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General Principles

This document describes the constitutive equations currently implemented in the numerical
model FLUENDO3D. This model is dedicated to the numerical simulation of non linear be-
haviour of matrix reinforced by distributed reinforcements. The matrix behaviour law considers
both localised and diffuse damages, permanent strains induced by creep or plasticity, and ef-
fects of pressures in its porosity. The pressures can be induced by water dying or internal
swelling reactions. Different reinforcements can be considered simultaneously. Each of them is
oriented and acts on the matrix either thanks to a perfect bond or by a sliding interface. The
reinforcement’s behaviour includes permanent strains induced by plasticity or relaxation. The
matrix cracking is simulated resorting to the damage theory. The distributed crack method
is used. The model supplies the localised cracks orientations and openings. It can also con-
sider presence of defects in the matrix thanks to a theory based on probabilistic considerations.
The different components of this model can work alone or together, depending on the user’s
intentions. For instance if the damage module is not required all the other modules stay active
invoking the model with the FLUAGE3D command instead of FLUENDO3D command. On
the contrary if the creep modules are not needed the ENDO3D command allows to skip the
creep modules and keep the damage ones. However, the plastic modules and the chemical
modules are always active. But, of course, if data relative to the chemical modules are omitted
by the users the corresponding module are dis-activated automatically. Concerning distributed
reinforcements types, their number can be chosen between 0 (none reinforcements) and 5. More
reinforcements types could be considered but a re-compilation of the model should be done with
adequate parameters.
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Main features

The different features available in this model are summarized below. The constitutive equations
corresponding to each item are supplied in next chapters. The data list and the internal variables
list corresponding to each phenomenon are summarized at the end of the document.

• Non-linear mechanics
Plasticity
Rotating orthotropic Rankine criteria for tensile stresses
Rotating orthotropic Rankine criteria for localised cracks re-closure
Rotating orthotropic Rankine criteria for poro-mechanic internal pressure
Drucker Pragger criterion

Damage
Orthotropic damage in tension coupled with plasticity Rankine criteria
Fracture energy management based on an anisotropic Hillerborgh method
Isotropic damage coupled with Drucker Pragger plasticity
Isotropic thermal damage

Non-linear viscosity
Reversible creep based on Visco-elasticity
Permanent creep based on non linear viscosity
Anisotropic induced creep rates based on anisotrpic consolidation theory

• Chemo-mechanical couplings
Hydration effects
Water content effects
Alkali aggregate reaction
Delayed ettringite formation

• Distributed reinforcements effects
Elasto-Plasticity with linear kinematic hardening
Stress relaxation (with a dependence on the temperature)
Dowel effect
Matrix - distributed reinforcements sliding (method under licence(c)LMDC)

8



9

• Probabilistic scale effect based on the Weakest Link and Localization method
Considers random distribution of tensile strength without random sampling
Direct access to the most likely failure mode (WL2 method [43]).

• Strengh in tension and compression dependence on loading speed
Modified CEB dynamic amplification coefficient for tensile and compressive strength
Strenght amplification from 5.10−6s−1



Interactions between phenomemena

The method used to couple the different mechanisms involved in the behaviour law of the
matrix consists to work in a poro-mechanics framework [13]. Some interactions exit between
the different phases presents in the pores thanks to their poro-mechanics formulation. For
instance the pressure induced by a swelling reaction acts on the solid skeleton of the matrix,
which in turn is damaged in tension. Concerning the reinforcements, their effects are considered
through a mix law method. The different options concerning the organization between the
different modules are schemed in figure 1.

10
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Figure 1: Global rheologic scheme
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Chapter 1

Delayed strains

1.1 Basic creep
Delayed strains of solid skeleton are called basic creep strains. They can be permanent or re-
versible, depending on underlying phenomena. In the model, basic creep constitutive equations
are always used coupled to a plastic strains model which insures the stress field compatibil-
ity with the strength criteria. Practically, the basic creep model involves two usual rheologic
modules : a Kelvin solid for reversible creep and a Maxwell visco elastic fluid for permanent
creep as illustrated in figures 1 and 1.1. Effects of poral pressure are considered through the
poromechanics framework [45].

1.1.1 Permanent creep
Constitutive relations
Basic creep is a macroscopic consequence of nano-scale phenomena, in fact some solid phases

are intrinsically viscous due to the weak inter-atomic links existing at the lowest scales. When
submitted continuously to a loading, these links locally break and repair (or not) and a new
geometric configuration is reached, corresponding to a delayed macroscopic strain. At the
macroscopic scale, it is assumed that permanent creep velocity is proportional to the elastic
strain (εE) as expressed in equation (1.1). This assumption is supported by experimental evi-
dences showing that multiaxial creep can be deduced from uniaxial creep with a quasi constant

Figure 1.1: Idealized rheologic scheme for poro-mechanics creep model

13



CHAPTER 1. DELAYED STRAINS 14

Poisson ratio effect [18].
∂εMIJ
∂t

= εEIJ
τMIJ

(1.1)

In this equation τMIJ if the characteristic time for the strain component εMIJ with I and J
subscripts corresponding to eigen-directions of εM . In this base τMIJ can be assessed with
equation (1.2).

τMIJ = min
(
τMI , τ

M
J

)
(1.2)

With τMI defined by equation 1.3. In fact, at nano-scale basic creep is caused by atomic link
instabilities, which are themselves affected by physical conditions (temperature (T), humidity
(H) and mechanical loading (M)). At upper scale (micro and meso scale) stress redistribution
between viscous phases and non-viscous phases leads to consolidation (C) and damage (D).
consequently the basic creep characteristic time (τMI ) is managed by at mean three physical
conditions:

• Temperature (T),

• Humidity (H),

• Mechanical loading (M).

These three conditions influence the way how the material evolves two physical phenomena for
which internal variable have to be defined and linked to the characteristic time :

• Consolidation (C),

• Damage (D).

Damage acts directly at macro level to amplify elastic strain , as usually admitted in damage
mechanics theory [22][27].In the model damage Variable DC and DT used in (3.1) consider re-
spectively creep damage and thermal damage. Consolidation is considered using a consolidation
function CC

I affecting characteristic time :

τMI = τMrefC
C
I (1.3)

With τMref a reference characteristic time, used as fitting parameter in reference condition (high
humidity, reference temperature, without initial creep strain). Permanent creep strain origins
take place in viscous material phases of solid skeleton. But solid skeleton contains also non
viscous grains, and microscopic arrangements of viscous and non viscous phases is generally
aleatory. As viscous strains come along with strains of non viscous grains, a local heterogeneity
of stress and strain fields appears. The macroscopic consequence of this heterogeneity is that
non-viscous phases oppose to viscous strains of viscous ones. At the beginning viscous strains
are relatively easy, but the number of non-viscous inclusions hampering viscous strain increases
with the creep deformation. If non-viscous inclusions are only elastically perturbed the creep
is reversible (see 1.1.2), but if non-viscous inclusions are embedded in a viscous matrix, a
permanent creep appears. The consolidation function is proposed to model these phenomena in
a simplify way at the macroscopic scale, the consolidation function CC

I was initially proposed
in an isotropic form in [40] and improved in [39]. The current version uses an an-isotropic
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Characteristic time X 2

k ref X 2

Figure 1.2: Specific Creep from Maxwell module, parametric study with kref and characteristic
time τMref

version of consolidation coefficient which allows to consider different consolidation velocity in
the different loading directions. Its expression is given by (1.4).

CC
I = 1

k
exp

1
k

(
εMI
εEII

)+
 (1.4)

The positive part ()+ means the consolidation coefficient cannot be lesser than 1/kM . εEII is the
elastic strain in direction I, kM is the creep coefficient for the current temperature and loading
:

k = krefC
TCHCM (1.5)

with kref the creep coefficient defined as the ratio a characteristic strain of creep and a reference
elastic strain corresponding to a standard loading.

kref =
εMref
εEref

(1.6)

with εMref a fitting parameter called reference creep potential ; εEref a reference elastic strain
corresponding to loading for which εMref and τMref are fitted. This reference elastic strain is
currently fixed arbitrary to the third of compression strength (RC

ref/3). CT considers influence
of temperature on creep potential, CH the influence of humidity, and CM the non linear effect
of mechanical loading.

Water Effect on basic creep
Some solid cohesion forces are sensitive to the water saturation degree as explained in 1.2.

In the model a linear dependence is used :

CH = Sr (1.7)
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With Sr = φw/φ the water saturation rate of porosity (φw the water content and φ the porosity).

Temperature effects on basic creep
Temperature has two effects on basic creep; on one hand it modifies intrinsic viscosity of

viscous phases embedding water, due to the dependence of water viscosity to temperature, and
on the other hand provokes differential dilation between phases, this last can increase creep
potential releasing viscous phases, an cause thermal damage.

CT = CT
wC

T
p (1.8)

The effect of temperature on water viscosity is taken equal to the water viscosity dependence
to temperature, it is an Arrhenius law independent of material composition. In (1.9) Ea

w ≈
17000J/mol the activation energy of water viscosity Tref the reference temperature for which
the characteristic time τMref is measured, and R = 8.31J/mol/K the gaz constant.

CT
w = exp

(
−E

a
w

R

(
1
T
− 1
Tref

))
(1.9)

CT
p =


exp

(
−
Ea
p

R

( 1
T
− 1
Tthr

))
if T > Tthr

1 if T 6 Tthr

(1.10)

CT
p function parameters depend on material composition through two fitting parameters : Ea

p ≈
25000J/mol which is is a fitting constant and Tthr ≈ 45◦C the threshold temperature from which
thermal damage appears and modifies the creep potential [26].

Mechanical loading effect on basic creep
The Mechanical loading coefficient CM considers the possible non linear dependence of creep

potential on mechanical loading level. So, CC starts from 1 for unloading material and diverges
if loading level reaches a critical value provoking tertiary creep. As it is assumed tertiary creep
occurs only in case of deviatoric loading, CC depends only on the loading level through an
equivalent shear stress τDP :

CM = τ̃DPcr

τ̃DPcr − τ̃DP
(1.11)

A Drucker Prager formulation [17] is chosen for τDP to consider benefits of triaxial confine-
ment to reduce deviatoric creep. In fact τ̃DP is a function of two first stress tensor invariants.
(1.12), and τ̃DPcr the Drucker Prager critical stress leading to tertiary creep.

τ̃DP =
√
σ̃d : σ̃d

2 + δ
Tr (σ̃)

3 (1.12)

δ is the confinement effect coefficient which takes into account benefits of hydro-static pres-
sure on shear strength. For some material it depends on water saturation rate, but this option
is not implemented in the current version. The critical stress can be linked to the corresponding
uniaxial critical stress intensity σcr, the relation implies the confinement coefficient δ and ans
assume the uniaxial critical stress is a compression.
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Figure 1.3: Specific creep amplification versus loading rate (red curve), amplification at 66%Rc
(blue dot line X) and unit (dash line 1)

τ̃DPcr = σ̃cr√
3

(
1− δ√

3

)
(1.13)

In the model σ̃cr is computed from a non linear amplification coefficient χM , supplied by the
user, and corresponding to the non-linearity of creep under an applied compression stress of
66%Rc. With this definition the link between χM and σ̃cr is :

σ̃cr = 2
3

(
χM

χM − 1

)
R̃c (1.14)

The evolution of basic specific creep non linear amplification function is illustrated in figure
1.3.

1.1.2 Reversible creep
Constitutive relations
Reversible creep is modelled thanks to Kelvin module, in which stress is replaced by a a

reduced elastic strain corresponding to the final strain of Kelvin module.

∂εKij
∂t

= 1
τK

(
εEij
ψK
− εKij

)
(1.15)

Reversible creep, like permanent creep depends on temperature and water content. The
same coefficients, CT

w (equation 1.9) and CW (equation 1.7), than for permanent creep are
used.

τK = τKrefC
WCT

w (1.16)
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Figure 1.4: Isotherm (dots: experiments from [3], line: Van Genuchten’s equation with Msh =
44MPa and mvg = 0.5)

1.2 Shrinkage and drying creep
Water has complex effects in porous media. It can react with solid skeleton, be adsorbed on
porous walls, and exerts capillary forces on solid skeleton. In some materials, such as clay
or concrete, water molecules are present in nanoscopic material inter-layers causing attractive
or repulsive forces according to their environmental conditions (mechanical loading, tempera-
ture...). These effects have several macroscopic consequences. Among other, delayed strains
depend on the thermo-mechanical state of water. To model the most important visible conse-
quences of water solid interactions it is convenient resorting to the capillary pressure theory in
the context of poro-mechanics (Biot theory extended to non saturated media by Coussy).

1.2.1 Water capillary pressure
The capillary pressure can be modeled using a two parameters water retention curve equation
called Van-Genuchten model. This equation provides the capillary pressure (Pc) as a function
of saturation rate (Sr). If gas pressure is neglected relatively to water pressure (Pw), water
pressure can be directly expressed as a function of water saturation rate (1.17) as illustrated
in figure 1.4 page 18.

Pw = Msh

1− S

(
− 1

mvg

)
r

(1−mvg)

(1.17)

The water retention curve given by (1.17) is modified by temperature. At high temperature, for
a given relative humidity, the saturation rate Sr decreases as observed in [35].The dependence
to the temperature is modelled changing the Van Genuchten equation parameter’sMsh. (1.18).

Msh = M ref
sh exp

(
− T − Tref
T vgk − Tref

)
(1.18)
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Figure 1.5: Isotherms at different temperatures (for M ref
sh = 41MPa, mvg = 0.5, T vgk = 40C,

Tref = 20C)

In (1.18),M ref
sh is the Van Genuchten parameter Msh at temperature Tref , T is the current

temperature, and T vgk ≈ 40C a fitting parameter. An example of temperature effect on a water
retention curve is given in figure 1.5.

1.2.2 Interactions between water and solid
Shrinkage is induced by solid-water interactions. Tension forces at interfaces between liquid
water and gas acts on solid skeleton to contract it, but the efficiency how the pressure acts
depends on the stress state σ applied on material. In fact as explained in [40, 39], solid
skeleton can be damaged by differential shrinkage between solid grains more or less sensitive
to water content variation (specially aggregates and paste in concrete). If this damage occurs,
it limits the capillary pressure transmission from paste to other phases and the macroscopic
effect of paste shrinkage is reduced. On the contrary, if a compression stress is applied in a
direction, damage induced by differential shrinkage between paste and aggregate is avoided
and capillary pressure are better transmitted. To consider this non linear interaction between
solid skeleton and water effects during drying or humidification, the cracking induced by the
cpaillary forces is modeled as illustrated in the global rheologic scheme 1.In tension or weak
compression the matrix cracks and the caipllary effect is not integrally transmitted at upper
scales while under high compression, the pressure effect is balanced by the compression and the
abscence of cracking leads to a better transmission of capillary forces from micro structures to
macro-scale [41].
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1.3 Transient thermal creep
Transient thermal creep is observed only if material is loaded in compression just before or
during heating [4]. According to Cagnon et al.[8], it depends also on the consolidation state of
material, and it is proportional to the heating rate. Its modeling is under clarification in the
PhD of F.Manzoni (to be published sept 2019).



Chapter 2

Plastic strains

Several plastic criteria are used in the model, each of them manages the evolution of an inelastic
strain. Most of these criteria are written in terms of total undamaged stresses(2.1), itself
obtained by time integration of total stresses increments (2.2).

σ̃ij =
∫ t

0
dσ̃ij (2.1)

The total undamaged stress increment depends on effective stress increment dσ̃′ij which is
relative to the solid skeleton behavior, and d (bgpg + bwpw) relative to the porous pressures,
d (bgpg) for the gel pressure and d (bwpw) for the hydric effects.

dσ̃ij = dσ̃′ij − δijd (bgpg + bwpw) (2.2)

In (2.2), σ̃′ij is the effective stress in the undamaged part of material matrix, directly linked to
the elastic strain thank to the material stiffness Sijkl:

dσ̃′ij = Sijkl : dεEkl (2.3)

In (2.1) δij is the Kronecker symbol used to consider internal pressure effects are equivalent
to isotropic stresses. bg and pg are respectively the biot coefficent and pressure associted
to ISR. bw and pw are the Biot coefficent and pressure for hydric effects. In tension three
orthogonal Rankine criteria, sometimes called principal stress criteria as in [14], are used to
limit the undamaged total stress(2.1) to R̃t. When needed,the criteria have to be able to
rotate to consider non radial loading pass. Plastic strains in tension are used to represent crack
opening, but if a sufficient compression stress if applied after a damage in tension, cracks can
re-closed. On purpose, and as suggested by Jefferson [21], re-closure plastic criteria can be
used to model re-closure. In the present model three principal stress criteria are also used to
manage independently the re-closure of the three main cracks generated in tension. In shear and
compression a Drucker Prager [17] criterion is used, it is implemented in a non standard way
(non associated flow) to consider possible material dilatancy. If material porosity is subjected to
a pore pressure exceeding the solid skeleton tensile strength, inelastic strains appears, they are
managed by three other plastic criteria written in terms of principal stresses in solid skeleton.
Therefore, the model considers ten plastic criteria:

• Three for cracking in direct tension (Rankine criteria i.e Principal positive stresses) or for
macro-crack re-closure (Principal negatives stresses)

21
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• Three for solid skeleton cracking under pore over pressure induced by alkali reaction
(AAR)

• Three for solid skeleton cracking under pore over pressure induced by delayed ettringite
(DEF)

• Three for solid skeleton cracking under capillary pressure of free water (with possibility
of micro crack reclosing)

• One for shear cracking (Drucker Prager with non associated flow), this is this last criterion
which considers implicitly the failure in compression.

These 13 plastic criteria manage 5 plastic strains tensors :

• One for plastic strain in tension, managed by the first plastic criteria

• One for inelastic strain induced by AAR

• One for inelastic strain induced by DEF

• One for inelastic strain induced by the Water

• One for shear and compression

The specificity of the model consists in its ability to manage together the two types of creep
strains (reversible and permanent) and the plastic criteria.

2.1 Plastic criteria
The Rankine criteria f t, re-closure criteria f r, and Over pressure criteria f g are defined in the
principal base of undamaged stresses tensor {σ̃I , σ̃II , σ̃III}. Therefore, the orthotropic tensile
criteria can be expressed as follows :

f tI = σ̃I − R̃t
I with I ∈ [I, II, II] (2.4)

R̃t
I the effective tensile strength in a principal direction of stress. If a tensile plastic strain

occurs, and if an unloading occurs later, the following re-closure criteria can be reached, they
lead to a reduction of tensile plastic strains :

f rI =

(−σ̃I)− R̃r
I with I ∈ [I, II, II] if εpl,tI > 0

0 if εpl,tI 6 0
(2.5)

With R̃r
I the stress needed to re-close a tensile crack, and εpl,tI the plastic strain induced by

Rankine criteria in tension (2.4). In criteria (2.4) or (2.5), the stress σ̃eqI involved is associated
to external loading, so as considered in the section dedicated to damage, the plastic strain
associated to Rankine and Re-closure criteria correspond to localized cracks, but diffuses cracks
can also occur in case of over pressure induced by AAR, DEF or WATER in material porosity.
This possibility is considered through the over-pressure criteria which are obtained replacing
σ̃I by σ̃eqI :

f gI = C P + min(σ̃I , 0)︸ ︷︷ ︸
σ̃eq

I

−R̃t
I with I ∈ [I, II, II] (2.6)
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With P the pressure, and C the stress concentration factor associated to this pressure. Thank
to this coefficient C, users have the possibility to control the ability for pressure to create
cracking and plastic strains. In fact, if C = 0 and bg 6= 0 the gel acts only through the linear
poro-mechanical effect, while, on the contrary, if bg = 0 and C 6= 0, the gel creates cracking and
plastic strains without poro-mechanical effects. Of course all other intermediate cases can be
envisioned, provided that bg 6 1. From a practical point of view, the plastic swelling associated
to these cracks becomes anisotropic in presence of anisotropic compressive loading.

Another cause of diffuse cracking leading to plastic strain is the propagation of micro-cracks
induced by shear stresses. This cracking phenomenon is sensible to hydrostatic pressure which
improves the shear strength. To model this last cracking possibility a Drucker Prager criterion
is used.

fDP =
√ σ̃dij : σ̃dij

2 + δ
Tr (σ̃ii)

3

− R̃c

(
1√
3
− δ

3

)
(2.7)

R̃c the compressive strength, δ the Drucker Prager confinement coefficient, σ̃d the diviatoric
components of stress tensor,Tr (σ̃) its trace. To manage interaction between Drucker Prager
and Rankine criteria the following conditions are added:

• First, the initial threshold of compression hardening (R̃c
0) is chosen such as the tri-tension

state reaches earlier the Rankine criteria than the Drucker Prager criterion :

R̃c
0 > R̃t

3δ√
3− δ

(2.8)

• Secondly, a uniaxial tension in any main direction must reach the Rankine criterion before
the Drucker Prager one.

R̃c
0 > R̃t

√
3 + δ√
3− δ

(2.9)

With these additive conditions,Drucker Prager criterion cannot be reached by a tri-tension stress
state. A multidimensional plot of Drucker Prager and Rankine criteria is given in figure 2.1,
this figure allows to see the Rankine criteria are reached first in tri-tension and uni-directional
tension. The Drucker-Prager criterion is active only if at least one principal direction is a
compression.

2.2 Plastic flow

2.2.1 Consistence condition
Anelastic strains result from a Kuhn Tucker problem with the objective (2.10).

f i 6 0 ∀i ∈ [1...N ] (2.10)

In (2.10) i = 1→ N stands for each criterion (N ≤ 13)). As f i(σ̃) 6 0 are convex domains, as
illustrated in figure 2.1 in the principal stress base, it is possible to find Lagrange multiplicators
λi satisfying the consistence conditions (2.11).

∀i ∈ [1..N ] / f i > 0 → f i +
N∑
j=1

dλj ∂f
i

∂λj
= 0 (2.11)
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Figure 2.1: Plastic criteria in principal stresses base s1, s2, s3, (Rt = 3MPa, Rc = 30MPa,
δ = 1)

With N the number of criteria activated by a total strain increment starting from a previous
admissible stress state, and computed assuming none plastic flow during the first elasto-plastic
tentative (analogous to the elastic predictor step in elasto-plastivity). Solving (2.11) consists to
find Lagrange multiplicator increments dλj. The algorithm used is based on a return mapping
one [31]. As some criteria f j use directly a pressure (P ) in their expression (2.6), the general
form for the variation of f j is :

∂f i

∂λj
= ∂f i

∂σ̃kl

∂σ̃kl
∂λj

+
∑
g

∂f i

∂pg
∂pg

∂λj
+ ∂f i

∂R̃i

∂R̃i

∂λj
(2.12)

with g ∈ [AAR,DEF,Water].

2.2.2 Plastic strain increment direction
For each active criterion, the plastic strain increment is assumed to derive from a convex yield
function F i such as :

dεpl,jmn = dλj
∂F j

σ̃mn
(2.13)

For Rankine criteria (tension or reclosure for external loading or its combination with stress
induced by a pressure in the porosity), the plasticity is associated:

F i = f i if i 6 12 (2.14)

For the shear criterion (Drucker Prager), a non associated Yield function is used to control the
dilatancy:

FDP =
√
σ̃dij : σ̃dij

2 + β
Tr (σ̃ii)

3 (2.15)

With β the dilatancy coefficient ( β = 0 induces a plastic flow without dilatancy).
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2.2.3 Plasticity and Creep Coupling
If creep is considered, the effective stresses and the pressures depend also on the Kelvin and
Maxwell strains, so these strains evolve during the return mapping procedure, and consequently
the criteria function evolution depend also on their increments. The dependence of plastic
criteria on creep strains is given by (2.16).

∂f i

∂εKmn
= ∂f i

∂σ̃′kl

∂σ̃′kl
∂εKmn

+ ∂f i

∂pg
∂pg

∂εKmn
∂f i

∂εMmn
= ∂f i

∂σ̃′kl

∂σ̃′kl
∂εMmn

+ ∂f i

∂pg
∂pg

∂εMmn

(2.16)

The dependence can be expressed using the evolution of effective stress versus elastic strain
(2.3), in which, during the return mapping at constant total strain, the elastic strain increment
can be replaced by the sum of inelastic strains increments:

dεEmn = −
∑

j

dεpl,jmn + dεKmn + dεMmn

 (2.17)

The effective stresses variations are deduced using the stiffness matrix components Sklmn:
∂σ̃′kl
∂λj

= −Sklmn
∂εpl,jmn

∂λj
= −Sklmn

∂F j

∂σ̃mn
∂σ̃′kl
∂εKmn

= ∂σ̃′kl
∂εMmn

= −Sklmn
(2.18)

As anelastic strains affect also the pressures though the term (bgpg), the total stress variation
induced by a plastic strain increment becomes:

∂σ̃kl
∂λj

= −
(
Sklmn + δklδmn

∂bgpg

∂εpl,jmn

)
∂F j

∂̃σmn
∂σ̃kl
∂εKmn

= −Sklmn + δklδmn
∂bgpg

∂εKmn
∂σ̃kl
∂εMmn

= −Sklmn + δklδmn
∂bgpg

∂εMmn

(2.19)

The Kronecker symbol (δmn = 1 if (m = n)) is used to consider that the pressure affects only
normal stresses. Coupling between creep strains and plastic strains depends on the numerical
method chosen to solve the creep problem. If the general method used for temporal integration
is a semi-implicit scheme (θ method for instance), the elastic strain involved in the creep
increment assessment is a mix between its values at beginning and the end of the time step:

dεKmn = dt
τK

[(
εEmn
ψK
− εKmn

)
t

(1− θ) + θ

(
εEmn
ψK
− εKmn

)
t+dt

]

dεMmn =
(

dt
τMmn

εMmn

)
t

(1− θ) + θ

(
dt
τMmn

εMmn

)
t+dt

(2.20)

As the return mapping is applied after visco-elastic prediction, only the variation of εEmn at the
end of the step time is considered. The equation’s set to be solved for the return mapping is
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deduced (2.21). It allows to assess simultaneously the creep strain corrections dεKmn and dεMmn,
and the plastic multiplicators dλj:

dεKmn
(

1 + θdt
τK

(
1 + 1

ψK

))
+ θdt
ψKτK

(
dεMmn + dλj ∂F

j

∂σmn

)
= 0

dεMmn
(

1 + θdt
τMmn

)
+ θdt
τMmn

(
dεKmn + dλj ∂F

j

∂σmn

)
= 0

dεKmn
∂f i

∂εKmn
+ dεMmn

∂f i

∂εKmn
+ dλj ∂f

i

∂εpl,jmn

∂F j

∂σmn
+ f i = 0

(2.21)

Once the plastic multiplicators are computed the plastic strain increment can be assessed using
(2.13). The creep strains have also to be actualized to consider their variations during the
return on yield surfaces.

2.3 Effective strength hardening laws
Plasticity is used to limit effective stress σ̃eq. During damage process if a residual undamaged
material sub-zone subsists, it is because its effective strength is greater then the material already
damaged. So, a positive or null hardening is chosen to model each effective strength evolution
versus plastic strain. Note this choice is not in contradiction with a softening behaviour of
concrete, it means simply that softening is not due to the plasticity but to the damage induced
by the plasticity. The coupling between plasticity and damage will be treated in the next
section.

∂R̃t
I

∂λR̃
t
I

= H t ≥ 0 (2.22)

In compression a non linear hardening function Hc(εpl,c,eq) is defined such as the global uni-axial
stress-strain response remains parabolic until the compression strength R̃c is reached.

∂R̃c

∂λR̃c
= Hc(εpl,c,eq) ≥ 0 (2.23)

εpl,c,eq is the equivalent plastic strain defined as follows :

εpl,c,eq =
√

2
3

∫ t

0

√
dεpl,cmndεpl,cmn (2.24)

and the hardening function is build such as the uni-axial pre-pick behavior law is:

σ̃ = R̃c
0 +

(
R̃c − R̃c

0

)(
1−

(
1− ε− ε0

εc − ε0

)2
)

(2.25)

After the pick, a quasi null hardening is used as illustrated in 2.2. For over pressure criteria, a
constant and positive hardeningHg is used to avoid unstable bifurcation of micro-cracks induced
by over pressures. In fact, in case of isotropic loading, if none hardening would be used, the
crack propagation would occur arbitrarily in a given main direction and would continue in this
one only, leading to an arbitrary an-isotropic swelling.

∂R̃g
I

∂λR̃
g
I

= Hg ≥ 0 (2.26)
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Figure 2.2: Uniaxial tension-compression cycles without damage, (Rt = 3MPa, Rf = 5MPa,
Rc = 30MPa, δ = 1, β = 0.15). Left figure : imposed axial strain versus time, left figure:
effective stress computed by the model (axial stress versus axial strain (black), radial strain
(green), volume strain (blue)

For crack reclosure, a positive or null hardening is used to represent effective stress able to
crush crack edge roughness.

∂R̃f
I

∂λR̃
f
I

≥ 0 (2.27)

If used together with the damage theory, this effective stress is affected by an integrity variable
Rr = 1 − Dr which considers the roughness density decrease versus crack opening. As this
integrity variable is not yet applied in 2.2, the crack reclosure stress Rf appears to be constant
(bacause in this example H=0), in fact it is the effective reclosure crack, notyet the apparent
one.

2.4 Numerical implementation of creep and multi-criteria
coupling

2.4.1 Treatment of interaction between criteria
For some criteria, like the ones concerning diffuse cracking, the external stresses used in the
criteria to balance the pressure effects can be overestimated before all the other criteria (Drucker
Prager or Rankine) are verified, that is the reason why the positive stresses used in these criteria
are limited to positive or null conventional values. The current values used are zero, so that
only the negative part of un-damaged stresses are considered to mitigate swelling due to the
pressure of AAR or DEF.
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2.4.2 Hierarchical resolution of multi-criteria plasticity
Solving multi-criteria plasticity can present some difficulties when several Rankine criteria and
Drucker Prager one are active simultaneously. In fact a classical radial return mapping algo-
rithm can lead to an overestimation of some plastic strains to the detriment of other ones.
For instance when a great strain increment leads to exceed simultaneously the Rankine and
the Drucker Prager criteria several paths allow to return onto the yield surfaces. That is the
reason why a hierarchical method is used to consider progressively the coupling between the
different plastic flows: First the Rankine criteria are solved for the diffuse cracking alone, then
the criteria for external loading are verified.During this second stage of solving, if a localized
crack re-closure occurs, the verification of the corresponding criterion is proprietary.
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Damages

As suggested by Kachanov [22] or Lemaitre and Chaboche [27], damage origin takes place in
the creation of cavities in the material, which come along with plastic phenomena. For geo-
material such as rocks and concrete, the damage theory is usually used until failure. Therefore,
it includes not only the stage of voids nucleation, as in the original theory of Kachanov, but
also the void coalescence until macro-crack occurrence. Consequently damage models such as
Mazars [29], Laborderie [24], Pijaudier-Cabot [32] [10] base their criteria on strain extensions
which is supposed representative of crack opening. In the present model, damage is also based
on extension phenomena, but the link with the void nuclation is assumed driven only by an-
elastic strains. In addition to creep and thermal damage, one damage is associated to each
positive plastic strain type. Consequently several damage families coexist in the model:

• As tensile damage becomes strongly anisotropic during localization process, in the post
peak phase of the behaviour law, two types of tensile damages are differentiated in the
model, an isotropic one before tensile peak (Dt

0 in (3.1)), based on effective stress evolu-
tion, and an orthotropic one after the peak. Post peak localized damage in direct tension
(Dt

ijkl in (3.1)) is associated to Rankine plastic strains, so it is computed in each main
principal direction of plastic strain in tension,it is an orthotropic damage able to rotate
according to the plastic strain tensor evolution [37, 38].

• Damages induced by AAR, DEF and capillary pressure, also computed in each principal
direction of plastic strain tensor induced by over pressure of AAR, and able to rotate with
it [42][9]. As shown in [9], effects of AAR cracks are different on tensile and compressive
stresses, due to the fact that compressive stresses re-close some AAR micro-cracks. So,
this damage is split in two parts, Dtg

ijkl andD
cg
ijkl in (3.1) (with g ∈ [AAR,DEF,WATER],

affecting respectively principal stresses of tension and compression.

• Shear and compression scalar damage (Ds) computed as a function of plastic dilatancy
induced by non associated plastic flow due the Drucker-Prager yield function exceeding.

• Damage induced by creep (DCr)

• Damage induced by temperature (DTh)

• Last damage are in relation with the re-closure functions of tensile localized cracks. As
mentioned in equation 2.5, the re-closure criteria are written in terms of effective stresses,
yet these stresses exist only in the crack zone where crack edges roughness are in contact,

29
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Post-peak localized crack

Orthogonal 

macro-cracks

Pre-peak Micro-cracks 

randomly oriented

Figure 3.1: Idealized cracking pattern used to compute tensile damages

an anisotropic reclosure damage variable (Dr
ijkl in (3.1)) is used to consider only a fraction

of compressive stresses are able to cross a localized tensile crack not-yet totally re-closed.

The general form, combining the 10 damages, is given by equation (3.1), where the integrity
variables Ri are defined as complementary of damage variables Di.

σij =
(
1−DCr

)
︸ ︷︷ ︸
RCr(Creep)

(
1−DTh

)
︸ ︷︷ ︸
RT h(Thermal)

(
1−Ds

)
︸ ︷︷ ︸
Rs(Shear)︸ ︷︷ ︸

Isotropic Damages

 (
1−Dt

0

)
︸ ︷︷ ︸
Rt

0(Pre−peak)

(
1−Dt

)
ijkl︸ ︷︷ ︸

Rt
ijkl

(Post−peak)

∏
g

(
1−Dtg

)
klmn︸ ︷︷ ︸

Rtg
klmn

(g /Tension)︸ ︷︷ ︸
Tensile Damages

σ̃+
mn

+ (1−Dr)ijkl︸ ︷︷ ︸
Rr

ijkl
(Cracks Reclosure)

∏
g

(1−Dcg)klmn︸ ︷︷ ︸
Rcg

klmn
(g /Compression)︸ ︷︷ ︸

Compressive Damages

σ̃−mn

 (3.1)

Due to softening, tensile damage and compressive damage lead to strains localization [33]. The
objectivity of FEM solution towards mesh is processed thank to a Hillerborgh method [20].
To avoid dependency of Hillerborgh method toward finite element shape, the model uses an
anisotropic description of element size based on the node coordinates [30].

3.1 Damages affecting tensile stresses
As explained above, two types of damage are envisioned:

• a pre-peak isotropic damage can occur if tensile peak strain is greater than the elastic
strain at the peak Rt/E

• and in any case, an orthotropic damage occurs during the post peak phase corresponding
to the localization of tensile cracks.

The two types of damage are schemed in Figure 3.1.

3.1.1 Pre-peak tensile damage
Isotropic pre-peak damage depends on the principal effective stresses:

Dt
0 = 1− exp

(
− 1
m

(
σ̃I

R̃t

)m)
(3.2)
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With m a parameter computed such that the behavior law passes by σI = Rt when εI = εpeak,t.
With these conditions the tensile damage value at the peak of stress-strain relation in tension
is:

Dt,peak
0 = 1− exp

(
− 1
m

)
(3.3)

This last relation implies the following relationships between parameters and tensile damage at
the peak. 

R̃t = Rt

1−Dt,peak
0

m = − 1
ln
(
1−Dt,peak

0

) (3.4)

Dt
0 acts isotropically on the effective stresses tensor, as expressed in (3.1).

3.1.2 Post-peak tensile damages
Localized tensile damages are computed in the principal directions of localized cracks. The
orthotropic approximation of localized cracks consists in an idealization of the crack pattern
in each element with three orthogonal cracks in three dimensions, (or two orthogonal cracks in
two dimensions, as schemed in Figure 3.1). Localized damages depend directly on the maximal
crack’s openings wpl,t,maxI for I ∈ (I, II, III).

Dt
I = 1−

(
wk,tI

wk,tI + wpl,t,maxI

)2

(3.5)

with wpl,t,maxI the maximal value of the crack opening wpl,tI , wk,tI a characteristic crack opening
computed such as the dissipated energy during localized damage (rising from 0 to 1) is equal
to the fracture energy in tension Gf t.

Gf t ≈ lI

(
(Rt)2

2E(1−Dt
0) +

∫ ∞
0

(1−Dt
0)(1−Dt

I)σ̃+
I dεplt

)

≈ lI
(Rt)2

2E(1−Dt
0) +Rt

Iw
k,t
I

(3.6)

WithRt
I the tensile strength and lI the finite element length in the principal direction of cracking

I. Different methods can be used to assess lI . If the model is used with a reinforcement ratio
non null (cf. chapter 7.3.2), the fracture energy effectively dissipated in each direction depends
on the cracks number in the element (ncI given by equation (7.35)). The fracture energy is
then anisotropic and given by equation (7.30). Among others, a method based on the Jacobian
matrix of geometric transformation from reference to real base was clarified during the Stablon’s
PhD work and is described in [46]. A simpler method based on the node coordinates of the
finite element is given in [30], it consists to project the node coordinates of the finite element
in the principal directions I and than to assume lI ≈ (max(p) − min(p)), with (p) the node
coordinate projection on principal direction number I. The value of wk,tI can be computed for
a given finite element with a length lI using (3.6). This calculus remains possible while the size
of the finite element verifies the condition:

lI <
2E(1−Dt

0)Gf t
(Rt)2 (3.7)
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If the mesh does not verify condition (3.7), the model adopts a fracture energy Gf t∗I sufficient to
avoid a snap back of the behaviour law, so an overestimation of the fracture energy is provoked
imposing a softening modulus H at the beginning of localized damage such as:

0 > H = ∂σ

∂ε
> −E0

n
(3.8)

With n ≈ 6 an arbitrary factor allowing the control of softening branch whatever the finite
element size. The consequence of this overestimation is an over-dissipation of fracture energy,
but only if the finite element damages. Thanks to this possibility, large finite elements can
be used in zones where damage remains small enough to avoid localization. Only the zones
where the post peak damage is active have to verify (3.7). It is possible to visualize the zones
requiring a finest mesh thanks to an error variable ErrGF which is computed and stored in an
internal variable ErrGF :

ErrGF = max
I

(
Dt
I

Gf t∗I −Gf t

Gf t

)
(3.9)

This variable could be used in an automatic meash refinement method for instance.
Damage Dt

I acts on Young modulus, but affects also the Poisson’s coefficients as follows [37]:
εEII = CIIII

1−Dt
I

σ+
II + CIIJJσ

+
JJ + CIIKKσ

+
KK

εEIJ = CIJIJ
1−max(Dt

I , D
t
J)σ

+
IJ

≡
{
εEIJ = CD

IJKLσ
+
KL (3.10)

Relationships (3.10) are defined in the principal directions (I, J,K) of tension plastic strains.
On another hand the principle of equivalence in strains proposed in [28] allows to express the
effective stresses as a function of elastic strains:

εEIJ = CIJKLσ̃KL (3.11)

Relations (3.11) and (3.10) allow to compute the integrity tensor components Rt
IJKL used in

(3.1).
(1−Dt)IJKL = (CD)−1

IJMNCMNKL (3.12)

Thank to relation (3.10), the Poisson ratio reductions and Young modules reductions are com-
bined to simulate large crack opening without lateral contraction.

3.1.3 Tensile crack opening
The widths (wplI ) of localized tensile cracks are computed assuming the tensile plastic strains
correspond, in fact, to the permanent crack’s openings. In case of radial loading (without change
of principal direction), the relationship between a main plastic strain εpl,tI and the corresponding
crack’s opening is obvious.

wplI ≈ lIε
pl,t
I (3.13)

This approximation is valid as soon as εpl,tI � other strains. Relation (3.13) is no-more usable
in case of non-radial loading if the finite element in which the crack appears is not isotropic
in terms of size (lI 6= lII), because the rotation of the principal directions need using different
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finite element sizes. In this case, it is proposed to compute a crack opening matrix containing
the symmetric part of the crack-opening’s increments.

∂ ¯̄wpl
∂t

= ∂wplI
∂t

(−→eI ⊗−→eI ) (3.14)

Each crack opening increment being computed from the eigenvalues of increment of plastic
strain tensor.

∂wplI
∂t

= lI

(
∂εpl,t

∂t

)
I

(3.15)

The maximal crack opening used in Equation (3.5) corresponds to the maximal values of wpl.
The actualization process adopted, to compute these maximums, consists in an incremental up-
dating of the normal displacements in the base (−→e 1

−→e 2
−→e 3) corresponding to the main directions

of wpl.
wpl,maxii |t+∆t = max

(
wplI |t+∆t, w

pl,max
ii |t

)
with ii ∈ (11, 22, 33) (3.16)

3.1.4 Tensile damages due to over-pressures in the porosity
Internal Swelling reaction and capillary pressure damages are consequences of plastic strains
induces by porous over-pressures (εpl,gij g ∈ [AAR,DEF,Water]). The relationship between
plastic strains and tensile damages is defined in principal direction of ¯̄εpl,g.

Dt,g
I = εpl,gI

εpl,gI + εk,g
(3.17)

According to [9], the characteristic strain εk,g ≈ 0.3% for AAR and is quasi independent of
material. These tensile damages are computed in the principal direction of ¯̄εpl,g.

3.2 Damages affecting compressive stresses

3.2.1 Re-closure damages
Re-closure damages allow to consider the decrease of contacts number between tensile crack
edges, so they depend on the crack opening through the principal tensile plastic strains εpl,tI .

Dr
I =

wpl,tI

(
wpl,tI + 2wk,rI

)
(
wpl,tI + wk,rI

)2 (3.18)

With wk,rI a characteristic crack opening computed to verify that the energy Gf r is consumed
during re-closing process.

Gf r = lI

∫ 0

wpl,t
(1−Dr

I)σ̃−I dwpl,tI (3.19)

The parameter supplied by the user is the re-closing energy Gf r. But, this energy can be
re-evaluated by the software to insure a stiffness continuity at the end of re-closure:

Gf r > Gf r,min with Gf r,min/ lI

∂
(
σ̃−I (1−Dr

I)
)

∂wpl,tI


wpl,t

I =0

> E (3.20)
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Figure 3.2: Uniaxial-tension-compression cycles with damage, (Rt = 3MPa, Rf = 5MPa,
Rc = 30MPa, δ = 1, β = 0.15, Gf t = 100J/m2, Gf r = 100J/m2, εk,dc = 1.e−3), left figure
gives the imposed axial strain versus time, right figure shows the model response: axial stress
versus axial strain in black, versus radial strain in green, and versus volume change in blue

Re-closure damage tensor is diagonal in the principal direction of ¯̄εpl,t.
An example of the behaviour law obtained combining the plastic and the damage model is

given in Figure 3.2.

3.2.2 Compressive damages due to over-pressures in the porosity
Due to the possibility for cracks to re-close during compressive stresses application, the material
is less sensitive to damage in compression than it is in tension. More, it is assumed only cracks
perpendicular to the applied direction of compressive stresses play a role, so the damage to
apply in compression is deduced from damage in tension as follows:

Dc,g
I = 1−

((
1−Dt,g

II

) (
1−Dt,g

III

))αg

(3.21)

g compressive damages in the two other principal directions are obtained by cyclic permutation
of subscript (I, II, III). For AAR αg ≈ 0.15 is a coupling coefficient quasi independent of
material.g compressive damage is a diagonal matrix in the principal direction of ¯̄εpl,g.

3.3 Isotropic damages

3.3.1 Shear damage
Shear damage associated to Drucker Prager criterion is assumed driven by plastic dilatancy
Tr(¯̄εpl,s). This dilatancy leads to an isotropic damage only if it is greater then a dilatancy
threshold (εth,s = Tr¯̄εpl,speak) corresponding to the peak in uni-axial compression test:

Ds =


Tr(¯̄εpl,s)−εth,s

Tr(¯̄εpl,s)−εth,s+εk,s if ¯̄εpl,s) > εth,s

0 if ¯̄εpl,s) 6 εth,s
(3.22)
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With εk,s a characteristic strain to control the damage evolution rate versus dilatancy.

3.3.2 Thermal Damage
Thermal activation function CT

p (1.10) of creep potential amplifies creep for temperature above
Tthr. The underlying phenomenon is attributed to the contrast of dilation coefficients between
different phases which leads to release creep sites in temperature. It is possible this phenomenon
comes along with thermal damage, specially if creep site release is due to micro-cracking. So
thermal damage DTh and CT

p are assumed to be linked as follows [25]:

DTh = 1− 1
ATh

(
CT
p − 1

)
+ 1

(3.23)

ATh is a fitting constant to control the damage level at given temperature. In the model, ATh is
computed automatically from the measured thermal damage at 80◦C in saturated condition (
for example in [26], the thermal damage DTh(80◦C) ≈ 0.1) and ATh can be deduced as follows
[11]:

ATh = 1
CT
p (80◦C)− 1

(
SrD

Th(80◦C)
1− SrDTh(80◦C)

)
(3.24)

Sr is the saturation rate which limits the damage due to temperature if the material is dry.

3.3.3 Creep Damage
Creep damageDCr allows to consider a coupling between creep strain and possible consequences
in terms of macroscopic properties such as apparent stiffness or strength. As the final creep
damage DCr

U is assumed to be linked to coefficient CM defined in (1.11). The current creep
damage depends both on the consolidation variable CC

I which reflect the current creep strain
state and the final creep damage DCr

U :

DCr = Dcr
U

(
1− 1

max(CC
I , C

C
II , C

C
III)

)
(3.25)

With CC
I a consolidation coefficient defined in (1.4).

DCr
U = DCr

max

(
τDP

τDPlim

)
(3.26)

Where DCr
Max is the maximal possible creep damage, linked to the compression strength under

long term loading (RLT
c ).

RLT
c = (1−DCr

max) ·Rc (3.27)

In (3.26) τDP is the equivalent Drucker Prager stress computed with total stress, and τDPlim the
limit Drucker Prager stress deduced from the compression strength like in (2.7).
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3.4 Damage visualisation
In order to have a few scalar variables able to summarize the global damage state in tension
or in compression, two scalar indicators are build. They are not used in the model, but they
give to the user a global view of the material state. The first one summarises the main causes
of tensile damages :

Dt = 1−
(
1−Dt

0

) (
1−DTh

) (
1−DCr

) (
1−max

(
Dt
I , D

t
II , D

t
III

))
∏
g

(
1−max

(
Dt,g
I , D

t,g
II , D

t,g
III

)) (3.28)

The second one combines the different levels of compressive damage :

Dc = 1− (1−Ds)
(
1−DTh

) (
1−DCr

)∏
g

(1−max(Dc,g
I , Dc,g

II , D
c,g
III )) (3.29)



Chapter 4

Dependence of Strengths on strain
velocity

4.1 Principle
Tensile and compressive strengths are sensitive to the strain velocity faster then 5.10−6s−1. The
experimental observation are explained thanks to too origins:

• A dynamic effect, which should be not considered in the behaviour law

• An intrinsic effect linked to the material behaviour, only this last has to be considered.

4.2 Empirical relationships
Among the different models able to describe the second phenomenon, in case of concrete, the
modified CEB ones is selected for sake of simplicity [19]:

Rt

Rtref
=



1 if ε̇ 6 ε̇ref,d(
ε̇

ε̇ref,d

) 1
38

if ε̇ref,d < ε̇ 6 ε̇lim,d

θ
(

ε̇

ε̇ref,d

) 1
3

if ε̇ > ε̇lim,d

(4.1)

With ε̇ the strain velocity, ε̇ref,d = 5.10−6s−1 the reference strain velocity under which the
strength remains constant, ε̇lim,d = 1.00s−1 a limit strain velocity above which the amplification
takes the last expression. θ a normalization constant to allows the continuity between the parts
below and above 1.00s−1. To verify this condition, θ is expressed as follows:

θ =
(
ε̇ref,d

) 1
3−

1
38 (4.2)

Remark, in the current version of the model, the dynamic amplification is applied both in
tension and in compression.
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Figure 4.1: Dynamic amplification of strengths

4.3 Unit compatibility
As the relationship above is given with the strain velocity in [s−1], a conversion parameter τ d
must be introduced in the model to convert any time unit in second as follows: ε̇ref,d = ε̇ref,d[s−1]

τd

ε̇lim,d = ε̇lim,d[s−1]
τd

(4.3)

τ d represents the number of used time units per second. Note two internal variable CDRT and
CDRC store the amplification coefficient effectively used at each time step.

4.4 Example
The figure 4.1 compares the empirical law used to experimental results. Note the experimental
points includes the two effects, while the model considers only the intrinsic part, that is why
the fitting is located in the lower part of the experimental results.



Chapter 5

Chemistry and Mechanics Coupling

5.1 Hydration
The hydration degree ζ, represents the fraction of material able to support a stress. It ranges
from zero for not solidified matrix until one for a complete solidification. Several material
parameters are linked to the hydration thanks to the De Schutter evolution law [15] :

X

Xref
=
(

ζ − ζth

ζref − ζth

)nX

(5.1)

With ζth the solidification threshold, ζref = 1 the reference hydration degree for which are
given the material parameters, nX a non linearity exponent for material parameter X. Xref

the value of X for ζref . The hydration acts also on internal variable as explained in [7]. In

Parameter X Symbol Exponent nX
Young modulus E 0.66
Poisson coefficient 0.45− ν 0.66
Tensile strength Rt 0.66
Re-closure characteristic stress σr 0.66
Compressive strength Rc 0.66
Confinement coefficient for DP criterion δ 0.00
Dilatancy coefficient for non associated plasticity β 0.00
(1-Biot) 1− b 0.50
Van Genuchten modulus Mshr 1.86
Fracture energy Gft 0.50
Crack reclosure energy Gfr 0.50

Table 5.1: Exponents of De-Schutter law for material parameters

fact, as internal variables of the model concern both the hydrated and un-hydrated parts, each
of them is considered as the average value between hydrated and un-hydrated parts of the
elementary volume of material, this leads to the following updating conditions:

∂Vi
∂ζ

= −Vi
ζ

(5.2)
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In(5.2) Vi is an internal variable of the model. This updating condition is applicable to almost
all the internal variables, except the chemical ones. The list of internal variables updated in
case of evolution of the hydration degree are given in subroutine ’hydravar3d’.

5.2 Water content
The tensile strength depends on the water content through a linear law :

Rt = Rtsat − kw,Rtbwpw (5.3)

According to MOSAIC ANR research program [6], kw,Rt ≈ 0.25 for concrete. Note, the for-
mulation takes into account the decrease of positive effect of capillary pressure on Rt with the
temperature rising, because, as explained by equation (1.18), the capillary pressure decreases
with the temperature rise [11].

5.3 Internal Swelling Reactions

5.3.1 Chemical advancement of Internal Swelling Reaction
Chemical advancement of the alkali aggregate reaction

The chemical advancement of AAR depends on temperature and humidity. The internal vari-
able Aaar gives the chemical advancement rate, starting from 0 for sound material until 1 when
the alkali aggregates reactions are ended.

∂Aaar

∂t
= 1
τaarref

CT,aarCW,aar (Aaar,∞ − Aaar) (5.4)

• CT,aar the thermal activation coefficient modeled thank to the Arrhenius law:

CT,aar = exp
(
−E

aar

R

(
1
T
− 1
Tref

))
(5.5)

With Eaar ≈ 40000J/Mol the activation energy of chemical processes involved in the
reaction, T ref the absolute reference temperature for which the characteristic time τaarref

is fitted.

• CW,aar takes into account the reduction of kinetic when material is not water saturated:

CW,aar =


(
Sr − Sth,aarr

1− Sth,aarr

)
if Sr > Sth,aarr

0 if Sr 6 Sth,aarr

(5.6)

Sr the water saturation rate, Sth,aarr the saturation rate threshold under which the reaction
kinetic is null.

• Aaar,∞ is the maximal advancement of the reaction, based on experimental works of Poyet
et al [34] it assumes only the reactive site in contact with liquid water can react:

Aaar,∞ = Sr (5.7)
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The amount of gel involved in the swelling processes depends both on the chemical advancement
of the reaction Aaar and on the gel production potential of material:

φaar = φaar,∞.Aaar (5.8)

With φaar,∞ the gel production potential which is a characteristic of material.

Chemical advancement of Delayed Ettringite

The delayed ettringite is the consequence of a hot period during which the primary sulfo-
aluminate hydrates are dissolved, releasing sulphates and aluminates in the pore solution.
These ions are then adsorbed or combined more or less definitively in the other hydrates. If the
hot period is long enough, according to [36] a part of the aluminate ions could combine with
C-S-H to form hydro-garnet or with lime aggregate to form Carbo-Alumintes. As hydro-garnets
and Carbo-Aluminates are stable in temperature [16], their combined aluminates are no more
available for delayed ettringite. If the hot period is not long enough or the temperature too low,
there is not enough time to convert aluminates in these stable forms, so they can recombine
with sulphates when the temperature comebacks to a low level. This phenomenon explains
the existence of a pessimum in terms of hot period duration. If the hot period is short only a
few primary sulfo-aluminates are dissolved, if the hot period is very long, all the primary sulfo
aluminates are dissolved, but aluminates can be combined in stable forms, so only intermediate
hot period durations can lead to a maximum of delayed ettringite. Therefore, according to [44]
the numerical implementation of an ettringite model can be based on two equations sets:

• A first one dedicated to the calculation of dissolution of primary sulfo-aluminates and to
the assessment of aluminates bonding in stable froms.

• A second one aiming to model the precipitation of delayed sulfo-aluminates.

Dissolution of sulfoaluminates As shown by Kchakech, Martin et al. in [23], the tem-
perature above the sulfo-aluminates dissolves depends on the alkali concentration in the pore
solution as follows :

T th,def [K] =


T k,def

(
Nak

Na

)−n
if Na > Nak

T k,def if Na < Nak
(5.9)

With Nak ≈ 0.28mol/l , n ≈ 0.18 and T k,def ≈ 80◦C. The dissolution rates of primary
ettringite and monosulfoaluminates (E1 and M1 respectively) are assumed to be close and
equal to thus of delayed ettringite (E2), so that a single characteristic time can be used for all
of them in a first order kinetic equation:

∂E1

∂t
= − E1

τDiss
∂M1

∂t
= − M1

τDiss
∂E2

∂t
= − E2

τDiss

(5.10)
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In (5.10), τDiss is the characteristic time for the dissolution velocity; it depends on temperature
(T ) and alkali content (Na):

τDiss = τDiss,ref

CT,DissCNa,Diss
(5.11)

τDiss,ref is a kinetic constant characterizing the material transfer properties at the micro-scale
where the dissolution processes take place, in [44] a value close to 3days is fitted on experimental
results from [23] and [5] ; CT,Diss considers the effect of temperature on the dissolution velocity
as follows :

CT,Diss = exp
(
−E

a,Diss

R
.
( 1
T
− 1
T th,def

))
− 1 ≥ 0 (5.12)

With Ea,Diss the activation energy for the dissolution processes (close to 70000J/mol according
to [44]), R the gaz constant, T the absolute temperature and T th,def the threshold temperature
given by (5.9). In (5.10) CNa,Diss considers the positive effect of alkali on the dissolution kinetic
through the following expression :

CNa,Diss =
(
Na

Nak

)
(5.13)

The aluminates released by the dissolution of sulfo-aluminates phases are noted Ã. As they
are partially re-absorbed to form hydro-garnets stable in temperature, only a part of them
are available to form delayed ettringite at long term during the cold periods. The amount of
remaining aluminates is assessed as follows:

∂Ã

∂t
+ Ã

τFix
= −

(
∂E1

∂t
+ ∂M1

∂t
+ ∂E2

∂t

)
(5.14)

With τFix the characteristic time for the fixation of aluminates in hydro-garnets. This pa-
rameter depends on temperature according to coefficient CT,F ix, and on alkali content through
CNa,F ix as follows:

τFix = τFix,ref

CT,F ixCNa,F ix
(5.15)

With τFix,ref a material constant. In [44] a value close to 3days is proposed, and CNa,F ix given
by :

CNa,F ix =
(
Nak

Na

)m
(5.16)

m ≈ 3 a fitting parameter. CT,F ix considers the effect of temperature:

CT,Diss = exp
(
−E

a,F ix

R
.
( 1
T
− 1
T th,F ix

))
− 1 ≥ 0 (5.17)

In (5.17) Ea,F ix ≈ 180000J/mol is the activation enerfy, and T th,F ix ≈ 70C the threshold
temperature for the aluminate fixation.

The amount of sulphates released by the dissolution processes are noted S̃, and directly
deduced from (5.10) as follows:

∂S̃

∂t
= −3

(
∂E1

∂t
+ ∂E2

∂t

)
−
(
∂M1

∂t

)
(5.18)
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Precipitation of sulfoaluminates If the condition required are satisfied (T < T th,def see.
(5.9) ), the delayed ettringite can precipitate. The precipitation kinetic is assumed controlled
by the sulfate supply:

∂E2

∂t
= S̃

τPrec
H
(
max

(
M1, Ã

))
(5.19)

H
(
max

(
M1, Ã

))
is the Heaviside function which takes into account the presence of aluminium

available for the DEF. The model gives the priority to the conversion of M1 into secondary
ettringite untilM1 is totally depleted. Next the consumption of Ã starts until the total depletion
of Ã or S̃:

• While M1 > 0 and if S̃ > 0: 

∂M1

∂t
= −∂E

2

∂t
∂S̃

∂t
= −2∂E

2

∂t
∂Ã

∂t
= 0

(5.20)

• When M1 = 0 and while Ã > 0 and S̃ > 0:

∂M1

∂t
= 0

∂S̃

∂t
= −3∂E

2

∂t
∂Ã

∂t
= −∂E

2

∂t

(5.21)

In (5.19), τPrec is the characteristic time of the reactions. It depends on the temperature, the
alkali content and the water content as follows:

τPrec = τPrec,ref

CT,Prec.CNa,Prec.CW,Prec
(5.22)

τPrec,ref is a material constant (a characteristic time of the reaction), CT,Prec considers the
effect of the temperature on the precipitation rate as follows:

CT,Prec = CT,Diss (T )
CT,Diss (T ref,Prec) exp

(
−Ea

prec

R

( 1
T
− 1
T ref,Prec

))
(5.23)

Eaprec is the activation energy for the precipitation process, and T ref,Prec the reference temper-
ature for the characteristic time of precipitation. CNa,Prec considers the limiting effect of alkali
which, at high concentration is able to prevent the DEF. In fact in presence of Portlandite, the
alkali control the amount of Calcium in solution and privilege the adsorption of sulphate in the
cement matrix versus its availability for DEF:

CNa,def =


(

1− Na)
Nath,def

)m
if Na < Nath,def

0 if Na > Nath,def
(5.24)
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In equation (5.24), Nath,def ≈ 0.92mol/l is a threshold value beyond which the DEF formation
is stopped. The exponent m ≈ 3” considers the non linearity of this phenomenon. CW,Prec

is computed according to the following equation which consider the better diffusion of ions in
saturated porosity:

CW,Prec = exp
(
− 1− Sr

1− Srk
)

(5.25)

With Srk a material parameter which controls the decrease of precipitation rate according to
the saturation rate Sr. Experimental program cariied out by AlShama et al. in [1] [2] shows
that DEF needs a very high humidity level corresponding to (0.9 < Srk < 0.99). The volume
of delayed products considered in the poromechanical model is deduced from the moles number
of each type:

∂φdef

∂t
= ∂E2

∂t
VAFt + ∂M1

∂t
VAFm (5.26)

With VAFt ≈ 715cm3/mol and VAFm ≈ 254cm3/mol the molar volume of ettringite and mono-
sulfoaluminate, respectively.

Initial conditions On one hand, the amount of aluminium and sulphates are not always
known for an existing structure affected by the DEF, and on the other hand the damage state
or the swelling of the structure can be known. So to facilitate the chemical data assessment,
the form chosen to supply them consists to specify the Sulphate versus aluminium mole number
ratio ρ and the maximal DEF volume creatable φDef,Max in optimal conditions.

ρ = SO3

Al2O3
(5.27)

ρ of a cement is generally ranged in [0.5− 1] Supplying this last parameter allows the user to
use the poro-mechanical coupling to feet the DEF potential of the material independently of
its hydration degree, and in accordance with the observed mechanical effects, without ignoring
the Sulphate/Aluminium ratio which is the main parameter acting on the hot period pessimal
duration. To pass from the couple ρ, φDef,Max to the couple Sc = SO3, equivalent Ac = Al2O3.
The following assumptions are made:

• If ρ > 3 the aluminium mole number limits the DEF amount, and the chemical data are
obtained as follows: Ac = φDef,Max

V AFt

Sc = ρAc
(5.28)

• If ρ 6 3 the sulphate moles number limits the production of DEF:S
c = 3φDef,Max

V AFt

Ac = Sc

ρ

(5.29)

Once these amount assessed, the moles number of primary hydrates are deduced as follows,
and used as initial conditions for the dissolutions equations (5.10) (5.14) (5.18).
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• If SC > 3Ac, the initial hydration products contain sulfoaluminates mainly in ettringite
form: 

E1 = Ac

M1 = 0
S̃ = Sc − 3E1
Ã = 0

(5.30)

• SC < Ac, the initial hydration products contain sulfoaluminates mainly in monosulfoalu-
minate form: 

E1 = 0
M1 = Sc

S̃ = 0
Ã = Ac −M1

(5.31)

• In the other intermediates cases, primary ettringite and monosulfoaluminates coexist:
E1 = Sc−Ac

2
M1 = 3Ac−Sc

2
S̃ = 0
Ã = 0

(5.32)

The other internal variable (E2) is set to zero as initial condition, its evolution is controlled
by (5.19) which acts also on S̃ and Ã through equations (5.21). Users have also the possibility
to impose the mole number of sulphates Sc = Scimp, in this case the number of aluminates is
computed directly according to ρ:

Ac =
Scimp
ρ

(5.33)

If the imposed mole number of sulphates is not in accordance with the mole number of sulphates
deduced from (5.29) then a compatibilty coefficent is automatically computed and affected to
the volume of delayed ettringite:

CD
eff = Sc

Scimp
(5.34)

As the imposed mole number of sulphates is assumed prevalent compared to the mole number
deduced from (5.29), the coefficent CD

eff should allways be greater than 1, so if CD
eff < 1 a

warning message is printed and the program stops.

Environmental conditions Temperature T , alkali content Na and saturation rate Sr must
be supplied as data to the chemical evolution model. They can be computed before the chemo-
mechanical or together, depending on the coupling level chosen by the user.

5.3.2 Pressure induced by Internal Swelling Reactions
The alkali reaction or the delayed ettringite lead to the production of new phases φg. As the
connected porosity volume is affected by the global volume change induced by the deformation,
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the gel pressure depends on the strain state :

pg = M g
(
φg −

(
bgTr

(
ε−

(
εp,t + εp,c

))
+ (1− bg) Tr(εp,g)

))
(5.35)

Equation (5.35) has to verify the condition pg ≥ 0, with φg the phase volume fraction amount
assessed from the chemical advancement of the reactions, and computed for AAR gel production
by equation (5.8) and for DEF production by equation (5.26):

φg = φaar or φdef (5.36)

In (5.35), bg is the Biot coefficient approximation supplied by a homogenization method:

bg ≈ 2φg
1 + φg

(5.37)

and M g the Biot modulus linked to the Biot coefficient and compressibility moduli as follows:

1
M g

= bg − φg

Ks
+ φg

Kg
(5.38)

with Kg the compressibility modulus of the new phase and Ks the compressibility of the matrix
defined as the material deprived of the volume occupied by the gel:

Ks ≈ E

3(1− 2ν)
1

1− bg (5.39)

with E the Young modulus of the material and ν its Poisson coefficient.



Chapter 6

Probabilistic scale effect in tension

6.1 Principle
The spatial random distribution, corresponding to material heterogeneity, leads to a probabilis-
tic scale effect as soon as the behaviour law present a softening phase. This scale effect can be
treated simply using a random field of tensile strength (direct random sampling or mesoscopic
modelling of random distribution of heterogeneities). But as random sampling based methods
need a large enough sample to have a reliable representation of the model behaviour, they are
time consuming. So, an alternative method, called "Weakest Link Localization" is proposed
bellow.

6.2 Weibull scale effect
This method avoids resorting to a mesoscopic modelling or to a random fields sample. The
Weakest Link localization method (WL2 [43]) allows to assess directly the most likely tensile
strength using the Weibull’s concepts. In the Weibull theory the tensile strength to be used
depends on the loaded volume (V eq) through the scale effect law:

Rt

Rtref
=
(
V eq

V ref

)− 1
m

(6.1)

In this scale effect law Rtref is the average tensile strength measured with a specimen for which
the loaded volume is V ref . m is the Weibull exponent which depends on the coefficient of
variation (Cv) of experimental results:

Cv =

√
Γ
(
1 + 2

m

)
− Γ2

(
1 + 1

m

)
Γ
(
1 + 1

m

) (6.2)

This relation admits the following inverse approximation, more useful to compute the Weibull
exponent (m) as a function of the coefficient of variation (Cv) of experimental results :

m ≈ 1
10

( 12
Cv
− 2

)
(6.3)

47
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6.3 Weakest Link Localization method (WL2)

6.3.1 Principle
The WL2 method consists to assess the equivalent loaded volume V eq using a modified Weibull
theory. The modification proposed in [43] consists to use a weighting function which considers a
non-homogeneous probabilistic influence of material points (M) towards each other (located at a
distance d(M)) in equation (6.4). The weighting function ψ (6.4), accords a larger probabilistic
importance to the vicinity of any material point.

ψ(M) = exp
−1

2

(
d(M)
lcp

)2
 (6.4)

With d(M) the distance between any damageable material point, for instance located atM , and
any other point of the structure located at the distance d(M) from M . lcp is the characteristic
length of the probabilistic weighting function; it is assessed from 0.3→ 0.5 meters for a concrete
in [43]. The equivalent loaded volume is then defined as follows:

V eq(M) = 1
βmax

∫
Ω
βψ(M)dΩ︸ ︷︷ ︸

α

(6.5)

With Ω the structure, dΩ a structure infinitesimal volume. β is the loading index defined at
each integration point as follows:

β =
(

max (σI , 0)
Rtref

)m
(6.6)

In (6.6), if the loaded index β is evaluated in a zone already damaged, it is limited to the unit
to consider that as in this zone the tensile strength is known, the probabilistic weight of the
residual undamaged zone around the integration point must be limited. With σI the principal
tensile stress. If the structure volume (Ω) is very large compared to the characteristic length lcp,
and the stress field homogeneous, the equivalent loaded volume tends to a maximal equivalent
loaded volume V max impossible to exceed whatever the stress field in the structure and the real
size of the structure:

V max(M) =
∫

Ω
ψ(M)dΩ (6.7)

Due to the geometry boundary effects,V max(M) is smaller near the geometry faces and edges.
Consequently V max(M) is a non homogeneous scalar field. It can be assessed with an integral
operator before the non-linear analysis. In CASTEM, the integral operator ’NLOC’ allows
to compute the V max(M) field before the non linear analysis. Note, the operator ’CONN’ is
able to consider symmetry plans and symmetry axis of the finite element model to establish a
connectivity map exploited by the operator ’NLOC’ to compute the V max(M) field.

6.3.2 Implementation with an Helmholtz formulation
In [43], it is proposed to assess the equivalent loaded volume V eq thanks to a second gradient
formulation:

α− lcp
2

2 5 α = βV max (6.8)
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Once the non local loading variable α computed, the equivalent loaded volume is deduced:

V eq(M) = α

βmax
(6.9)

In equation (6.9), βmax is the maximal loading index over the structure.

6.4 Numerical Implementation of the Weakest Link Lo-
calization method

6.4.1 Semi-implicit procedure
Once V eq(M) computed, it is used in the Weibull scale effect law (6.1) to assess the most likely
tensile strength field. The operation has to be performed during each loading increment to
adapt the tensile strength to the current loading. As the most likely tensile strength depends
on the stress field in the undamaged zone, but as these zones are susceptible to damage during
the non-linear analysis, a first approximation of the stress field is performed using the tensile
strength field of the previous time step, then a non local sub-step is performed using this field
to assess a more accurate tensile strength field. The definitive calculus is done with this last
one. This formulation is available in CASTEM software using the Non-Local formulation with
the keyword HELM . If this formulation is not used the WL2 method is not activate and the
model works without considering the probabilistic scale effect.

6.4.2 Use of the Helmholtz equation in case of evolutive matrix
In equation (6.5) and (6.6),the denominator Rtref can be simplified, showing that the equivalent
loaded volume depends only on the stress field form, and not of its amplitude. On the other
hand, when the matrix damages, abd as the scale effect affects only the matrix zone not yet
damaged, a special treatment is done to consider that in a given finite element the Weibull
scale effect could evolves during the damage process. On purpose an updating method is used
during the time step ∆t:(

Rt

Rtref

)
t0+∆t

Dt
t0+∆t =

(
Rt

Rtref

)
t0

Dt
t0 +

(
Rt

Rtref

) (
Dt
t0+∆t −Dt

t0

)
(6.10)

6.4.3 Limit of scale effect for small equivalent loaded volume
Several methods are implemented to allow a compatibility between criteria. In fact, for small
equivalent loaded volume (V eq), the Weibull scale effect (6.1) leads to an increase of the tensile
strength, and in another hand the compressive strength is assumed independent of the loaded
volume. A consequence could be a modification of the ratio between the tensile and the com-
pressive strength. However this ratio must stay in the limit needed to have an independence
between the Drucker Prager and the Rankine criteria. This limit is verified during the plastic
criteria assessment. If the tensile strength is locally higher then the limit, it can be limited
locally to the value needed to avoid the interaction.



Chapter 7

Distributed reinforcements

7.1 Principle
To avoid or limit explicit meshing of reinforcements, their structural effects can be considered
as equivalent to the ones due to orthotropic distributed reinforcements. The distributed rein-
forcement directions are noted (−→V r, with r ∈ [1..nr]). nr the distributed reinforcements number.
In each direction a reinforcement rate ρr is considered, it corresponds to the cross section rate
of the reinforcements r oriented along the axe (−→V r).

7.2 Homogenized behaviour law of a reinforced matrix
If the distributed reinforcements are used in the context of damage mechanics, and if localized
cracks can occur, then, if a crack’s normal and a reinforcements are not aligned, as illustrated
in figure 7.1, a dowel effect takes place, changing the reinforcement orientations into the cracks
and closely. Elsewhere, the reinforcements stay aligned on their initial directions. Therefore,
two cases have to be considered, one corresponding to the reinforcements contribution into the
zones without localized cracks, and another-one into the localized cracks. As the two zones can
coexist in a finite element, the combination method adopted consists to weight the dowel effect
by the localized damage and the contribution into undamaged zone by its complement to the
unit. The sum is done using the four order tensor Dt taking into account the localized cracks,
as expressed by (7.1).

σij = (1−
∑
r

ρr)σmij + (1−Dt
ijkl)σHkl +Dt

ijklσ
R
kl (7.1)

In (7.1), σH is the homogenized stress induced by the reinforcements in the undamaged zone,
given by Eq. (7.2). σR if the stress state corresponding to the bridging of localized cracks by
the reinforcements, given by Eq. (7.3).

7.2.1 Reinforcements contribution in undamaged zone
The homogenized behaviour law of the reinforced matrix assumes the distributed reinforce-
ments contributions have an axial component σr induced by the reinforcement elongation in
the direction −→V r. The contribution of a reinforcement is then directly proportional to its rate

50
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Crack edges

Reinforcement
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Figure 7.1: Dowel effect

ρr. The combination is done using a mix proportion of the normal stress in the matrix (σmr )
and in the reinforcements:

σHij =
∑
r

ρrσr
(−→
V r ⊗

−→
V r
)
ij

(7.2)

7.2.2 Reinforcements contribution in localized cracks
In case of damage, the reinforcement orientation can be modified into the crack if the crack’s
normal is not aligned with the reinforcement. This is the dowel effect illustrated in 7.1, and
modelled through a mis-alignment of the reinforcement force into the cracks (relatively to the
initial orientation of the reinforcement). The orientation of the reinforcement into the crack
I is noted −→Dr

I . The method consists to replace the matrix contribution into the cracks by
the reinforcement contributions. Due to the minimal value of curvature radius induced by the
interaction between the reinforcement and the matrix, the orientation of the reinforcement into
the crack is always comprised between the reinforcement direction into the matrix and the
direction normal to the crack. Thanks to the orthotropic model adopted to consider localized
cracks effects, the cracks orientations are known and noted

−→
V I . In each crack the contributions

of all the reinforcements crossing the crack are affected by the corresponding localized damage,
summed up, and expressed into the base of localized damage thanks to the passage matrix P.
A first non symmetrical matrix R is obtained (7.3).

R =
∑
r

ρrσrPT
[
Dt
I

(−→
V r.
−→
V I
)−→
Dr
I

]
;PT

[
Dt
II

(−→
V r.
−→
V II

)−−→
Dr
II

]
;

PT
[
Dt
III

(−→
V r.
−−→
V III

)−−→
Dr
III

] (7.3)

The effective contributions of reinforcements into the cracks is then taken equal to the sym-
metrical part of R (7.4) .

Dt
ijklσ

R
kl =

[
P
[1
2
[
R + RT

]]
PT

]
ij

(7.4)

Equation (7.4) is based on the fact that the dowel effect can exist only if a misalignment of a
given reinforcement is balanced by a compressive link in the matrix which is itself blocked by
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Compressed links 

in the matrix 

Vr Dr

Reinforcements 

VI

Localized cracks

Compression in 

the matrix 

limited by the 

ack vicinity 

Vr Dr

VI

Figure 7.2: Compressed links in the matrix allowing dowel effect (a) or limiting dowel effect (b)

another reinforcement with a different orientation as illustrated in figure 7.2(a). The misalign-
ment of at least one-another reinforcement crossing the same crack or another crack is then
needed. If a reinforcement is alone to cross a given crack the compressive link in the matrix
needed to change the reinforcement orientation, which is quasi orthogonal to the reinforce-
ment, cannot be balanced, and the reinforcement direction cannot be changed, as illustrated
in figure 7.2(b). That is why in Eq.(7.4), only the symmetrical part of the matrix is assumed
admissible. If a single reinforcement crosses a single crack with a given relative inclination, the
force orientation in the reinforcement is not aligned to the normal to the crack, but, as the
equilibrium needed to have a dowel effect is possible only if the compressive links are balanced,
the dowel effect must be reduced, what is done by the symmetrization operation (7.4) which in
such a case divide by two the shear contribution of the reinforcement into the crack. In (7.3),
the direction of the reinforcement into the crack −→Dr

I is a combination between the geometric
(initial) direction of the reinforcement −→Vr and the normalized value of the lateral displacement
−→
grI induced by the dowel effect :

−→
Dr = cos(αr)−→Vr + sin(αr)

−→
grI

||−→grI ||
(7.5)

The lateral displacement −→grI is the difference between the crack opening displacement and its
own projection on the initial direction of the reinforcement:

−→
grI = wpl,tI

(−→
VI −

(−→
V r.
−→
VI
)−→
V r
)

(7.6)

The angle αr between the reinforcement reorientation into the crack −→Dr, and its original direc-
tion −→V r, depends on the curvature radius Rr of the reinforcement on both sides of the crack,
as illustrated in figure 7.1.

αr = 2 arcsin
√ grI

4Rr

 6 arccos
(
|
−→
VI .
−→
V r|

)
(7.7)
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Rr is assessed using a based strap relationship, considering the tension in the reinforcement
σr,the reinforcement diameter Deq

r and the concrete compressive stress fc:

Rr = πDeq
r σ

r

4fc (7.8)

Note, the method to assess the misalignment uses only the current crack opening wpl,tI . Another
method could consist to project the maximal crack openings wpl,t,maxI in the principal base of
the current opening, and add the shear component of the difference between these two tensors
expressed in this base to consider the dowel effect even if cracks are re-closed, but as reinforce-
ment’s stresses remove also during re-closure processes, and as reinforcement’s contribution is
proportional to these stresses, the adopted formulation is an a priori admissible approximation.

7.3 Axial stress in a reinforcement

7.3.1 Constitutive equation for the reinforcement material
The behaviour law of reinforcements is elasto-plastic with a linear kinematic hardening and a
relaxation law. It is given in each direction of reinforcement by equation (7.9):

σr − σr0 = Er(εr − εr,pl − εr,m − εr,k) (7.9)

With Er the reinforcement Young modulus, εri the axial strain in the reinforcement, εpl,r its
plastic strain,εr,m its permanent viscous strain and εr,k its reversible viscous strain. σr0 is the
possible pre-stress applied to the reinforcement as initial stress (not induced by the computed
strain field).

Reinforcements plasticity

The plastic criterion is uni-axial, it models a linear kinetic hardening (7.10).

f r = |σr −Hrεpl,r| − f ry 6 0 (7.10)

With σr the axial strain in a reinforcement in the direction (−→Vr), f ry the elastic limit for the
reinforcements, and Hr the hardening modulus.

Reinforcement relaxation

According to [12],the reversible viscous strain can be modelled thanks to a Kelvin element:

∂εr,k

∂t
= 1
τ r,k

(
εe

K
− εr,k

)
(7.11)

With K the rate of reversible viscous strain relatively to the elastic strain and τ r,k the charac-
teristic time for the reversible viscous strain which depend on the temperature:

τ r,k =
τ r,kref
kr,T

(7.12)
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K = Kref

kr,T
(7.13)

With τ r,kref the characteristic time fitted at reference temperature T r,ref and kr,T the thermal
activation coefficient defined by equation (7.21). According to [12], the uni-axial permanent
viscous strain εr,m derives from a non-linear Maxwell model analogue to the one used for the
matrix [45]. The viscous strain is proportional to the current elastic strain, and inverse propor-
tional to a consolidation coefficient Ccr which affects the characteristic time τ r if the viscous
strain increases (7.14).

∂εr,m

∂t
= εe

τ rCcr
(7.14)

The consolidation coefficient depends on the current viscous strain as follows (7.15):

Ccr = 1
kr

exp
( 1
kr
εr,m

εe

)
(7.15)

In (7.15), kr considers the coupling effects of temperature and mechanical non-linearities in-
volved in the relaxation process.

kr = krefk
r,Tkr,m (7.16)

kref is a constant proportional to the delayed strain potential of material, it is a material
constant fitted on experimental results. For instance, if a relaxation test is performed under a
given stress level σkr, a delayed strain potential noted εkr can be obtained by curve fitting of
the test result. The constant kref is linked to the previous parameters as follows:

kref = E
εkr

σkr
(7.17)

In (7.18) kr,m considers the non linear amplification of the relaxation rate with the loading
level:

kr,m = µcr

µcr − µ
(7.18)

With µ the loading level defined as follows:

µ = |σ
r|
f ry

(7.19)

In (7.18) µcr is a constant depending on the sensitivity of the reinforcement material to increase
non-linearly its relaxation rate when the load increases; it is linked to a characteristic data χr
called relaxation non linearity factor, defined such as the relaxation remains linear if χr = 1
and becomes non-linear when χr > 1:

µcr = 2
3

χr

χr − 1 (7.20)

In (7.16), kr,T considers the effect of the temperature on the relaxation velocity. According to
[47] the relaxation is accelerated by the temperature rising, and a coupling with the loading
level exists since this amplification depends non-linearly of the applied stress. To consider this
second coupling, the model [12] assumes the thermal activation multiplication of the delayed
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strain potential (kr,T ) depends non linearly of the loading level through the thermal activation
coefficient Ar,T :

kr,T =


exp

(
Ar,T

(
T − T r,ref

)nr)
if T > T r,ref

exp
(
−Ar,T

(
T r,ref − T

)nr)
if T 6 T r,ref

(7.21)

T the absolute temperature, and T r,ref the reference temperature for which the relaxation
characteristic time τ r was fitted, nr ≈ 1.216 a fitted parameter.

Ar,T = Ar,Tref exp
(
γrµthm

)
(7.22)

In (7.22), kTTref ≈ 1.5.10−4 (according to [12]) is a fitted constant to consider the effect of
temperature on the relaxation rate , γr a material constant and µthm is a loading rate able to
change the activation energy defined as follows:

µthm (t+ dt) = max
(
µthm(t), µ(t+ dt), µthr

)
(7.23)

µthr ≈ 0.7 is the minimal loading level able to change the activation energy. µ(t + dt) is given
by (7.19).

7.3.2 Reinforcement-matrix bond
Perfect bond between matrix and reinforcements

Either a perfect bond or an imperfect bond can be considered between reinforcement and matrix.
In case of perfect bond, the axial strain of the reinforcement is deduced from its approximated
elongation:

εr ≈ εr + 1
2γ

2
r (7.24)

With εr the axial strain :
εr =

−→
V r

t
ε
−→
V r (7.25)

and γr the shear strain :
γr = ||ε

−→
V r − εr

−→
V r|| (7.26)
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Imperfect bond between matrix and reinforcements

If a sliding between the reinforcement and the matrix is possible, the reinforcement’s strain can-
not be directly deduced from the mechanical strain of the matrix. To assess the reinforcement
strains the model uses a non local approximation of the reinforcement-matrix interaction. This
approximation consists to consider that the total strain εr of each reinforcement can be assessed
using a second gradient method (7.27). This implementation affects both the constitutive be-
haviour law and the finite element solver (UNPAS.PROCEDUR in Castem software), since the
reinforcement’s total strains, (εr) is replaced in (7.9) by its non local associated variable (εr)
deduced using (7.27).

ε̄r −
lcr

2
∂2 ε̄r
∂x2

r

= εr (7.27)

(7.27) is an Helmholtz equation for which the variational form has to be solved at each sub-step
by the finite element solver. Concerning the variational form, if a thermal analogy is used to
build the numerical model, it is necessary to consider an anisotropic equivalent conductivity for
which a single non-null coefficient exits in the direction ~V r (while the coefficients are null in the
two orthogonal directions), and it is necessary to build as many Helmholtz formulations as there
are reinforcement types. In (7.27) lcr is the characteristic length for the second gradient method
applied to the reinforcements oriented in direction ~V r. This characteristic length depends on
the shear bond behaviour law between reinforcement and matrix. It can be shown that if the
bond behaviour is linear the characteristic length has the form:

lcr =
√
ErDr

Hr
(7.28)

With Er the stiffness of the reinforcement, Dr its equivalent diameter, and Hr the tangent
stiffness of the bond defined as:

Hr = ∂τmr

∂dmr
(7.29)

with τmr the shear stress supported by the bond and dmr the sliding between the reinforcement
and the matrix.
Note the Helmholtz formulation able to consider the matrix-reinforcement sliding is active only
if the model is used in its non-local formulation. In this case the name of the internal variables
ε̄r have to be specified by the user for each reinforcement for which the bond is considered
non-perfect.
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7.4 Cracks distribution along reinforcements
The minimal localized crack number nci in the direction i of a finite element, depends on its
dimension li in the direction −→Vi . The minimal fracture energy released in this direction depends
then directly on nci as follows:

Gfi = nciGf (7.30)

For any other direction an interpolation of Gf is used:

Gf−→
V

= −→V TGf−→V (7.31)

With Gf a fracture energy tensor built as follows:

Gf =
3∑
i=1

Gfi
−→
Vi
⊗−→

Vi (7.32)

For an assumed stabilized crack process, the localized cracks number (7.35) depends on the
maximal distance lfi (7.33) between two consecutive cracks. If a constant shear bond stress is
assumed, it can be computed by (7.33) where Deq

i the equivalent diameter of the reinforcements
defined as the ratio of the cross section to the perimeter of the reinforcement.

łfi = 2
(
Deq
i

4

)
Rt

τ r

(
1− ρi
ρi

)
(7.33)

But when the reinforcement plastification occurs the crack formation is also limited by the
straight anchorage length (7.34) of the reinforcements.

lsi = Deq
i

4
fy

τ r
(7.34)

With fy the reinforcement elastic limit.

nci = max
(

1, li
lfi
,
li

2lsi

)
(7.35)

As, in a finite element, the fracture energy depends on the localized cracks number, the cracks
opening computed by the model corresponds to a single of these possibly multiple cracks. The
number of cracks in each main direction is also available in the internal variable list of the
model.
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Chapter 8

Basic creep fitting

8.1 Permanent creep fitting
The permanent creep formulation admits analytical solution if physical conditions (T,H,M) are
fixed, i.e constant temperature, constant water saturation rate and constant loading.

ϕM = k ln
(

1 + t

τMref

)
(8.1)

With ϕM the permanent basic creep function :

ϕM = εMtest
εEtest

(8.2)

With εEtest = σtest/E the elastic strain under the applied stress σtest. E the Young modulus
in the loaded direction.

8.2 Reversible creep parameters fitting
In uni-axial and constant loading a analytic solution exists to fit easily the model.

ϕK = 1
ψK

(
1− exp

(
− t

τK

))
(8.3)

With ϕK the reversible basic creep fonction :

ϕK = εKtest
εEtest

(8.4)

With ψK the amplitude fitting parameter and εEtest the elastic test corresponding to the loading
level during creep test.
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Chapter 9

Model activation

The model can be used either in local formulation or in non-local formulation. The probabilistic
scale effect (WL2 method) and the distributed reinforcements sliding in the matrix are available
only in non-local formulation because they use the Helmholtz method implemented on purpose.
So there are two ways to invoke the model in Castem:

• Local formulation without WL2, with reinfocement perfectly bond to the matrix

• Non Local formulation with WL2 and possibility to consider a sliding between ditributed
reinforcements and matrix

9.1 Local formulation
The model is formulated to work in the context of 3 dimensions imposed strains: this formula-
tion includes:

• 3 dimensions

• 2 dimensions with plain strain formulation

• 2 dimension with axi-symmetric formulation

For the two last modes, a parameter giving the out of plan dimension is needed, it is called:

• DIMZ in 2D plain strain

• DIMT in 2D axi-symmetry

If the mesh to be used is called vol1, the model activation is done as follows:
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*model declaration from the mesh (vol1) for local formulation
mod1=MODELE vol1 MECANIQUE ELASTIQUE ISOTROPE
VISCOPLASTIQUE FLUENDO3D;
*material declaration (see below)
*material declaration for damage and plasticity
mdam1=...
*material declaration for water effects
mwat1=...
...
*material declaration for reinforcement 1
mrenf1=...
*material chracteristics assemblage
mat1=matd1 ET mdam1 ET mwat1 ET mrag1 ET mdef1 ET mprob1 ET
marenf1 ;

9.2 Non Local formulation
The Helmholtz method has been implemented to consider non local formulation of WL2 and
of the sliding reinforcements. As explained in chapter 6 and 7. The key word specifying the
internal variables on which are applied the Helmholtz formulation are given in the model decla-
ration, while the characteristic lengths corresponding to each of them are added in the material
declaration. For WL2 the characteristic lenght is LCAR, for each reinforcement processed by
the Helmholtz formulation theay are LCF1, LCF2...For instance the command lines below allow
to apply the Helmholtz formulation for WL2 (variable XWL2) and for the first reinforcement
(variable ENL1). Other reinfocement’s variable are ENL2, ENL3...and can be added if needed.
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*model declaration from the mesh (vol1) for non local formulation
mod1=MODELE vol1 MECANIQUE ELASTIQUE ISOTROPE
VISCOPLASTIQUE FLUENDO3D ’NON_LOCAL’ ’HELM’
’V_MOYENNE’ ( ’MOTS’ ’XWL2’ ’ENL1’) ;
*material declaration (see below)
*material declaration for damage and plasticity
mdam1=...
*material declaration for water effects
mwat1=...
*material declaration for CREEP
mcreep1=...
*material declaration for AAR
mrag1=...
*material declaration for DEF
mdef1=...
*material declaration for Weibull scale effect
mprob1=...LCAR 0.3;
*material declaration for reinforcement 1
mrenf1=...LCF1 0.1;
*material chracteristics assemblage
mat1=mdam1 ET mwat1 ET mcreep1 ET mrag1 ET mdef1 ET mprob1 ET
marenf1 ;

Note: if other internal variables have to be treated by the Helmholtz formulation the proce-
dure ’PAS_HELM.PROCEDUR’ of Cast3M has to be adapted. The treatment for LCAR et
LCF1...are not the same. LCAR is based on a isotropic Helmholtz formulation while LCF1...use
anisotropic ones, that is why the orientation vectors of reinforcements are needed in mrenf1.



Chapter 10

Data classified by physic phenomena
ans associated command lines

10.1 Principle
In this chapter the material parameters are split in several sub-materials, all of them being
associated to the model. Each sub-material corresponds to an aspect of the global behaviour
law (damage, creep, reinforcement, scale effect, alkali reaction, delayed ettringite formation...),
next all the sub-materials are assembled in a single material. This method allows to find more
easily the parameters corresponding to each component of the behaviour law than if all the
parameters were passed in a single instructions. More this method avoids to have too many
command lines for the material definition.
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10.2 Elasticity, strengths, plasticity and damage due to
loading, link with hydration

10.2.1 Command lines
mdam1=MATE mod1 YOUN 30000. NU 0.2 RHO 2400. ALPH 1.0e-5
HYDR 0.8 HYDS 0.2 HREF 0.8 RT 3. EPT 1.1e-4 RC 40. EPC 2.0e-3
DELT 1. BETA 0.15 REF 4. EKDC 2.0e-3 GFT 1.0e-4 GFR 1.0e-4 DT80
0.15 TSTH 45. NREN 1.;
* In plain strain and axi-symmetric formulation the out of plane dimension
must be added : DIMZ 0.1 or DIMT 0.1 (respectively) in the list above

10.2.2 Data list

Parameter Symbol Unit Name Value
Basic thermo-elasticity

Young modulus E MPa YOUN 30000.
Poisson ratio ν - NU 0.2
Density ρ kg/m3 RHO 2400.
Thermal dilation coefficient α - ALPH 1.0e-5

Solidification
Hydration advancement ξ - HYDR 1.0
Solidification hydration threshold ξth - HYDS 0.2
Hydration reference for data ξref - HREF 0.8

Basic Plasticity
Tensile strength Rt MPa RT 3.
Strain at tension pick εpkRt EPT 1.0e-4
Uniaxial Compressive strength Rc MPa RC 30.
Strain at uniaxial compression pick εpkRc - EPC 2.0e-3
Drucker Prager confinement coefficient δ - DELT 0.75
Dilatancy for non associated Drucker Prager
plastic flow β - BETA 0.15

Reclosure characteristic stress σ̃rcl MPa REF 4.
Damage associated to basic plasticity

Characteristic plastic strain for Drucker
Prager associated damage εk,s (3.22) - EKDC 1.0e-4

Fracture energy in tension Gf
t MJ/m2 GFT 1.0e-4

Tensile crack reclosure energy Gf
r MJ/m2 GFR 2.0e-4

Thermal Damage
Thermal damage at 80 ◦C DT

80 - DT80 0.15
Damage temperature threshold θthr

◦C TSTH 45.
Reinforcement types number

Number of types of reinforcements N r - NREN 0→ 5
Table 10.1: Data for mechanical behaviour of the matrix
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10.3 Effects of water: capillary effects, shrinkage and
associated damage

10.3.1 Command lines
mwat1=MATE mod1 PORO 0.12 VW 0.12 BSHR 0.25 MSHR 40. TTRW
20. MVGN 0.5 CSHR 0. EKDW 1.0e-2 TTKW 40. HSHR 1.0e5 DCDW 0.0
KWRT 0.25 KWRC 0.10;

10.3.2 Data list

Parameter Symbol Unit Name Value
Capillary pressure effects

Porosity φ m3/m3 PORO 0.12
Water content φW m3/m3 VW 0.12
Biot coefficient for shrinkage bshr - BSHR 0.25
Van Genuchten Modulus at reference tem-
perature fir the capillary curve M ref

shr MPa MSHR 40.

Reference temperature for the capillary curve Tw,ref C TTRW 20.
Van Genuchten exponent mV G - MVGN 0.5
Stress concentration factor for cracking cri-
teria by capillary pressure Cshr - CSHR 1.

Characteristic strain to link capillary in-
duced strain and tensile damage εkdw - EKDW 1.e-2

Characteristic temperature to consider effect
of temperature on capillary pressure TKW C TTKW 40.

Hardening modulus for the evolution of local
tensile strength to capillary pressure Hw MPa HSHR 1.0e5

Exponent of (1−Dtw) for coupling between
damages due to capillary pressure and com-
pression

αW - DCDW 0.

Influence coefficient of capillary pressure on
macroscopic tensile strength KW,Rt - KWRT 0.25

Influence coefficient of capillary pressure on
macroscopic compressive strength KW,Rc - KWRC 0.10

Table 10.2: Data for mechanical effects of capillary water



CHAPTER 10. DATA CLASSIFIED BY PHYSIC PHENOMENA ANS ASSOCIATED COMMAND LINES68

10.4 Creep

10.4.1 Command lines
mcreep1=MATE mod1 TTRF 20. TAUK 0.7 YKSY 3.75 TAUM 14. EKFL
0.9e-4 XFLU 2. NRJM 20000. DFMX 0.10 KDTT 0.0 ;

10.4.2 Data list

Parameter Symbol Unit Name Value
Creep

Reference temperature for creep model pa-
rameters θref

◦C TTRF 20.

Characteristic time for Kelvin module τKref Day TAUK 0.7
Kelvin stiffness / Young module Ratio ψK YKSY 3.75
Characteristic time for Maxwell Module τMref Day TAUM 14.
Creep potential characteristic strain εMref - EKFL 0.9e-4
Non linear creep potential multiplicator at
66%RC , (> 1) χM - XFLU 2.

Activation energy for creep potential ampli-
fication in temperature EM

A J/mol.K NRJM 20000.

Maximal creep damage DC
max - DFMX 0.10

Transient Thermal creep constant kdtt - KDTT 0.
Table 10.3: Data for creep of the matrix
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10.5 Alkali aggregate reaction

10.5.1 Command lines
mrag1=MATE mod1 VRAG 0. TRAG 120. SRSR 0.5 NRJR 40000. HRAG
1500. KRAG 2000. EKDG 3.0e-3 VVRG 0. CRAG 0.5 TTRG 38. DCDG
0.15;

10.5.2 Data list

Parameter Symbol Unit Name Value
Alkali aggregate reaction AAR

Maximal AAR product volume ratio φ∞aar m3/m3 VRAG 0.
Characteristic time for AAR reaction τaarref days TRAG 120.0
Water saturation threshold to activate AAR Sth,aarr - SRSR 0.5
Activation energy for AAR kinetic Eaar J/Mol NRJR 40000.0
Hardening modulus of the tensile strength
used in the AAR cracking criteria HAAR MPa HRAG 1500.

Compressibility modulus for AAR KAAR MPa KRAG 2000.
Characteristic strain to link AAR strain and
AAR damage in tension εkdg - EKDG 3.0e-3

Void filled by tge AAR gel at free cracking φV,AAR - VVRG 0.
Stress concentration factor for AAR kAAR - CRAG 0.5
Reference temperature of AAR kinetic
paramter T ref,AAR C TTRG 38.

Exponent of (1−Dgw) for coupling between
damages due to AAR pressure and compres-
sion

αAAR - DCDG 0.15

Table 10.4: Data for AAR
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10.6 Delayed Ettringite Formation (DEF)

10.6.1 Command lines
mdef1=MATE mod1 VDEF 5.0e-2 SSAD 0.7 TTKD 80. TTKF 70. TTRP
20. TDID 3. TFID 1.5 TPRD 30. NRJD 70000. NRJF 180000. NRJP
40000. NALD 0.3 NAKD 0.28 NABD 0.92 SRSD 0.95 EXND 0.18 EXMD 3.
EKDS 3.0e-3 HDEF 1500. KDEF 33000. VVDF 0.1 CDEF 0.5 DCDS 0.15;

10.6.2 Data list

Parameter Symbol Unit Name Value
Delayed Ettringite Formation

Maximal amount of DEF φ∞def m3/m3 VDEF 0.05
Sulphate/Aluminates moles number ratio ρ − SSAD 0.7
Mole number of sulphates per unit volume Scimp Mol/m3 NSUL1 170.
Characteristic temperature for sulphoalumi-
nate dissolution TDiss,ref ◦C TTKD 80.

Minimal temperature to start aluminates fix-
ation T th,F ix ◦C TTKF 70.

Reference temperature for the characteristic
time of DEF precipitation T ref,Prec ◦C TTRP 20.

Characteristic time for the dissolution of
sulphoaluminates τDiss,ref days TDID 3.

Characteristic time for the fixation of alumi-
nates in hydro-garnets τFix,ref days TFID 1.5

Characteristic time of precipitation τPrec days TPRD 120.
Activation energy for the dissolution of sulfo-
aluminates Ea,Diss J/mol NRJD 70000.

Activation energy for the fixation of alumi-
nates Ea,F ix J/mol NRJF 180000.

Activation energy for the precipitation Ea,Prec J/mol NRJP 40000.
Free alkali concentration in pore solution Na mol/l NALD 0.3
Reference Alkali concentration for laws de-
pending on free alkali concentration Nak mol/l NAKD 0.28

Alkali concentration blocking the DEF pre-
cipitation Nath,def mol/l NABD 0.92

Characteristic water saturation rate for the
kinetic term of DEF precipitation Sth,defr − SRSD 0.95

Exponent of coupling law for DEF dissolu-
tion temperature n − EXND 0.18

Exponent of coupling law for DEF precipita-
tion and aluminate fixation m − EXMD 3

1Give either VDEF or NSUL, if the two variables are imposed the VDEF is used to compute the molar
volume of DEF else the real volume is used and the moles number computed according to NSUL and SSAD
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Parameter Symbol Unit Name Value
Chracterirstic strain to link DEF strain and
induced damage εkd - EKDS 3.0e-3

Hardening module for the tensile strength
evolution in DEF criterion HDEF MPa HDEF 5000.

Compressibility of ettringite KDEF MPa KDEF 33000.
Void filled by ettringite at free cracking bDEF - VVDF 0.
Stress concentration factor for the DEF kDEF - CDEF 0.5
Exponent of (1 − DtDEF ) for coupling be-
tween damages due to capillary pressure and
compression

αDEF - DCDS 0.15

Table 10.5: Data for DEF
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10.7 Probabilistic scale effect (WL2 method)

10.7.1 Command lines
Before building the material list, it is necessary to compute the VMAX variable which is a non
local field (vmax1 in the following example). This field uses the non local characteristic lenght
lc1, which must be the same than in the material:

* characteristic lenght for WL2 method
lc1=0.50;
*connectivity for NLOC operator used to assess VMAX
conn1 = ’CONN’ mod1 (lc4*(2.*(2.**0.5)))’NORMAL’ ’INTERIEUR’;
*other possible symetries: ’DROITE’ p1 p2 or ’AXE VERTICAL’...;
chp1=manu chpo vol1 ’SCAL’ (1.);
un1=chan ’CHAM’ chp1 mod1 ’STRESSES’ ’CARACTERISTIQUES’;
un2=exco ’SCAL’ un1 ’VMAX’;
lism1=mots ’VMAX’;
*option NODI to avoid division in NLOC operator
vmax1=NLOC un2 conn1 lism1 ’NODI’;

Then, the material can be defined as follows:

mprob1=MATE mod1 VREF 2.e-4 CVRT 0.15 VMAX vmax1 LCAR lc1;

10.7.2 Data list

Parameter Symbol Unit Name Value
Weibull scale effect with WL2 method

Reference volume for the tensile strength V eq m3 VREF 2.e-4
Coefficient of variation of the tensile strength Cv - CVRT 0.15
Maximal equivalent volume field V max m3 VMAX -2
Characteristic length for the Wl2 method lcWL2 m LCAR3 0.5

Table 10.6: Data for Weibull scale effect

2Scalar field to built before the material delaration with the NLOC command
3Available only if the model is non local with the Helmholtz formulation activate see 9.2
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10.8 Reinforcements
Note, the number of reinforcements NREN can be given anywhere, but as when NREN=0
(none reinforcements) the information is given in the material for the matrix, it can be kept
there, so it is recall in the table below but given in the first material (see 10.2.1).

10.8.1 Command lines
matren1=MATE mod1 ROA1 0.01 DEQ1 0.01 YOR1 2.0e5 SYR1 1800.
TYR1 6. VR11 0. VR12 0. VR13 1. HPL1 5.0e3 TMR1 0.1 TKR1 0.1 YKY1
100. EKR1 1.0e-4 SKR1 1260. ATR1 1.5e-4 CTM1 4.8 XNR1 1.216 XFL1
2.55 MUS1 0.7 PRE1 800. TTR1 20. LCF1 0.15 ;

These command lines can be copied as often as needed to specify data for the possible other
reinforcements. In this case the suffix "1" of each data is replaced by the numerous of the
reinfocement (until 5 maximum).

10.8.2 Data list

Parameter Symbol Unit Name Value
Distributed reinforcements behaviour laws

If more than one reinforcement, duplicate the data list bellow replacing 1 by I = 1..NREN
Reinforcement’s number N r − NREN ∈ [0..5]45

Reinforcement density direction 1 ρr1 − ROA1 0.01
Equivalent diameter direction 1 Deqr1 m DEQ1 0.01
Reinforcement Young modulus Er1 MPa YOR1 2.e5
Reinforcement elastic limit fyr1 MPa SYR1 1800.
Bond stress interface reinforcement matrix τ r1 MPa TYR1 6.0
Projection of the normalized direction of Re-
inforcement on the first fix axe er11 − VR11 1.0

Projection of the normalized direction of Re-
inforcement on the second fix axe er12 − VR12 0.0

Projection of the normalized direction of Re-
inforcement on the thirst fix axe er13 − VR13 0.0

Reinforcement Hardening modulus Hr
1 MPa HPL1 5000

Reinforcement Irreversible Relaxation char-
acteristic time τ r Day TMR1 0.1

Reinforcement Rreversible Relaxation char-
acteristic time τ r Day TKR1 0.1

Reinforcement Reversible Relaxation Reduc-
tion coefficient at Tref

Kref − YKY1 100.

4Possibility to add more then 5 reinforcement’s types recompiling IDVISC, CFLUENDO3d with
NBRENF3D 6= 5,and add corresponding internal variables in IDVAR4

5NREN already given in material definition for the matrix, do not repeat this date which is single for the
model
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Parameter Symbol Unit Name Value
Characteristic strain for reinforcement relax-
ation εkr − EKR1 1.e-4

Characteristic stress for the fitting of εkr σkr MPa SKR1 1260.
Reference value of the thermal activation co-
efficient (7.22) Ar,Tref − ATR1 1.5e-4

Coupling coefficient for effect of stress on ac-
tivation energy γr − CTM1 4.8

Non linear relaxation coefficient χr − XFL1 2.55
Exponent of temperature in thermal activa-
tion of relaxation (7.21) nr − XNR1 1.216

Loading level threshold above which the
thermal activation depends on loading (7.22) µth − MUS1 0.7

Initial pre-tress (imposed as initial stress at
first step) σr0 MPa PRE1 800.

Reference temperature for the dtermination
of τ r T r,ref ◦C TTR1 20.

Characteristic length for the non local for-
mulation of sliding interfaces (reinforcement
type number 1)

lcr,1 m LCF16 0.15

Table 10.7: Data for the reinforcements definition

6Used only if non local Helmholtz formulation activate for the variable ENL1, see 9.2
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Results

11.1 Internal variables management

11.1.1 Limitation of computer’s memory used
As each material embedded in the model has between ten and twenty internal variables, and
as each variable is stored in the memory of the computer at each Gauss point of each element
and each time step, the size of the memory occupied by the internal variables of the model
can be significant for meshes with a great number of elements and great number of time steps.
So it is advisable to save only the internal variables at important time steps using the options
TAB.TEMPS_CALCULES for the list of computed time step, TAB.TEMPS_SAUVES for the
list of time steps to save, and TAB.TEMPS_SAUVEGARDES for the sub list of time steps to
store in a file in order to recover them later, either to continu the calculus, or to access them
to exploit results.

11.1.2 Access to an internal variable at a given time
Once the calculus achieved, users can recover any internal variables of the model at any stored
time step. To obtain an internal variable, for instance the maximal crack opening stored in the
internal variable WL0 at a given time temps1 corresponding to iteration i1, it is convenient to
process as follows:

*print the list of time stored by PASAPAS in tab1 to identify the time step
number i1, then affect i1
LIST tab1.TEMPS ;
*choice of time step number i1 and plot of internal variable chosen at this
time step number
i1=...;
TRAC ( EXCO WL1 tab1.variables_internes.i1) mod1 ;

11.2 Total Stresses and stresses by phases
In the case the reinforcement are used (NREN>0), it is important to note that TAB1.CONTRAINTES
provided by CASTEM supplies the total stresses (matrix plus reinfocements); the stresses in
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the matrix alone or in the reinforcements alone are stored in the internal variables listed below.
Specifically the stresses in the matrix are call SIM1..6 (see 11.1) and in reinfocement SRF1..5
(see 11.11).
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11.3 Internal variables for mechanical state in the ma-
trix

11.3.1 Strains
The generic numerotation used to store the strains and the stresses are such that the corre-
sponding tensor in the global base of the mesh. For instance the elastic strains stored in the
pseudo vector EPE1→ 6 corresponds to the following matrixs:

• If the problem is three-dimensional or in plain strain(global base (xyz)): EPE1 EPE4/2 EPE5/2
EPE4/2 EPE3 EPE6/2
EPE5/2 EPE6/2 EPE3

 =

 εexx γexy/2 γexz/2
γexy/2 εeyy γeyz/2
γexz/2 γeyz/2 εezz

 (11.1)

• If the problem is axi-symmetric (global base rzθ): EPE1 EPE4/2 EPE5/2
EPE4/2 EPE3 EPE6/2
EPE5/2 EPE6/2 EPE3

 =

 εerr γerz/2 γerθ/2
γerz/2 εezz γezθ/2
γerθ/2 γezθ/2 εeθθ

 (11.2)

Number Name
Elastic strains

2 EPE1
3 EPE2
4 EPE3
5 EPE4
6 EPE5
7 EPE6

Drucker Prager plastic strains
20 EPC1
21 EPC2
22 EPC3
23 EPC4
24 EPC5
25 EPC6
Tension plastic strains
26 EPT1
27 EPT2
28 EPT3
29 EPT4
30 EPT5
31 EPT6

Table 11.1: Internal variables for strains in the matrix
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11.3.2 Stresses
The numeration is analogous to the strains one.

Number Name
Effective stresses in the solid part of the matrix

50 SIG1
51 SIG2
52 SIG3
53 SIG4
54 SIG5
55 SIG6

Total Stresses in the matrix
62 SIM1
63 SIM2
64 SIM3
65 SIM4
66 SIM5
67 SIM6

Table 11.2: Internal variables for Stresses in the matrix
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11.3.3 Damages
Only the mechanical and global damage are given here. Other damages due to water, AAR or
DEF are given in the corresponding section of this chapter. The suffix 0 means that this is the
first main value of a second order tensor.

Number Name
Thermal damage

77 DTHE
Pre peak damage

79 DTPP
Equivalent plastic strain (Drucker Prager)
94 EPLC

Tensile damage (global)
95 DTRA

Compressive damage (global)
96 DCOM

Error on fracture energy to avoid snap back
110 ERGF

Current principal Eigenvalues of tensile damages
111 DTM0

Compressive and Shear Damage Drucker Prager
115 DCM0

Localized tensile damage
119 DTL0

Table 11.3: Internal variables for mechanical damage
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11.3.4 Cracking
The numeration is the same than for strains. The suffix 0 means this the maximal eigenvalue
of a tensor.

Number Name
Crack opening (from plastic strains)

97 WPL1
98 WPL2
99 WPL3
100 WPL4
101 WPL5
102 WPL6

Maximal cracks opening (versus time)
103 WPX1
104 WPX2
105 WPX3
106 WPX4
107 WPX5
108 WPX6

Crack opening (Current principal crack opening)
109 WPL0

Table 11.4: Internal variables for localized cracking
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11.3.5 Others variables

Number Name
Hydration used

68 HYDF
Indicator first step passed

1 PPAS
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11.4 Internal variables for creep

Number Name
Kelvin strains
8 EPK1
9 EPK2
10 EPK3
11 EPK4
12 EPK5
13 EPK6
Maxwell strains
14 EPM1
15 EPM2
16 EPM3
17 EPM4
18 EPM5
19 EPM6
Creep damage
78 DFLU

Kelvin effective stresses
56 SKE1
57 SKE2
58 SKE3
59 SKE4
60 SKE5
61 SKE6

Table 11.6: Internal variables for CREEP
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11.5 Internal variables for the capillary effect of liquid
water

Number Name
Capillary pressure plastic strains
32 EPW1
33 EPW2
34 EPW3
35 EPW4
36 EPW5
37 EPW6
Liquid water volume used

69 VWAT
Porosity used

70 VPOR
Biot coefficient used for liquid water

80 BWAT
Water pressure

81 PWAT
Capillary tensile damage

112 DTW0
Capillary Compressive damage
116 DCW0

Table 11.7: Internal variables for capillary effects
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11.6 Internal variables for AAR

Number Name
AAR plastic strains

38 EPG1
39 EPG2
40 EPG3
41 EPG4
42 EPG5
43 EPG6

Biot coefficient used for AAR
82 BGEL

AAR pressure
83 PGEL
AAR advancement

86 AGEL
AAR tensile damage

113 DTG0
Compressive due to AAR
117 DCG0

Table 11.8: Internal variables for AAR
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11.7 Internal variables for DEF

Number Name
DEF plastic strains

44 EPS1
45 EPS2
46 EPS3
47 EPS4
48 EPS5
49 EPS6

Biot coefficient used for DEF
84 BAFT

DEF pressure
85 PAFT

Chemical species involved in DEF
87 AFT1
88 AFM1
89 ATIL
90 STIL
91 AFT2

DEF advancement and volume
92 ADEF
93 VAFT

DEF tensile damage
114 DTS0
Compressive due to DEF

118 DCS0
Table 11.9: Internal variables for DEF
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11.8 Internal variables for Weibull scale effect

Number Name
Non local variable for Weibull (WL2) method
71 XWL2

Loading rate used for Weibull method
72 TWL2

Mawimum of XWL2
73 MXWL
Maximal loading rate used for Weibull method
74 MTWL

Maximal Localized damage in tension
75 DTMX

Scale effect coefficient computed by Weibull method
76 CWRT

Table 11.10: Internal variables for Weibull scale effect
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11.9 Internal variables for the reinforcements
The list below is given for reinforcement number 1. To access to another reinforcement replace
1 by its number.

Number Name
Axial strain in reinforcement 1

120 ERT1
Variable used for non local strain in reinforcement

121 ENL1
Plastic strain in reinforcement

122 ERP1
Axial stress in reinforcement

123 SNR1
Maxwell strain in reinforcement

124 ERM1
Maximal Loading rate in reinforcement

125 MUR1
Kelvin strain in reinforcements

126 ERK1
Table 11.11: Internal variables for the reinforcements

This table is repeated 4 times replacing "1" by the reinforcement number, adding 7 internal
variables for each one. Consequently, the total number of internal variables for all the materials
embedded in the model is 126 + 4× 7 = 154. Each one is stored in a field at each time step to
save.
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