || -→ V r -r -→ V r || (6.26)

Imperfect bond between matrix and reinforcements

If a sliding between the reinforcement and the matrix is possible, the reinforcement's strain cannot be directly deduced from the mechanical strain of the matrix. To assess the reinforcement strains the model uses a non local approximation of the reinforcement-matrix interaction. This approximation consists to consider that the total strain r of each reinforcement can be assessed using a second gradient method (6.27). This implementation affects both the constitutive behaviour law and the finite element solver (UNPAS.PROCEDUR in Castem software), since the reinforcement's total strains, ( r ) is replaced in (6.9) by its non local associated variable ( r ) deduced using (6.27).

¯ r -l cr 2

∂ 2 ¯ r ∂x 2 r = r (6.27) (6.27
) is an Helmholtz equation for which the variational form has to be solved at each sub-step by the finite element solver. Concerning the variational form, if a thermal analogy is used to build the numerical model, it is necessary to consider an anisotropic equivalent conductivity for which a single non-null coefficient exits in the direction V r (while the coefficients are null in the two orthogonal directions), and it is necessary to build as many Helmholtz formulations as there are reinforcement types. In (6.27) l c r is the characteristic length for the second gradient method applied to the reinforcements oriented in direction V r . This characteristic length depends on the shear bond behaviour law between reinforcement and matrix. It can be shown that if the bond behaviour is linear the characteristic length has the form:

l cr = E r D r H r (6.28)
With E r the stiffness of the reinforcement, D r its equivalent diameter, and H r the tangent stiffness of the bond defined as: H r = ∂τ mr ∂d mr (6.29)

with τ mr the shear stress supported by the bond and d mr the sliding between the reinforcement and the matrix. Note the Helmholtz formulation able to consider the matrix-reinforcement sliding is active only if the model is used in its non-local formulation. In this case the name of the internal variables ¯ r have to be specified by the user for each reinforcement for which the bond is considered non-perfect.

Cracks distribution along reinforcements

The minimal localized crack number n c i in the direction i of a finite element, depends on its dimension l i in the direction -→ V i . The minimal fracture energy released in this direction depends then directly on n c i as follows:

Gf i = n c i Gf (6.30)
For any other direction an interpolation of Gf is used:

Gf -→ V = - → V T Gf - → V (6.31)
With Gf a fracture energy tensor built as follows:

Gf = 3 i=1 Gf i - → V i - → V i (6.32)
For an assumed stabilized crack process, the localized cracks number (6.35) depends on the maximal distance l f i (6.33) between two consecutive cracks. If a constant shear bond stress is assumed, it can be computed by (6.33) where D eq i the equivalent diameter of the reinforcements defined as the ratio of the cross section to the perimeter of the reinforcement.

ł f i = 2 D eq i 4 R t τ r 1 -ρ i ρ i (6.33)
But when the reinforcement plastification occurs the crack formation is also limited by the straight anchorage length (6.34) of the reinforcements.

l s i = D eq i 4 f y τ r (6.34)
With f y the reinforcement elastic limit.

n c i = max 1, l i l f i , l i 2l s i (6.35)
As, in a finite element, the fracture energy depends on the localized cracks number, the cracks opening computed by the model corresponds to a single of these possibly multiple cracks. The number of cracks in each main direction is also available in the internal variable list of the model. 

Part III

Model using

Non Local formulation

The Helmholtz method has been implemented to consider non local formulation of WL2 and of the sliding reinforcements. As explained in chapter 5 and 6. The key word specifying the internal variables on which are applied the Helmholtz formulation are given in the model declaration, while the characteristic lengths corresponding to each of them are added in the material declaration. For WL2 the characteristic lenght is LCAR, for each reinforcement processed by the Helmholtz formulation theay are LCF1, LCF2...For instance the command lines below allow to apply the Helmholtz formulation for WL2 (variable XWL2) and for the first reinforcement (variable ENL1 

Reinforcements

Note, the number of reinforcements NREN can be given anywhere, but as when NREN=0 (none reinforcements) the information is given in the material for the matrix, it can be kept there, so it is recall in the table below but given in the first material (see 8. These command lines can be copied as often as needed to specify data for the possible other reinforcements. In this case the suffix "1" of each data is replaced by the numerous of the reinfocement (until 5 maximum). 

Data list

Limitation of computer's memory used

As each material embedded in the model has between ten and twenty internal variables, and as each variable is stored in the memory of the computer at each Gauss point of each element and each time step, the size of the memory occupied by the internal variables of the model can be significant for meshes with a great number of elements and great number of time steps. So it is advisable to save only the internal variables at important time steps using the options TAB.TEMPS_CALCULES for the list of computed time step, TAB.TEMPS_SAUVES for the list of time steps to save, and TAB.TEMPS_SAUVEGARDES for the sub list of time steps to store in a file in order to recover them later, either to continu the calculus, or to access them to exploit results.

Access to an internal variable at a given time

Once the calculus achieved, users can recover any internal variables of the model at any stored time step. To obtain an internal variable, for instance the maximal crack opening stored in the internal variable WL0 at a given time temps1 corresponding to iteration i1, it is convenient to process as follows:

*print the list of time stored by PASAPAS in tab1 to identify the time step number i1, then affect i1 LIST tab1.TEMPS ; *choice of time step number i1 and plot of internal variable chosen at this time step number i1=...; TRAC ( EXCO WL1 tab1.variables_internes.i1) mod1 ;

Total Stresses and stresses by phases

In the case the reinforcement are used (NREN>0), it is important to note that TAB1.CONTRAINTES provided by CASTEM supplies the total stresses (matrix plus reinfocements); the stresses in the matrix alone or in the reinforcements alone are stored in the internal variables listed below. Specifically the stresses in the matrix are call SIM1..6 (see 9.1) and in reinfocement SRF1..5 (see 9.11).

Internal variables for mechanical state in the matrix

Strains

The generic numerotation used to store the strains and the stresses are such that the corresponding tensor in the global base of the mesh. For instance the elastic strains stored in the pseudo vector EP E1 → 6 corresponds to the following matrixs:

• If the problem is three-dimensional or in plain strain(global base (xyz)): 

1
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 1 Figure 1: Global rheologic scheme
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 12 Figure 1.2: Specific Creep from Maxwell module, parametric study with k ref and characteristic time τ M ref
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 13 Figure 1.3: Specific creep amplification versus loading rate (red curve), amplification at 66%Rc (blue dot line X) and unit (dash line 1)
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 14 Figure 1.4: Isotherm (dots: experiments from [3], line: Van Genuchten's equation with M sh = 44M P a and m vg = 0.5)
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 21 Figure 2.1: Plastic criteria in principal stresses base s 1 , s 2 , s 3 , (R t = 3M P a, R c = 30M P a, δ = 1)
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 22 Figure 2.2: Uniaxial tension-compression cycles without damage, (R t = 3M P a, R f = 5M P a, R c = 30M P a, δ = 1, β = 0.15). Left figure : imposed axial strain versus time, left figure: effective stress computed by the model (axial stress versus axial strain (black), radial strain (green), volume strain (blue)
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 31 Figure 3.1: Idealized cracking pattern used to compute tensile damages
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 32 Figure 3.2: Uniaxial-tension-compression cycles with damage, (R t = 3M P a, R f = 5M P a, R c = 30M P a, δ = 1, β = 0.15, Gf t = 100J/m 2 , Gf r = 100J/m 2 , ε k,dc = 1.e -3 ), left figure gives the imposed axial strain versus time, right figure shows the model response: axial stress versus axial strain in black, versus radial strain in green, and versus volume change in blue
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 410 In (4.10), τ Diss is the characteristic time for the dissolution velocity; it depends on temperature (T ) and alkali content (N a):τ Diss = τ Diss,ref C T,Diss C N a,Diss(4.11) 
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 61 Figure 6.1: Dowel effect

Figure 6 . 2 :

 62 Figure 6.2: Compressed links in the matrix allowing dowel effect (a) or limiting dowel effect (b)
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 21881 Command lines matren1=MATE mod1 ROA1 0.01 DEQ1 0.01 YOR1 2.0e5 SYR1 1800. TYR1 6. VR11 0. VR12 0. VR13 1. HPL1 5.0e3 TMR1 0.1 TKR1 0.1 YKY1 100. EKR1 1.0e-4 SKR1 1260. ATR1 1.5e-4 CTM1 4.8 XNR1 1.216 XFL1 2.55 MUS1 0.7 PRE1 800. TTR1 20. LCF1 0.15 ;

  C H the influence of humidity, and C M the non linear effect of mechanical loading.

	6)
	with ε M ref a fitting parameter called reference creep potential ; ε E ref a reference elastic strain
	corresponding to loading for which ε M ref and τ M ref are fitted. This reference elastic strain is
	currently fixed arbitrary to the third of compression strength (R C ref /3). C T considers influence
	of temperature on creep potential,

  [START_REF] Lemaitre | Mécanique des matériaux solides[END_REF] 

	szz							
	¡30. 00							
	¡4. 00 ¡35. 00	¡3. 00	¡2. 00	¡1. 00	0 . 00	1 . 00	2 . 00	3 . 00
								x 1. E¡3	epxx

Table 4 .

 4 1: Exponents of De-Schutter law for material parameters

	. In

  In(6.15), k r considers the coupling effects of temperature and mechanical non-linearities involved in the relaxation process.k r = k ref k r,T k r,m (6.16)k ref is a constant proportional to the delayed strain potential of material, it is a material constant fitted on experimental results. For instance, if a relaxation test is performed under a given stress level σ kr , a delayed strain potential noted kr can be obtained by curve fitting of the test result. The constant k ref is linked to the previous parameters as follows:

				m
				e	(6.15)
				kr
		k ref = E	σ kr	(6.17)
	In (6.18) k r,m considers the non linear amplification of the relaxation rate with the loading
	level:	k r,m =	µ cr µ cr -µ	(6.18)

2 Elasticity, strengths, plasticity and damage due to loading, link with hydration 8.2.1 Command lines

  ). Other reinfocement's variable are ENL2, ENL3...and can be added if needed.Note: if other internal variables have to be treated by the Helmholtz formulation the procedure 'PAS_HELM.PROCEDUR' of Cast3M has to be adapted. The treatment for LCAR et LCF1...are not the same. LCAR is based on a isotropic Helmholtz formulation while LCF1...use anisotropic ones, that is why the orientation vectors of reinforcements are needed in mrenf1.

	*model declaration from the mesh (vol1) for non local formulation	
	mod1=MODELE vol1 MECANIQUE ELASTIQUE ISOTROPE		
	VISCOPLASTIQUE FLUENDO3D 'NON_LOCAL' 'HELM'		
	'V_MOYENNE' ( 'MOTS' 'XWL2' 'ENL1') ;			
	*material declaration (see below)				
	*material declaration for damage and plasticity mdam1=MATE mod1 YOUN 30000. NU 0.2 RHO 2400. ALPH 1.0e-5	
	mdam1=... HYDR 0.8 HYDS 0.2 HREF 0.8 RT 3. EPT 1.1e-4 RC 40. EPC 2.0e-3	
	*material declaration for water effects DELT 1. BETA 0.15 REF 4. EKDC 2.0e-3 GFT 1.0e-4 GFR 1.0e-4 DT80	
	mwat1=... 0.15 TSTH 45. NREN 1.;				
	*material declaration for CREEP * In plain strain and axi-symmetric formulation the out of plane dimension
	mcreep1=... must be added : DIMZ 0.1 or DIMT 0.1 (respectively) in the list above	
	*material declaration for AAR				
	mrag1=... *material declaration for DEF 8.2.2 Data list				
	mdef1=... Parameter *material declaration for Weibull scale effect Symbol Basic thermo-elasticity mprob1=...LCAR 0.3; Young modulus E *material declaration for reinforcement 1 Poisson ratio ν mrenf1=...LCF1 0.1; Density ρ *material chracteristics assemblage Thermal dilation coefficient α mat1=mdam1 ET mwat1 ET mcreep1 ET mrag1 ET mdef1 ET mprob1 ET Unit Name Value M P a YOUN 30000. -NU 0.2 kg/m 3 RHO 2400. -ALPH 1.0e-5 Solidification marenf1 ; Hydration advancement ξ -HYDR 1.0
	Solidification hydration threshold	ξ t h	-	HYDS	0.2
	Hydration reference for data	ξ ref	-	HREF	0.8
	Basic Plasticity			
	Tensile strength	R t	M P a	RT	3.
	Strain at tension pick	ε pk Rt		EPT	1.0e-4
	Uniaxial Compressive strength	R c	M P a	RC	30.
	Strain at uniaxial compression pick	ε pk Rc	-	EPC	2.0e-3
	Drucker Prager confinement coefficient	δ	-	DELT	0.75
	Dilatancy for non associated Drucker Prager plastic flow	β	-	BETA	0.15
	Reclosure characteristic stress	σrcl	M P a	REF	4.
	Damage associated to basic plasticity		
	Characteristic plastic strain for Drucker Prager associated damage	ε k,s (3.22)	-	EKDC 1.0e-4
	Fracture energy in tension	G f t	M J/m 2 GFT	1.0e-4
	Tensile crack reclosure energy	G f r	M J/m 2 GFR	2.0e-4
	Thermal Damage			
	Thermal damage at 80 • C	D T 80	-	DT80	0.15
	Damage temperature threshold	θ thr	• C	TSTH	45.
	Reinforcement types number			
	Number of types of reinforcements	N r	-	NREN 0 → 5

8.

Table 8 .

 8 1: Data for mechanical behaviour of the matrix

8.3 Effects of water: capillary effects, shrinkage and as- sociated damage 8.3.1 Command lines

  

	CHAPTER 8. DATA CLASSIFIED BY PHYSIC PHENOMENA ANS ASSOCIATED COMMAND LINES
	8.4 Creep 8.5				
	8.4.1 Command lines				
	mcreep1=MATE mod1 TTRF 20. TAUK 0.7 YKSY 3.75 TAUM 14. EKFL
	mwat1=MATE mod1 PORO 0.12 VW 0.12 BSHR 0.25 MSHR 40. TTRW 0.9e-4 XFLU 2. NRJM 20000. DFMX 0.10 KDTT 0.0 ;
	20. MVGN 0.5 CSHR 0. EKDW 1.0e-2 TTKW 40. HSHR 1.0e5 DCDW 0.0 KWRT 0.25 KWRC 0.10; 8.4.2 Data list
	Parameter 8.3.2 Data list	Creep	Symbol	Unit	Name Value
	Parameter Reference temperature for creep model pa-rameters Capillary pressure effects Symbol Unit θ ref • C Porosity φ m 3 /m 3 PORO Name Value TTRF 20. Characteristic time for Kelvin module τ K ref Day TAUK 0.7 0.12 Water content φ W m 3 /m 3 VW Kelvin stiffness / Young module Ratio ψ K YKSY 3.75 0.12 Biot coefficient for shrinkage b shr -BSHR Characteristic time for Maxwell Module τ M ref Day TAUM 14. 0.25 Van Genuchten Modulus at reference tem-perature fir the capillary curve Creep potential characteristic strain ε M -EKFL 0.9e-4 ref M ref shr M P a MSHR 40. Reference temperature for the capillary curve T w,ref C TTRW Non linear creep potential multiplicator at χ M -XFLU 2. 66%R C , ( 1) 20. Van Genuchten exponent m V G -MVGN 0.5 Activation energy for creep potential ampli-E M A J/mol.K NRJM 20000. fication in temperature Stress concentration factor for cracking cri-C shr -CSHR 1. Maximal creep damage D C max -DFMX 0.10 teria by capillary pressure Transient Thermal creep constant k dtt -KDTT 0. Characteristic strain to link capillary in-duced strain and tensile damage kdw -EKDW 1.e-2 Table 8.3: Data for creep of the matrix
	Characteristic temperature to consider effect of temperature on capillary pressure	T KW	C	TTKW	40.
	Hardening modulus for the evolution of local tensile strength to capillary pressure	H w	M P a	HSHR	1.0e5
	Exponent of (1 -D tw ) for coupling between			
	damages due to capillary pressure and com-	α W	-	DCDW	0.
	pression				
	Influence coefficient of capillary pressure on macroscopic tensile strength	K W,Rt	-	KWRT	0.25
	Influence coefficient of capillary pressure on macroscopic compressive strength	K W,Rc	-	KWRC	0.10
	Table 8.2: Data for mechanical effects of capillary water

Alkali aggregate reaction 8.5.1 Command lines

  

	8.6 Delayed Ettringite Formation (DEF) 8.7
	8.6.1 Command lines				
	mrag1=MATE mod1 VRAG 0. TRAG 120. SRSR 0.5 NRJR 40000. HRAG mdef1=MATE mod1 VDEF 5.0e-2 SSAD 0.7 TTKD 80. TTKF 70. TTRP
	1500. KRAG 2000. EKDG 3.0e-3 VVRG 0. CRAG 0.5 TTRG 38. DCDG 20. TDID 3. TFID 1.5 TPRD 30. NRJD 70000. NRJF 180000. NRJP
	0.15; 40000. NALD 0.3 NAKD 0.28 NABD 0.92 SRSD 0.95 EXND 0.18 EXMD 3.
	EKDS 3.0e-3 HDEF 1500. KDEF 33000. VVDF 0.1 CDEF 0.5 DCDS 0.15;
	8.5.2 Data list				
	8.6.2 Data list				
	Parameter		Symbol Unit	Name Value
	Parameter	Alkali aggregate reaction AAR Symbol	Unit	Name Value
	Maximal AAR product volume ratio Delayed Ettringite Formation φ ∞ aar		m 3 /m 3 VRAG	0.
	Characteristic time for AAR reaction Maximal amount of DEF	τ aar ref φ ∞ def		days m 3 /m 3 VDEF TRAG	120.0 0.05
	Water saturation threshold to activate AAR Sulphate/Aluminates moles number ratio	S th,aar r ρ		--	SRSR SSAD	0.5 0.7
	Activation energy for AAR kinetic Mole number of sulphates per unit volume	E aar S c imp	J/M ol NRJR 40000.0 M ol/m 3 NSUL 1 170.
	Hardening modulus of the tensile strength used in the AAR cracking criteria Characteristic temperature for sulphoalumi-nate dissolution	H AAR T Diss,ref		M P a HRAG • C TTKD	1500. 80.
	Compressibility modulus for AAR Characteristic strain to link AAR strain and AAR damage in tension Minimal temperature to start aluminates fix-ation Void filled by tge AAR gel at free cracking Reference temperature for the characteristic time of DEF precipitation	K AAR kdg T th,F ix φ V,AAR T ref,P rec		M P a KRAG -• C TTKF EKDG 3.0e-3 2000. 70. -VVRG 0. • C TTRP 20.
	Stress concentration factor for AAR Reference temperature of AAR kinetic paramter Characteristic time for the dissolution of sulphoaluminates Exponent of (1 -D gw ) for coupling between Characteristic time for the fixation of alumi-nates in hydro-garnets	k AAR T ref,AAR τ Diss,ref τ F ix,ref		-C days days	CRAG TTRG TDID TFID	0.5 3. 38. 1.5
	damages due to AAR pressure and compres-Characteristic time of precipitation	α A AR τ P rec		-days	DCDG TPRD	0.15 120.
	sion Activation energy for the dissolution of sulfo-Table 8.4: Data for AAR aluminates E a,Diss		J/mol	NRJD 70000.
	Activation energy for the fixation of alumi-nates	E a,F ix		J/mol	NRJF 180000.
	Activation energy for the precipitation	E a,P rec		J/mol	NRJP 40000.
	Free alkali concentration in pore solution	N a		mol/l	NALD	0.3
	Reference Alkali concentration for laws de-pending on free alkali concentration	N a k		mol/l	NAKD	0.28
	Alkali concentration blocking the DEF pre-cipitation	N a th,def		mol/l	NABD	0.92
	Characteristic water saturation rate for the kinetic term of DEF precipitation	S th,def r		-	SRSD	0.95
	Exponent of coupling law for DEF dissolu-tion temperature	n		-	EXND	0.18
	Exponent of coupling law for DEF precipita-tion and aluminate fixation	m		-	EXMD	3

Probabilistic scale effect (WL2 method) 8.7.1 Command lines

  Before building the material list, it is necessary to compute the VMAX variable which is a non local field (vmax1 in the following example). This field uses the non local characteristic lenght lc1, which must be the same than in the material:

	* characteristic lenght for WL2 method				
	lc1=0.50;				
	*connectivity for NLOC operator used to assess VMAX			
	conn1 = 'CONN' mod1 (lc4*(2.*(2.**0.5)))'NORMAL' 'INTERIEUR';	
	*other possible symetries: 'DROITE' p1 p2 or 'AXE VERTICAL'...;	
	chp1=manu chpo vol1 'SCAL' (1.);				
	un1=chan 'CHAM' chp1 mod1 'STRESSES' 'CARACTERISTIQUES';	
	un2=exco 'SCAL' un1 'VMAX';				
	lism1=mots 'VMAX';				
	*option NODI to avoid division in NLOC operator			
	vmax1=NLOC un2 conn1 lism1 'NODI';				
	Then, the material can be defined as follows:				
	mprob1=MATE mod1 VREF 2.e-4 CVRT 0.15 VMAX vmax1 LCAR lc1;	
	8.7.2 Data list				
	Parameter	Symbol Unit	Name Value
	Weibull scale effect with WL2 method		
	Reference volume for the tensile strength	V eq	m 3	VREF	2.e-4
	Coefficient of variation of the tensile strength	C v	-	CVRT	0.15
	Maximal equivalent volume field	V max	m 3	VMAX	-2
	Characteristic length for the Wl2 method	l c W L2	m	LCAR 3	0.5

Table 8 .

 8 6: Data for Weibull scale effect 2 Scalar field to built before the material delaration with the NLOC command 3 Available only if the model is non local with the Helmholtz formulation activate see 7.2

Table 8 .

 8 If more than one reinforcement, duplicate the data list bellow replacing 1 by I = 1..N REN 7: Data for the reinforcements definition

	Parameter	Symbol Unit Name	Value
	Distributed reinforcements behaviour laws	
	Reinforcement's number	N r	-	NREN	∈ [0..5] 45
	Reinforcement density direction 1	ρ r1	-	ROA1	0.01
	Equivalent diameter direction 1	Deq r1	m	DEQ1	0.01
	Reinforcement Young modulus	E r1	M P a YOR1	2.e5
	Reinforcement elastic limit	f y r1	M P a SYR1	1800.
	Bond stress interface reinforcement matrix	τ r 1	M P a TYR1	6.0
	Projection of the normalized direction of Re-inforcement on the first fix axe	e r1 1	-	VR11	1.0
	Projection of the normalized direction of Re-inforcement on the second fix axe	e r1 2	-	VR12	0.0
	Projection of the normalized direction of Re-inforcement on the thirst fix axe	e r1 3	-	VR13	0.0
	Reinforcement Hardening modulus	H r 1	M P a HPL1	5000
	Reinforcement Irreversible Relaxation char-acteristic time	τ r	Day TMR1	0.1
	Reinforcement Rreversible Relaxation char-acteristic time	τ r	Day	TKR1	0.1
	Reinforcement Reversible Relaxation Reduc-tion coefficient at T ref	K ref	-	YKY1	100.

6 

Used only if non local Helmholtz formulation activate for the variable ENL1, see 7.2

Table 9 .

 9 • If the problem is axi-symmetric (global base rzθ): 1: Internal variables for strains in the matrix 9.

		EP E1 EP E4/2 EP E5/2			e xx	γ e xy /2 γ e xz /2 
	  EP E4/2 EP E3 EP E6/2 EP E5/2 EP E6/2 EP E3	  =	  γ e xy /2 γ e xz /2 γ e yz /2 e yy	γ e yz /2 zz e	 	(9.1)
		EP E1 EP E4/2 EP E5/2			e rr	γ e rz /2 γ e rθ /2	
	  EP E4/2 EP E3 EP E6/2 EP E5/2 EP E6/2 EP E3	  =	  γ e rz /2 γ e rθ /2 γ e zθ /2 e zz	γ e zθ /2 θθ e  	(9.2)
		Number	Name		
		Elastic strains		
		2	EPE1		
		3	EPE2		
		4	EPE3		
		5	EPE4		
		6	EPE5		
		7	EPE6		
		Drucker Prager plastic strains
		20	EPC1		
		21	EPC2		
		22	EPC3		
		23	EPC4		
		24	EPC5		
		25	EPC6		
		Tension plastic strains	
		26	EPT1		
		27	EPT2		
		28	EPT3		
		29	EPT4		
		30	EPT5		
		31	EPT6		

5 Internal variables for the capillary effect of liquid water

  

	Number	Name
	Capillary pressure plastic strains
	32	EPW1
	33	EPW2
	34	EPW3
	35	EPW4
	36	EPW5
	37	EPW6
	Liquid water volume used
	69	VWAT
		Porosity used
	70	VPOR
	Biot coefficient used for liquid water
	80	BWAT
		Water pressure
	81	PWAT
	Capillary tensile damage
	112	DTW0
	Capillary Compressive damage
	116	DCW0

Table 9 .

 9 7: Internal variables for capillary effects

Give either VDEF or NSUL, if the two variables are imposed the VDEF is used to compute the molar volume of DEF else the real volume is used and the moles number computed according to NSUL and SSAD

Possibility to add more then

reinforcement's types recompiling IDVISC, CFLUENDO3d with N BREN F 3D = 5,and add corresponding internal variables in IDVAR4[START_REF] Brunetaud | Effect of curing conditions and concrete mix design on the expansion generated by delayed ettringite formation[END_REF] NREN already given in material definition for the matrix, do not repeat this date which is single for the model

Chapter 7

Model activation

The model can be used either in local formulation or in non-local formulation. The probabilistic scale effect (WL2 method) and the distributed reinforcements sliding in the matrix are available only in non-local formulation because they use the Helmholtz method implemented on purpose. So there are two ways to invoke the model in Castem:

• Local formulation without WL2, with reinfocement perfectly bond to the matrix • Non Local formulation with WL2 and possibility to consider a sliding between ditributed reinforcements and matrix

Local formulation

The model is formulated to work in the context of 3 dimensions imposed strains: this formulation includes:

• 2 dimensions with plain strain formulation

• 2 dimension with axi-symmetric formulation For the two last modes, a parameter giving the out of plan dimension is needed, it is called:

If the mesh to be used is called vol1, the model activation is done as follows:

Chapter 8

Data classified by physic phenomena ans associated command lines

Principle

In this chapter the material parameters are split in several sub-materials, all of them being associated to the model. Each sub-material corresponds to an aspect of the global behaviour law (damage, creep, reinforcement, scale effect, alkali reaction, delayed ettringite formation...), next all the sub-materials are assembled in a single material. This method allows to find more easily the parameters corresponding to each component of the behaviour law than if all the parameters were passed in a single instructions. More this method avoids to have too many command lines for the material definition. 

Parameter

Stresses

The numeration is analogous to the strains one. 

Number

Damages

Only the mechanical and global damage are given here. Other damages due to water, AAR or DEF are given in the corresponding section of this chapter. The suffix 0 means that this is the first main value of a second order tensor. 

Number

Cracking

The numeration is the same than for strains. The suffix 0 means this the maximal eigenvalue of a tensor. 

Number

Internal variables for the reinforcements

The list below is given for reinforcement number 1. To access to another reinforcement replace 1 by its number. 9.11: Internal variables for the reinforcements This table is repeated 4 times replacing "1" by the reinforcement number, adding 7 internal variables for each one. Consequently, the total number of internal variables for all the materials embedded in the model is 126 + 4 × 7 = 154. Each one is stored in a field at each time step to save.

Number

Part IV